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Abstract: We perform a mathematical analysis of the dielectric spectrum 

within the framework of classical dispersion theory. The analysis is a 

complex plane analysis. With this analysis, a holistic analytical method is 

derived to decompose the imaginary part of dielectric function into its 

fundamental components. A complex plane is formed using the complex 

feature of the dielectric function. In this plane, each loop of the function 

ε2(ε1 − 1) , which completed to a circle, represents the linear optical 

response for a single Lorentz oscillator. The parameters of each Lorentz 

oscillator such as natural frequency, energy, and half-width are calculated by 

analyzing the circles. 
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Öz: Bu çalışmada, klasik dispersiyon teorisi çerçevesinde dielektrik 

spektrumun matematiksel bir analizi yapılmaktadır. Bu analiz, bir kompleks 

düzlem analizidir. Bu analizle dielektrik fonksiyonun sanal kısmını temel 

bileşenlerine ayırmak için bir bütüncül analitik yöntem türetilmektedir. 

Dielektrik fonksiyonun kompleks özelliği kullanılarak bir kompleks düzlem 

oluşturulmuştur. Bu düzlemde, bir çembere tamamlanan her bir ε2(ε1 − 1) 

fonksiyon döngüsü, tek bir Lorentz osilatörü için lineer optik tepkiyi temsil 

eder. Her bir Lorentz osilatörünün, doğal frekans, enerji ve yarı genişlik gibi 

parametreleri, bu çemberler analiz edilerek hesaplanır. 

  

                                                           
† This work is a part of the master thesis of Fayrooz AL-BASRE 
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1. Introduction 

 

The optical properties of a dielectric medium, which generally result from the interaction of 

the medium with the light, are classified in three main groups: reflection, propagation and 

transmission. Some of the incident light is reflected from the front surface of the medium and it leads 

to the optical properties of medium such as reflectivity and reflection. The fact that the rest of incident 

light enters the medium and interacts with the medium is the reason for optical properties such as 

absorption, scattering and refraction. While some part of the light reaching the back surface is 

reflected back from this surface, some part of it passes the surface and leaves the medium. This event 

leads to properties of the medium such as optical transmittance. 

The dispersion theory explains how the light propagates in the medium and the process of 

interaction of light with the medium. Indeed, it is based on the oscillations of bound electrons inside 

the medium (Wooten 1972; Fox 2001; Moss 1959; Nye 1957; Peiponen at al., 1999; Hodgson 1970). 

The reason for these oscillations is the force which is exerted by the electric field component of the 

electromagnetic field of incident light on the bound electrons in the medium. In the other words, the 

electric field of the incident light acts as a coercive force on the bound electrons. This motion is 

described by the driven harmonic oscillator model called Lorentz oscillator (LO) (Wooten 1972; Fox 

2001; Moss 1959; Lorentz 1916). Since the effect of the magnetic field of the light on the motion is 

very small, it is neglected in this model. The interaction of bound electrons with the field of light is 

governed by the laws of the classical electrodynamics, that is, Maxwell's laws. 

All forces exerted on each bound electron modelled as a LO inside a dielectric medium are 

shown in Figure 1 (Figure 1 is partly taken from Peiponen at al., 1999). In this model, the bound 

electron is a driven harmonic oscillator which is driven by an external driving force 𝐹𝑑. The other forces 

exerted on the electron are the restoring force 𝐹𝑟  and damping force 𝐹𝑠  in Figure 1. Therefore, from 

Newton’s second law, the equation of motion of the electron is written as follows: 

  

𝑚�̈� + 𝑚Γ�̇� + 𝑚𝜔0
2𝑥 = −𝑒𝐸0𝑒−𝑖𝜔𝑡, (1) 

 

where, 𝑚, 𝑒, and 𝜔0 are mass, charge, and natural oscillation frequency of the electron, respectively; 𝜔 

and 𝐸0 are the frequency and the amplitude of the electrical field of incident light, respectively, and Γ is 

the damping parameter. The constant 𝑘 in Figure 1, which comes from Hook’s law, is the spring constant 

and defined as 𝑘 = 𝑚𝜔0
2. As it is easily understood, in Eq. (1), 𝐹𝑠 = −𝑚Γ�̇�, 𝐹𝑟 = −𝑚𝜔0

2𝑥, and 𝐹𝑑 =
−𝑒𝐸0𝑒−𝑖𝜔𝑡 which comes from Lorentz force. 

 

 

Figure 1. Lorentz oscillator (LO) model. 

 

 The solution of Eq. (1) gives the complex displacement (or amplitude) of LO: 

 

𝑥(𝑡) =
−𝑒𝐸0 𝑚⁄

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

{
[(𝜔0

2 − 𝜔2) cos 𝜔𝑡 + Γ𝜔 sin 𝜔𝑡]

+𝑖[Γ𝜔 cos 𝜔𝑡 − (𝜔0
2 − 𝜔2) sin 𝜔𝑡]

}, (2) 

  

and the modulus of the complex displacement can be calculated easily as follows: 
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|𝑥(𝑡)| =
𝑒𝐸0 𝑚⁄

√(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

. (3) 

 

The maximum value of amplitude |𝑥(𝑡)| can be found taking the derivative of the expression in Eq. (3) 

with respect to frequency ω and equalling it to zero. Thus, the resonance frequency corresponding to this 

maximum amplitude of the LO becomes 

 

𝜔𝑟
2 = 𝜔0

2 −
Γ2

2
. (4) 

 

2. Material and Methods 

 

2.1. Complex Linear Dielectric Susceptibility and Dielectric Function 
 

Using the complex displacement given by Eq. (2), the electric dipol of LO induced by the electric 

field of light is written as follows: 

 

𝑑 =
𝑒2𝐸0

𝑚

𝑒−𝑖𝜔𝑡

(𝜔0
2−𝜔2)−𝑖Γ𝜔

. (5) 

 

If there are 𝑁 LOs with the same natural frequency 𝜔0  in the unit volume, then we get the induced 

polarization 

 

𝑃 =
𝑁𝑒2𝐸0

𝑚

𝑒−𝑖𝜔𝑡

(𝜔0
2−𝜔2)−𝑖Γ𝜔

. (6) 

 

If the unit volume contains LOs which oscillate at different natural frequencies, then, the induced 

polarization per unit volume becomes (Wooten 1972): 

 

𝑃 =
𝑒2𝐸0

𝑚
∑

𝑁𝑘𝑒−𝑖𝜔𝑡

(𝜔𝑘
2−𝜔2)−𝑖Γk𝜔𝑘 . (7) 

 

As can be seen from this equation, since there exist 𝑁𝑘 oscillators with damping parameter Γk and natural 

frequency 𝜔𝑘 in the unit volume, the total number of oscillators is (Wooten 1972) 

 

∑ 𝑁𝑘𝑘 = 𝑁. (8) 

 

 It is well known from the linear dispersion theory that the linear dielectric susceptibility tensor 

(𝜒𝑑)𝑖𝑗, which is a 2-rank symmetric tensor, relates the induced polarization vector with the electrical field 

vector as follows (Nye 1957): 

 

𝑃𝑖 = 𝜀0(𝜒𝑑)𝑖𝑗𝐸𝑗 , (9) 

 

where 𝜀0 is the dielectric permittivity of vacuum. We can obtain a complex formula for each component 

of the linear dielectric susceptibility tensor by combining Eqs. (6) and (9), 

 

𝜒𝑑(𝜔) =
(𝑁𝑒2 𝑚𝜀0⁄ )

(𝜔0
2−𝜔2)−𝑖Γ𝜔

, (10) 

 

and it can be divided into real and imaginary parts easily: 

 

𝑅𝑒(𝜒𝑑(𝜔)) =
𝑁𝑒2

𝑚𝜀0

(𝜔0
2−𝜔2)

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

, (11.a) 
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𝐼𝑚(𝜒𝑑(𝜔)) =
𝑁𝑒2

𝑚𝜀0

Γ𝜔

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

. (11.b) 

 

 We know that the relation between the dielectric permittivity tensor and the linear dielectric 

susceptibility tensor of a dielectric medium is (Nye 1957) 

 

𝜀𝑖𝑗 = 𝜀0(𝛿𝑖𝑗 + (𝜒𝑑)𝑖𝑗), (12) 

 

where 𝛿𝑖𝑗 is the 2-rank unit tensor. The relative dielectric permittivity tensor of the medium can be easily 

written from expression (12): 

 

(𝜀𝑟)𝑖𝑗 =
𝜀𝑖𝑗

𝜀0
= (𝛿𝑖𝑗 + (𝜒𝑑)𝑖𝑗). (13) 

 

Thus, each components of the relative dielectric tensor of the medium has the form of 

 

𝜀𝑟(𝜔) = 1 +
(𝑁𝑒2 𝑚𝜀0⁄ )

(𝜔0
2−𝜔2)−𝑖Γ𝜔

. (14) 

 

On the other hand, each component of the relative dielectric permittivity tensor is a function of frequency 

of incident light and it has a complex form of 

 

𝜀𝑟(𝜔) = 𝜀1(𝜔) + 𝑖𝜀2(𝜔), (15) 

 

thus, its real and imaginary parts become 

 

𝜀1(𝜔) = 𝑅𝑒(𝜀𝑟(𝜔)) = 1 +
𝑁𝑒2

𝑚𝜀0

(𝜔0
2−𝜔2)

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

, (16.a) 

 

𝜀2(𝜔) = 𝐼𝑚(𝜀𝑟(𝜔)) =
𝑁𝑒2

𝑚𝜀0

Γ𝜔

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

, (16.b) 

 

respectively. The frequency dependencies of the real and the imaginary parts given by Eqs. (16) are 

plotted in Figure 2 using a online graphing program (Desmos), for the values of (𝑁𝑒2/𝑚𝜀0) = 100, 

𝜔0 = 3, and Γ = 2, in arbitrary units. The resonance frequency calculated for these values is 𝜔𝑟 = 2.65 

in arbitrary units. 

The difference of frequency values which correspond to the minimum and maximum points of the 

function 𝜀1(𝜔) gives the value of Γ which is called the half-width of the LO because this value is also 

equal to the half-width of 𝜀2(𝜔). This frequency region, where the real dielectric function decreases 

with the frequency, is called abnormal dispersion region. The regions where the real dielectric function 

increases with frequency are normal dispersion regions. The point at which the curve of 𝜀1(𝜔) 

intersects with the vertical axis determines the static dielectric constant which is the relative dielectric 

function at low frequencies defined as 

 

(𝜀𝑟)𝑠𝑡 = 𝜀𝑟(0) = 1 +
𝑁𝑒2

𝑚𝜀0𝜔0
2. (17.a) 

 

The calculated static dielectric constant for the example given in Figure 2 is (𝜀𝑟)𝑠𝑡 = 12.11. The value of 

relative dielectric function at high frequencies converges to unity, 

 

(𝜀𝑟)∞ = 𝜀𝑟(∞) = 1, (17.b) 

 

therefore, the difference of values of (𝜀𝑟)𝑠𝑡 and (𝜀𝑟)∞ is 
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(𝜀𝑟)𝑠𝑡 − (𝜀𝑟)∞ =
𝑁𝑒2

𝑚𝜀0𝜔0
2. (17.c) 

 

 

Figure 2. Frequency dependencies of the real and imaginary parts of relative dielectric function. 

 

The maximum value of 𝜀2(𝜔) is defined as 

 

𝜀2(𝜔)𝑚𝑎𝑥 = 𝜀2𝑚 =
𝑁𝑒2

𝑚𝜀0Γω0
, (17.d) 

 

and its calculated value is 𝜀2𝑚 = 16.67 for the example in Figure 2. 

 

3. Results 

 

3.1. Argand diagram for LO 
 

Because the curve of the imaginary part of a complex function relative to its real part is called 

Argand diagram of this complex function, Argand diagrams for the relative dielectric function of a 

dielectric medium defined by (15) can be formed with the curves of 

 

(𝜀2)𝑘 = 𝑓((𝜀1)𝑘 − 1)  

 

where the index 𝑘 represents a LO with the natural oscillation frequency 𝜔𝑘. Using Eqs. (16), we can 

find the following equation which relates the functions 𝜀1(𝜔) − 1 and 𝜀2(𝜔): 

 

(𝜀1 − 1)2 + (ε2)2 − [
𝑎(𝜔0

2−𝜔2)

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

]
2

− [
𝑎𝛤𝜔

(ω0
2−ω2)

2
+(Γω)2

]
2

= 0,  

 

where 𝑎 = 𝑁𝑒2/𝑚𝜀0. With some rearrangement this equation becomes 

 

(𝜀1 − 1)2 + (ε2)2 − (𝜀1 − 1)
𝑎(𝜔0

2−𝜔2)

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

− ε2
𝑎𝛤𝜔

(ω0
2−ω2)

2
+(Γω)2

= 0.  
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In this equation, if the constant 𝑎 is taken as 𝑎 = 𝜔0
2𝜀10  in the third term (where 𝜀10 = 𝜀𝑟(0) − 1  

from Eq. (17.a)) and as 𝑎 = Γω0𝜀2𝑚 in the fourth term (from Eq. (17.d)), then, we easily obtain the 

equation of 

 

(𝜀1 − 1)2 + (ε2)2 − (𝜀1 − 1)𝜀10
𝜔0

2(𝜔0
2−𝜔2)

(𝜔0
2−𝜔2)

2
+(Γ𝜔)2

− ε2𝜀2𝑚
𝛤2ω0𝜔

(ω0
2−ω2)

2
+(Γω)2

= 0. (18) 

 

The imaginary dielectric function given by (16.b) gets its the maximum value of  ε2 = 𝜀2𝑚 if the 

condition of 

 

(ω0
2 − ω2)2 + (Γω)2 = Γ2ω0ω (19) 

 

is provided. Thus, under this condition, Eq. (18) transforms into equation of 

 

(𝜀1 − 1)2 + (ε2)2 − (𝜀1 − 1)𝜀10
𝜔0

𝜔0+𝜔
− ε2𝜀2𝑚 = 0. (20) 

 

At frequencies that the frequency of light approaches to the natural oscillation frequency of the LO, 

the term (𝜔0 𝜔0 + 𝜔⁄ ) in the Eq. (20) goes to a half: 

 

lim
𝜔→𝜔0

(
𝜔0

𝜔0+𝜔
) =

1

2
. (21) 

 

Under this limit, Eq. (20) is rewritten as follows: 

 

(𝜀1 − 1)2 + (ε2)2 −
(𝜀1−1)𝜀10

2
− ε2𝜀2𝑚 = 0. (22) 

 

With some little rearrangement Eq. (22) can be easily rewritten in the form of 

 

((𝜀1 − 1) −
𝜀10

4
)

2

+ (ε2 −
𝜀2𝑚

2
)

2
= (

𝜀10

4
)

2
+ (

𝜀2𝑚

2
)

2
. (23) 

 

As can be easily seen, this equation is a circle equation in the complex plane of (𝜀1 − 1, ε2). The 

center and the radius of this circle are given by (
𝜀10

4
,

𝜀2𝑚

2
) and √(

𝜀10

4
)

2
+ (

𝜀2𝑚

2
)

2
, respectively. 

 Argand diagram for LO (ADLO) in the example of Figure 2 has been plotted in Figure 3 using 

Eq. (22) (or Eq. (23)). Taking 𝜀1 − 1 = 0  in Eq. (22), we find the points at which the ADLO intersects 

with ε2-axis as  ε2 = 0 and ε2 = 𝜀2𝑚 = 16.7. Similarly, taking ε2 = 0 in Eq. (22), the points at which 

the ADLO intersects with (𝜀1 − 1) -axis are found as 𝜀1 − 1 = 0  and 𝜀1 − 1 =
𝜀10

2
= 5.6 . As it is 

understood, if an ADLO can be drawn as in Figure 3, then, the maximum value of the imaginary 

dielectric function 𝜀2𝑚, the static dielectric constant (𝜀𝑟)𝑠𝑡, the natural oscillation frequency 𝜔0, and 

the half-width Γ  of LO can be immediately determined from the ADLO. The natural oscillation 

frequency 𝜔0 is the frequency corresponding to the point that the ADLO intersects with vertical axis in 

Figure 3. It can be easily proved by taking ε2 = 𝜀2𝑚 2 ⁄  in Eq. (23) that the upper half of the ALDO in 

Figure 3 takes place in the range of frequency from 𝜔0 −
Γ

2
 to 𝜔0 +

Γ

2
, that is, the half-width of the 

single LO is the Γ. The energy of the single LO, 𝐸0 = ℏ𝜔0, also can be immediately calculated using 

the natural oscillation frequency 𝜔0. While the real part of the complex relative dielectric function 

given by (16.a) is a measure of the response of dielectric medium to the electric field of incident light, 

the imaginary part given by (16.b) is a measure of the energy loss (or absorption) of incident light. 

Thus, if the energy of the LO is known, then, one of the absorption energies which corresponds to one 

of the interband transitions is found. 
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Figure 3. Argand diagram for LO (ADLO). 

 

3.2. An application: Decomposition of dielectric spectrum into single LOs 

 

 The dielectric spectrum of a dielectric crystal consists of the combination of a large number of 

single LOs and the decomposition of the spectrum into single LOs is one of problem of the optical 

spectroscopy of solids. There exist some works in the literature about the solution of this problem 

(Aleynikova at al. 2004; Cabuk and Mamedov 2004; Kalugin and Sobolev 2005; Piccard 1986; 

Sobolev at al. 2000). The curve of 𝜀2(𝜔) versus 𝜀1(𝜔) − 1 for the cubic 𝑅𝑏𝑁𝑏𝑂3 crystal has been 

plotted in Figure 4 for the purpose of application of the analytical methods derived in Section 3. The 

data for this graphic were produced from Erzen and Akkus (2018). 

 

 

Figure 4. Argand diagram of multiple LOs for cubic 𝑅𝑏𝑁𝑏𝑂3. 
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 Each of the tangent circles which are drawn to the Argand curve at certain points in Figure 4 

corresponds to a single LO. The drawn tangent circles for five different single LOs are shown in 

Figure 5. These circles have been redrawn as ADLO in Figure 6. 

 

 

Figure 5. Five tangent circles (ADLOs) drawn on the Argand diagram of cubic 𝑅𝑏𝑁𝑏𝑂3. 

 

 

Figure 6. Five ADLOs for cubic 𝑅𝑏𝑁𝑏𝑂3. 

 

 The analysis of five ADLOs drawn in Figure 6 has been performed with the help of analytical 

formulae derived in Section 3. The calculated parameters of the five ADLOs obtained from the 



YYU FBED (YYU JNAS) 25 (3): 107-116 

Al-Basree and Akkus / An Analysis of Dielectric Response 

 

115 

 

analysis are given in Table 1. The first column in Table 1 contains the colours of single ADLOs drawn 

in Figures 5 and 6. The second column contains the maximum values of imaginary dielectric functions 

which are defined by the Eq. (17.d) and calculated for each single LO. The 𝜀2𝑚values were calculated 

from Figure 5 and Figure 6. The value of 𝜀2𝑚 for each LO is the value of the point that the ADLO 

intersects with vertical axis (except for the point that the circle intersects with vertical axis at the 

origin). The 𝜀10values, which associated with the static dielectric constant of each oscillator, are given 

in the third column. The value of 𝜀10 for each single LO is twice of the value of the point that the 

ADLO intersects with horizontal axis (except for point that the circle intersects with horizontal axis at 

the origin). 

 

Table 1. Calculated parameters of single LOs 

ADLO 𝜀2𝑚 𝜀10 𝜔0 

(1.52 × 1015) 𝑟𝑎𝑑/𝑠 

Γ 

(1.52 × 1015) 𝑟𝑎𝑑/𝑠 

𝐸0 (𝑒𝑉) 

Red 1.61 0.37  4.41 1.00 4.41 

Blue 1.65 0.40 4.44 1.08 4.44 

Green 1.35 0.11 5.54 0.40 5.54 

Orange 1.59 0.15 6.25 0.60 6.25 

Black 3.52 0.44 6.69 0.84 6.69 

 

 The fourth column in Table 1 consists of the natural oscillation frequency values which 

calculated for each single LO. These frequency values are the frequency values corresponding to the 

points that each ADLO intersects with vertical axis (excluding the origin) in Figure 6. In the fifth 

column, the half-width values calculated for each single LO are given. The half-width parameter Γ is 

also the damping coefficient of each LO, which take place in Eq. (1). The Γ  values have been 

calculated from the difference of frequency values correspond to the end points of the horizontal 

diameters of the ADLOs in Figure 6. In the last column, the calculated photon energy values 

corresponding to the natural oscillation frequency of each LO are given. 

Finally, the imaginary part of the relative dielectric function drawn in Figure 4 and the 

imaginary dielectric functions of the five single LOs have been plotted in a narrow frequency range in 

Figure 7 using Eq. (16.b) and the calculated parameters in Table 1. 

 

 

Figure 7. Five single LOs on the 𝜀2(𝜔) spectrum of cubic 𝑅𝑏𝑁𝑏𝑂3. 
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4. Discussion and Conclusion 

 

 As a main theory of optics the dispersion theory explains the interactions of the light 

propagating in a medium. Although the optical properties are reduced to constant physical quantities 

in some special cases depending on the structural symmetry of the medium, they are generally tensor 

quantities whose all components are the function of the frequency of the light. One of the optical 

properties of the medium is the dielectric tensor of the medium. This tensor is a 3-dimensional and 2-

rank tensor and has generally nine components. As each complex component depicts the dielectric 

spectrum in a special crystallographic direction, the dielectric spectrum determines all the optical 

properties of the medium. The classical dispersion theory of dielectrics is based on the harmonic 

motion model of the bound electrons affected by the electric field of incident light. Each bound 

electron is a LO in this model and the dielectric spectrum consists the response of a large number of 

LOs. Decomposition of the dielectric spectrum into its elementary components is one of the difficult and 

important issues of optics. In the present study, a detailed and holistic analytical method has been derived 

to solve the decomposition problem and an application of this method to the dielectric spectrum of cubic 

𝑅𝑏𝑁𝑏𝑂3 crystal has been presented. 
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