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Abstract
Spherical distributions, including the von Mises-Fisher density, have received a great at-
tention in the literature because of their usefulness to model circular data lying on the unit
sphere. However, there is a paucity of research on proposing spherical densities possing
multimode tuned with a single parameter. To fill in this gap, we extend von Mises-Fisher
distribution to construct a new density. Moreover, some of the important statistical prop-
erties of the proposed distribution including the estimation of parameters are highlighted.
To evaluate the performance of the proposed distribution, some simulation studies and
analyzing three real-life examples are presented.
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1. Introduction
There are many unimodal probability densities that describe the random behavior of

some phenomena. However, fitting unimodal densities might not produce satisfactory
models when there is an indication that the histogram of the directional data looks mul-
timodal. The bimodal and multimodal distributions might, instead, show up a better
fitting in these cases. So far there have been many new developments in the literature
regarding multimodal data fitting in the Euclidean space but the same is not true for the
random variables whose domain is in the non-Euclidean space. The statistics dealing with
this topic are called non-linear statistics, and the corresponding data are referred to as
the manifold-valued data. A well-known field of non-linear statistics is called directional
statistics which consists of circular and spherical statistics as described by [15]

The von Mises-Fisher (vMF) distribution is a well-known density for modeling data
lying on the surface of the unit sphere. Following [15], the probability density function
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(p.d.f.) of the vMF distribution for a random variable X, taking its value on the surface
of a general unit sphere in Rd, i.e. Sd−1, is given by

f(x;µ, κ) = κd/2−1

(2π)d/2Id/2−1(κ)
eκxTµ, (1.1)

where µ is the mean direction with ||µ|| = 1, κ ≥ 0 is a concentration parameter and Iν(.)
denotes the modified Bessel function of the first kind and order ν [3]. This distribution is
known as von Mises and Fisher for the case in which the points lying on the unit circle (S1)
and the unit sphere (S2), respectively. It was of interest to extend von Mises distributions
over ten years or so. For example, Gatto and Jammalamadaka [9] studied unimodal and
multimodal von Mises distribution and provided some important properties of this density.
Umbach and Jammalamadaka [19] used weight function to introduce asymmetry in circular
distribution. Abe and Pewsey [1] presented a class of symmetric circular distribution using
duplication and cosine perturbation. They also studied the skew circular model using sine
function, reported in [2]. A set of unimodal and multimodal circular distributions along
with model fitting programs can be found in [16]. By generalizing the Fisher-Bingham and
vMF distributions, Kim et al. [14] introduced two kinds of distributions on the sphere.
Their distributions are multi-unimodal distributions that are located on one or several
small-subsphere with mode(s).

Another version of circular density with a multimode feature is formed by changing the
period of trigonometric functions. For instance, Yfantis and Borgman [23] presented four-
parameters bimodal distribution for circular data. Also, Kato and Jones [11] introduced a
four-parameter extended family of densities related to the wrapped Cauchy distribution.
It is worth mentioning that most of the multimodal densities were obtained by extending
von Mises distribution. Watson [20] surveyed the relationships between the different dis-
tributions on the circle and the sphere. He also compared vMF, Brownian, and angular
Gaussian distributions in the arithmetical and graphical methods.

Research on modeling directional data was not just restricted to modeling data lying
on the circumference of the unit circle. Many research has been done on developing the
models on the surface of the unit sphere. One can consult, for example, Fisher et al. [8]
for a comprehensive treatment of spherical data and related topics. Unlike multimodal
distributions, there are many literature dealing with various unimodal densities on the
unit sphere. An exceptional example is the Kent [13] distribution where the multimodality
occurs by setting the parameters of the density to some specific values. As expected, the
research on proposing multimodal distributions on a high dimensional sphere (Sd−1) is few.
Wood [21] modified the Fisher distribution by doubling the longitude to model bimodal
data. Also, particular value of a parameter in the Bingham distributions, useful to model
the axial data, leads to bimodal distributions (see, e.g. [15], p. 181).

We are interested in constructing bimodal density based on the vMF distribution. In
particular, we aim to introduce a bimodal density to model spherical data having two
modes. To this end, we use Azzalini [5]’s method to propose a non-symmetric distribu-
tion by a tractable symmetric distribution. Mathematically, he suggested to construct a
non-symmetric distribution f using a symmetric distribution g and an absolutely contin-
uous distribution function H, such that H ′ is symmetric about 0, through invoking the
expression

f(x) = 2H(λx)g(x), (1.2)
where λ is any real-valued parameter.

The remainder of this paper is organized as follows. In Section 2, we introduce extended
von Mises-Fisher (EvMF) distribution and highlight some of its important properties. It
also includes a procedure to generate data from this density. Section 3 gives statistical
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inference on the parameters of the EvMF. Simulation studies along with analyzing real-
life data are provided in Section 4. The paper ends with a general conclusion and more
technical proof of some mathematical results.

2. Extended von Mises-Fisher distribution
In this section, we are going to extend the vMF distribution on Sd−1 using the expression

in Equation (1.2). Let us assume that X is a random vector on Sd−1 with the mean
direction µ and the concentration parameter κ. We can construct a new density function
via considering f as

f(x) ∝ 2(1 − λxTµ)g(x),
where g(x) is the density function of vMF distribution with mean direction µ and concen-
tration parameter κ given by Equation (1.1). We call this new distribution as EvMF in
the text and mathematically as EvMF (µ, κ). It has the following p.d.f

f(x;µ, κ, λ) = Cd(κ, λ)(1 − λxTµ)eκxTµ, (2.1)
where |λ| ≤ 1 is a skew control parameter and Cd(κ, λ) is a normalized constant. It is
straightforward to show that the normalizing constant in Equation (2.1) is given by

Cd(κ, λ) = κd/2−1

(2π)d/2(I d
2 −1(κ) − λI d

2
(κ))

.

Following [15, p.179], it is seen that our proposed distribution in Equation (2.1) is
rotationally symmetric.

It is of interest to derive the density given by Equation (2.1) in terms of the spherical
polar coordinates [15]. To achieve this, let us write X and µ, as

X = (cos θ1, sin θ1 cos θ2, ..., sin θ1 · · · sin θd−2 cos θd−1, sin θ1 · · · sin θd−2 sin θd−1)T

and

µ = (cosα1, sinα1 cosα2, ..., sinα1 · · · sinαd−2 cosαd−1, sinα1 · · · sinαd−2 sinαd−1)T ,

where
sin θ0 = sinα0 = cos θd = cosαd = 1.

Then, the probability element, say V, of (θ1, ..., θd−1) from X is given by

dSd−1V = sind−2 θ1 sind−3 θ2 · · · sin θd−2dθ1 · · · dθd−1,

where dSd−1V is the volume element of Sd−1 which is, in fact, the Jacobian of the trans-
formation from the Cartesian coordinates to the spherical one where 0 ≤ θj ≤ π for
j = 1, .., d− 2 and 0 ≤ θd−1 < 2π.

Let Y = (y1, . . . , yd)T , taking its value on Sd−1, is distributed as EvMF(µ0, λ, κ), where
the d-dimensional vector µ0 = (1, 0, . . . , 0)T , is known as the North pole in directional
statistics terminology. Furthermore, assume M is a rotation matrix featuring a particular
property in which pre-multiplying it on µ0, leads to rotating the North pole to µ, i.e.,
M µ0 = µ. Then, the variable X = MY is distributed as EvMF(µ, λ, κ). In particular,
if we use the spherical polar coordinate of X, and consider µ as the North pole, then the
components (angles) of the coordinates are independent in distribution and the density
for the first angle is given by

g(θ1) = Cy1
d (κ, λ){1 − λ cos θ1}eκ cos θ1 sind−2 θ1, (2.2)

where

Cy1
d (κ, λ) =

[ ∫ 1
−1(1 − λt)(1 − t2)(d−3)/2eκtdt

]−1
= (κ2 )d/2−1

Γ( d−1
2 )Γ( 1

2 ){Id/2−1(κ)−λId/2(κ)} . (2.3)
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Now, it is worths briefly point out the procedure on simulating from our proposed
distribution. Assume one is going to generate a sample from EvMF(µ, λ, κ). Following
our discussion presented at the beginning of Section 2, we recommend to simulate, first,
from EvMF(µ0, λ, κ) and then employ the transformation X = MY, to get the random
samples from EvMF(µ, λ, κ). Note that the density of Y is defined on the North pole, and
so straightforward to simulate from it using the spherical coordinates. We have seen that
the distribution of Y, in terms of the spherical coordinates, is the product of the density of
θ1, given by Equation (2.2), and the distribution of (θ2, . . . , θd−1)T , which is the uniform
distribution on (d− 1)-dimensional unit sphere. Furthermore, θ1, and (θ2, . . . , θd−1)T , are
independent. Finally, to generate θ1, one could simulate from Equation (2.2) using many
popular sampling procedures such as the acceptance-rejection method.

Note that there is another technique to simulate from EvMF(µ0, λ, κ). Similar to [18]
and [22] in generating sample from vMF distribution, we can use Y T = (t, (1 − t2)1/2v)
where t is a random variable with the p.d.f given by

Cd(κ, λ)(1 − λt)(1 − t2)(d−3)/2eκt, −1 ≤ t ≤ 1.

Here, v is uniformly distributed over the space of the (d−1)-dimensional unit sphere. See,
for example, [8], for more details on this topic.

Finally, it worths to point out, briefly, to choosing a suitable transformation matrix.
Following [15], a convenient choice for rotation matrix (M) to rotate unit vector µ0 to
unit vector µ is

(µ0 + µ)(µ0 + µ)T

1 + µT
0 µ

− Id,

where µ0 ̸= µ. Now, we describe a procedure to compute the mean and variance of the
EvMF distribution. Using the transformation X = MY , the mean of the random variable
X is derived as

E(X) = M × E(Y ) = ρ1M µ0 = ρ1µ, (2.4)

where ρ1 is the mean of the first coordinate, say Y1, for the random variable Y, given by

ρ1 = EY1(y1) =
Id/2(κ)

Id/2−1(κ) − λ
{

1 − d−1
κ

Id/2(κ)
Id/2−1(κ)

}
1 − λ

Id/2(κ)
Id/2−1(κ)

. (2.5)

Also, the second moment of the random variable Y1 can be obtained through the following
equalities:

ρ2 = EY1(y2
1) =

{
1 + d− 1

κ

λ− (1 + dλ
κ ) Id/2(κ)

Id/2−1(κ)

1 − λ
Id/2(κ)

Id/2−1(κ)

}
. (2.6)

To derive the variance of the random variable X, we first find EYi(y2
i ) for i = 2, . . . , d.

Since the random variable Y1 is independent of Yi, i = 2, . . . , d, we have

EYi(y2
i ) = 1 − ρ2

d− 1
.

The following standard integral equality is helpful to obtain EYi(y2
i ) and other expressions

in the subsequent sections:∫ π

0
sinn xdx = n− 1

n

∫ π

0
sinn−2 xdx.
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Now, for any Ym = (sin θ1 sin θ2 · · · sin θm−1 cos θm), m = 2, . . . , d, we have

EYm(y2
m) = Cd(κ, λ)

Cy1
d (κ, λ)

∫ 2π

0

∫ π

0
· · ·
∫ π

0
y2

mg(θ1)dSd−1V

= Cd(κ, λ)
Cy1

d (κ, λ)
(1 − ρ2)

∫ 2π

0

∫ π

0
· · ·
∫ π

0
sind−1 θ2 · · · sind+3−m θm−2 cos2 θm−1

sind−m θm−1 · · · sin θd−2dθ2 · · · dθd−1

= Cd(κ, λ)
Cy1

d (κ, λ)
(1 − ρ2)d− 2

d− 1
d− 3
d− 2

· · · d+ 2 −m

d+ 3 −m
(1 − d+ 1 −m

d+ 2 −m
)∫ 2π

0

∫ π

0
· · ·
∫ π

0
sind−3 θ2 · · · sin θd−2dθ2 · · · dθd−1

= (1 − ρ2)d− 2
d− 1

d− 3
d− 2

· · · d+ 2 −m

d+ 3 −m
(1 − d+ 1 −m

d+ 2 −m
)

= 1 − ρ2
d− 1

.

Since E(Y2,...,Yd)(cos θi) = 0, then, E(Yi,Yj)(yiyj) = 0 for i ̸= j. Hereafter, if necessary
we omit the subscripts, indicating corresponding variables for E(.), to ease the complexity
of notations. To calculate the variance matrix of the random variable X, we can use the
matrix algebra as

Var(X) = M × Var(Y ) ×MT

= M × {E(Y Y T ) − E(Y )E(Y T )} ×MT

= M


ρ2 0 · · · 0
0 1−ρ2

d−1 · · · 0
...

... . . . ...
0 0 · · · 1−ρ2

d−1

MT − ρ2
1M × µ0µ

T
0 M

T

= ρ2M


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

MT + 1 − ρ2
d− 1

M
{
Id −


1 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

}MT − ρ2
1µµ

T

= (ρ2 − ρ2
1)µµT + 1 − ρ2

d− 1
(Id − µµT ), (2.7)

where Id is the identity matrix of order d.
To calculate the mean vector and the variance matrix of the random variable X, we can

also use the tangent-normal decomposition. In particular, since the EvMF distribution is
rotationally symmetric, then its mean and variance can be directly derived from Equations
(9.3.33) and (9.3.34) in [15]. The equations for any random variable on Sd−1 with the
rotational symmetry property and the mean direction µ are given as

E[X] = E[t]µ

and

Var(X) = Var(t)µµT + 1 − E[t2]
d− 1

(Id − µµT ),

where t = XTµ.
Now, we provide some limiting properties of the quantities given so far that are useful

for subsequent results. Let us first recall the important inequality (11) from [4] given by
κ

ν + 1 + (κ2 + (ν + 1)2)1/2 ≤ Iν+1(κ)
Iν(κ)

≤ κ

ν + (κ2 + (ν + 2)2)1/2 ,
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for any κ, ν ≥ 0. Then, we have the following results for the high concentration case
(κ → +∞) :

lim
κ→+∞

ρ1 = 1, lim
κ→+∞

ρ2 = 1.

We can also look at the low concentration case, i.e. κ → 0. The results are

lim
κ→0

ρ1 = −λ
d
, lim

κ→0
ρ2 = d+ 1 − 2λ

d
.

Technical proof of these limiting expressions are given in the Appendix.
As it is common in the directional distribution, we are also interested in the properties

of the EvMF for particular cases of d. Let d = 2, and considering the random variable
θ = arccos(X), the p.d.f given by Equation (2.1) turns to

{1 − λ cos(θ − α)}eκ cos(θ−α)

2π(I0(κ) − λI1(κ))
= C2(κ, λ){1 − λ cos(θ − α)}eκ cos(θ−α),

where C2(κ, λ) = {2π(I0(κ) −λI1(κ))}−1. Interestingly, this density is quite similar to the
cosine perturbed von Mises distribution introduced by [1] in the symmetric case.

Let define ψ = κ1/2(θ−α). Considering the trivial equality 1−cos(κ−1/2ψ) = 1
2κ

−1ψ2 +
O(κ−2), for the low concentrate case (κ → 0), we have

{1 − λ cos(θ − α)}eκ cos(θ−α) ∝ {1 + λ(ψ
2

2κ
− 1)}e−κ(ψ

2
2κ −1)

= eκ{1 − λ+ λ

2κ
ψ2}e−ψ2

2

∝ (1 − λ)f1(ψ) + λf2(ψ),

where f1(ψ) is the p.d.f of ψ ∼ N(0, 1), in fact the standard normal distribution, and
f2(ψ) is the Bimodal Extended Generalized Gamma (BEGG) probability function with
parameters α = 1, β = 2, δ0,1 = 2, η = 2

√
2κ and ε = ∓(1 − 1/2κ). For more information

on the BEGG distribution, see for example [6].
To recall Equation (2.1) for the particular case d = 3, one can easily show that p.d.f of

the random variable X is given as

κ{1 − λxTµ}eκxTµ

4π sinh κ{1 + λ( 1
κ − coth κ)}

. (2.8)

However, we prefer to use the spherical coordinate (θ, ϕ) as the interested random variable
rather than the unit length vector X. Then, the density in Equation (2.8) turns to a
distribution with the mean direction (α, β) and the concentration parameter κ. We call it
the extended Fisher distribution with the p.d.f given by

κ{1 − λ(cos θ cosα+ sin θ sinα cos(ϕ− β))}eκ{cos θ cos α+sin θ sin α cos(ϕ−β)} sin θ
4π sinh κ{1 + λ( 1

κ − coth κ)}
. (2.9)

In this case, if α = π/2, the distribution is symmetric about (α, β). Moreover, there are
two local modes, two saddle points and a local minimum in this case. To clarify this last
remark, let us take the derivatives of density given by Equation (2.9) with respect to θ
and ϕ, separately, and set the results to zero. Then, solving the ultimate expressions leads
to the following solutions:
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θ1 = π/2,

θ2 = arcsin
(√

4λ2 + κ2

2κλ
+ 1

2λ
− 1
κ

)
,

ϕ1 = β,

ϕ2 = arccos
( 1
λ

− 1
κ

)
+ β,

where (θ1, ϕ1) is the local minimum, (θ1, ϕ2) are the local maximums and (θ2, ϕ1) are the
saddle points provided the inequality |1/λ−1/κ| < 1 holds. Note that one gets two answers
in using the functions arcsin and arccos, and so, she finally has five pairs of critical points.
Moreover, the point (θ1, ϕ1) will be a local maximum for the density if |1/λ− 1/κ| ≥ 1.

A schematic representation of the EvMF density for some particular values of its pa-
rameters is plotted in Figure 1. Some remarks highlighted above can be seen in this plot.
Note that the p.d.f in Equation (2.9) has a more sophisticated form if α ̸= π/2. However,
it can be shown that the density still has only one maximum point, which cannot be
written in an explicit form.

Many other properties of the density given in Equation (2.1) require a deep mathe-
matical understanding which is behind the scope of this paper. We leave them for future
research and now concentrate on statistical inference on the parameters of the EvMF
distribution.

Figure 1. The plot of p.d.f. for the EvMF distribution while its parameters are
set on some specific values. In particular, α, β are fixed at π/2 and π, respectively.
Also, from left to right, we set (λ, κ) to (0.9, 2), (0.5, 1), (0.3, 2).

3. Statistical inference on EvMF distribution
In this section, we consider the statistical inference on the distribution given by Equation

(2.1) while all parameters are assumed to be unknown. We confine ourselves to the point
estimation in this paper. The interval estimation and testing hypothesis are left for future
research. We first concentrate on the maximum likelihood method and then follow the
method of moment.

3.1. Maximum likelihood method
Let x1, . . . , xn be a random sample on Sd−1, from EvMF(µ, λ, κ). Then, the logarithm

of the likelihood function for the parameters, say ℓ(µ, κ, λ), can be expressed as

ℓ(µ, κ, λ) ∝ n(d/2 − 1) log κ− n log(I d
2 −1(κ) − λI d

2
(κ)) +

∑n
i=1 log{1 − λxT

i µ} + κ
∑n

i=1 xT
i µ.
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Differentiating ℓ(µ, κ, λ) with respect to µ, κ and λ, noting that µTµ = 1 and κ > 0,
the maximum likelihood estimators are derived through solving the following equalities:

µ̂ =
κ̂
∑n

i=1 xi −
∑n

i=1
λ̂xi

1−λ̂xTi µ̂

||κ̂
∑n

i=1 xi −
∑n

i=1
λ̂xi

1−λ̂xTi µ̂
||,

(3.1)

(d
2

− 1) 1
κ̂

−
I

′
d
2 −1(κ̂) − λ̂I

′
d
2
(κ̂)

I d
2 −1(κ̂) − λ̂I d

2
(κ̂)

= − 1
n

n∑
i=1

xT
i µ̂, (3.2)

Id/2(κ̂)
I d

2 −1(κ̂) − λ̂I d
2
(κ̂)

= 1
n

n∑
i=1

xT
i µ̂

1 − λ̂xT
i

ˆ̂µ
. (3.3)

As seen, there is not any explicit expression for either of these equations to derive the
estimators. Hence, one has to follow some iterative algorithms to derive the estimators
numerically. From computational viewpoint, it is important to implement a feasible pro-
cedure. We suggest the following steps in turn:
Step 1. Given an initial value for λ0 and taking µ0 =

∑n
i=1 xi/||

∑n
i=1 xi||, estimate κ

from Equation (3.2).
Step 2. Using λ0 and the estimated κ gained from Step 1, estimate µ using Equation
(3.1).
Step 3. Using the updated µ and κ, estimate λ via invoking Equation (3.3).
Step 4. Iterate Equations (3.1-3.3) with the updated parameters until a convergence
criterion is satisfied.

We discuss a procedure to choose some specific initial values to guarantee the conver-
gence closed to the end of the next subsection. It can also be used here to derive the
maximum likelihood estimators for the parameters of the EvMF distribution.

3.2. Method of moment
Now, we concentrate on estimating the parameters, i.e. µ, λ and κ, of the EvMF

distribution using the method of moments. To recall Equations (2.4) to (2.7), one only
needs to employ the first two moments to derive the estimates of the parameters. Note
that to distinct our estimators in this section with the corresponding estimators through
the maximum likelihood method, we insert a tilde over each estimator in the following
expressions.

Based on a random sample (x1, . . . , xn), from the EvMF(µ, λ, κ) distribution and using
the Equations (2.4) and (2.7), the moment estimators are derived by solving the following
equalities:

µ̃ = x̄/ρ̃1, (3.4)
1
n

n∑
i=1

xixT
i = ρ̃2µ̃µ̃

T + 1 − ρ̃2
2

(I3 − µ̃µ̃T ). (3.5)

Considering the constraint µ̃T µ̃ = 1, it is seen that

ρ̃1 = ||x̄||, (3.6)

ρ̃2 = 1
n

n∑
i=1

(xT
i µ̃)2. (3.7)

Note that Equation (3.7) can also be derived via pre-multiplication and post-multiplication
of the Equation (3.5) by µ̃T and µ̃, respectively. Now, plugging Equation (3.6) into
Equation (3.4), the moment estimator of µ, i.e. µ̃ is given. Then, inserting µ̃ into Equation
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(3.7) and recalling Equation (2.6), one only needs to solve the resulted equalities to derive
the moment estimators of λ and κ.

In summary, to obtain the moment estimators of the EvMF, one can first derive µ̃ =
x̄/||x̄||, based on the aforementioned discussion. Then, we have intuitively a value for ρ̃1.
To solve Equation (2.5) in term of λ, and assuming an estimate for κ̃, we have the following
the moment estimator for λ:

λ̃ =
Id/2(κ̃)

Id/2−1(κ̃) − ρ̃1

1 − Id/2(κ̃)
Id/2−1(κ̃)(d−1

κ̃ + ρ̃1)
. (3.8)

Clearly, this last expression along with Equation (3.7), while inserting µ̃, should be iterated
to derive the moment estimators for both λ̃ and κ̃.

From a computational viewpoint, one requires an initial value for either λ̃ or κ̃, to obtain
the corresponding moment estimators. We have proposed a simple trick to choose the
reasonable values which guarantee the iterative algorithm related to either the maximum
likelihood or method of moment estimators. First, following the equality (9.6.26) given by
[3], we have

Id/2+1(κ̃) = Id/2−1(κ̃) − d

κ̃
Id/2(κ̃). (3.9)

Then, using Equations (2.5) and (2.6), we can write

ρ̃1
1−ρ̃2
d−1

= κ̃
Id/2(κ̃) − λ(Id/2−1(κ̃) − d−1

κ̃ Id/2(κ̃))
Id/2(κ̃) − λ(Id/2−1(κ̃) − d

κ̃Id/2(κ̃))
.

Now, utilizing Equation (3.9), we will have

(d− 1)ρ̃1
1 − ρ̃2

= κ̃
Id/2(κ̃) − λ(Id/2+1(κ̃) + 1

κ̃Id/2(κ̃))
Id/2(κ̃) − λId/2+1(κ̃)

= κ̃− λ
Id/2(κ̃))

Id/2(κ̃) − λId/2+1(κ̃)
.

An initial value for κ̃, can be set up based on this last expression. In particular, to set
λ = 0, we will get

κ̃ = (d− 1)ρ̃1
1 − ρ̃2

,

which can be considered as the initial value for κ̃, to start any iterative algorithm to derive
the moment estimators for the parameters described above. Note that this value is, in fact,
the middle point of the confidence band achieved from the fixed point iteration method
proposed by [17].

Now, one can iteratively repeat the following steps, along with some reasonable conver-
gence criteria, to derive the moment estimators of λ and κ:
Step 1. Obtain the value for λ̃ using Equation (3.8).
Step 2. Solve the equality

1
n

n∑
i=1

(xT
i x̄/||x̄||)2 =

{
1 + d− 1

κ̃

λ̃− (1 + λ̃ d
κ̃) Id/2(κ̃)

Id/2−1(κ̃)

1 − λ̃
Id/2(κ̃)

Id/2−1(κ̃)

}
,

to compute the value for κ̃.
Step 3. Iterate Step 1 and Step 2 with updated parameters to reach pre-specified
convergence criteria.
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4. Simulation studies and real data application
This section concerns conducting a simulation study on evaluating the statistical infer-

ence on the parameters of the EvMF distribution. We also consider analyzing the real-life
data using the EvMF and some other directional densities in this section.

We first generate data from the EvMF distribution and then estimate the parameters
using both point estimation procedures discussed in this paper. The simulation studies are
done via altering the location (α, β), the concentration (κ) and skewness (λ) parameters
for the reasonable ranges of their values to showcase their performance on our statistical
inference on the EvMF distribution. Also, to show the effect of changing the sample size
on the ultimate results, we consider n = 20, 50, 100, 200. The procedure is also done for
the small, middle and large values of κ and λ via changing the location parameters α
and β, on different values. Furthermore, we set the simulation run on 1000. Finally, to
evaluate the accuracy of the estimators, we calculate the absolute bias (ABias) and mean
square errors (MSE) after estimating the parameters in each set of the simulation run
and scenario. For brevity of notation, we write MLE and MM to stand for the maximum
likelihood and method of moment estimators, respectively, throughout this section.

We have reported the results gained from our simulation studies in three tables. In
particular, the results are shown in Tables 1 for α = β = π/3, κ = 2 and λ = 0.1, in
Tables 2 for α = π/4, β = π/8, κ = 5 and λ = 0.5 and in Tables 3 for α = π/10,
β = π/6, κ = 8 and λ = 0.9. As seen, there is no sign of a monotone change in the
values of the ABias and MSE throughout these results. Hence, stating a general remark
is not straightforward, although we need to provide a clear comparison. It sounds that
the ABias as well as MSE values of the MM estimators for the location parameters, i.e.
(α, β), are higher than those for the MLE estimators. However, this is not the case when
λ increases. As expected, as the sample size increases the MLE has less ABias and MSE
for all scenarios.

Table 1. The absolute bias and MSE of the estimators in estimating the parame-
ters of the EvMF distribution for different sample sizes, using two methods of esti-
mations and considering pre-defined quantities set as follows: n = 20, 50, 100, 200,
α = π/3, β = π/3, κ = 2 and λ = 0.1.

n 20 50 100 200
Method MLE MM MLE MM MLE MM MLE MM

ABias(α) 0.023 0.023 0.003 0.003 0.005 0.005 0.004 0.004
MSE(α) 0.047 0.041 0.020 0.020 0.009 0.009 0.005 0.006
ABias(β) 0.097 0.127 0.009 0.012 0.008 0.011 0.001 0.003
MSE(β) 0.281 0.194 0.023 0.026 0.013 0.015 0.007 0.007
ABias(κ) 0.162 0.896 0.028 0.889 0.009 0.805 0.001 0.657
MSE(κ) 0.310 1.313 0.134 1.252 0.059 0.944 0.030 0.607
ABias(λ) 0.058 0.247 0.048 0.214 0.043 0.190 0.035 0.145
MSE(λ) 0.004 0.274 0.003 0.225 0.002 0.182 0.002 0.122

The story for estimating the concentration (κ) and skewness (λ) parameters are rel-
atively the same as the location parameters. However, unlike the MLE, the ABias and
MSE criteria for the MM estimator very remarkably. Generally, the MLE has less values
for the ABias and MSE for all scenarios. The exception is when λ increases in which the
MM has the same or better performance in comparison with the MLE.

As mentioned before, there is not a clear sign of a particular pattern in estimating the
parameters and the method of estimation. Nonetheless, we can claim that there is less
bias to estimate the location parameters regardless of the method of estimation. But, the
bias is relatively high for both the concentration and skewness parameters. This case is
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significant for the large λ. Moreover, there is a considerable change in the values of the
MSE in these situations. Recalling Equation (3.3), one sees that the estimation of λ is
highly dependent on its corresponding estimation for the κ and vice versa. Hence, extra
care is required in estimating the concentration and skewness parameters of the EvMF
distribution.

Table 2. The absolute bias and MSE of the estimators in estimating the parame-
ters of the EvMF distribution for different sample sizes, using two methods of esti-
mations and considering pre-defined quantities set as follows: n = 20, 50, 100, 200,
α = π/4, β = π/8, κ = 5 and λ = 0.5.

n 20 50 100 200
Method MLE MM MLE MM MLE MM MLE MM

ABias(α) 0.022 0.010 0.003 0.003 0.002 0.002 0.002 0.003
MSE(α) 0.015 0.014 0.006 0.006 0.003 0.003 0.002 0.002
ABias(β) 0.003 0.003 0.003 0.003 0.002 0.002 0.001 0.002
MSE(β) 0.025 0.030 0.011 0.012 0.007 0.008 0.003 0.003
ABias(κ) 0.179 0.685 0.057 0.643 0.042 0.518 0.030 0.447
MSE(κ) 1.673 1.169 0.439 1.113 0.199 0.797 0.106 0.608
ABias(λ) 0.087 0.208 0.80 0.181 0.074 0.124 0.053 0.094
MSE(λ) 0.009 0.118 0.008 0.100 0.006 0.076 0.004 0.061

Table 3. The absolute bias and MSE of the estimators in estimating the parame-
ters of the EvMF distribution for different sample sizes, using two methods of esti-
mations and considering pre-defined quantities set as follows: n = 20, 50, 100, 200
α = π/10, β = π/6, κ = 8 and λ = 0.9.

n 20 50 100 200
Method MLE MM MLE MM MLE MM MLE MM

ABias(α) 0.020 0.015 0.019 0.008 0.010 0.008 0.002 0.002
MSE(α) 0.014 0.011 0.007 0.005 0.003 0.003 0.001 0.001
ABias(β) 0.034 0.024 0.020 0.012 0.005 0.008 0.002 0.005
MSE(β) 0.199 0.167 0.087 0.050 0.034 0.026 0.021 0.012
ABias(κ) 0.291 0.486 0.272 0.478 0.223 0.382 0.145 0.331
MSE(κ) 1.592 0.941 0.715 0.929 0.402 0.763 0.220 0.626
ABias(λ) 0.027 0.007 0.018 0.009 0.018 0.012 0.006 0.006
MSE(λ) 0.001 0.009 0.001 0.005 0.001 0.003 0.001 0.003

Here, it worths mentioning some remarks in conjunction with the criticism on estimating
the concentration and skewness parameters of the EvMF distribution. We emphasized on
the constraint |1/λ− 1/κ| leading to either the unimodal or bimodal distributions, while
discussing the properties of the EvMF density. As one can see, this constraint will affect
the performance of the estimators for both κ and λ. In particular, if |1/λ−1/κ| is relatively
big, which is the case in Table 3, there is no guarantee on deriving the good estimator
for the concentration parameter (κ). The EvMF density has two modes in this case and
so one, in fact, encounters with a mixture of directional distributions with two different
concentration parameters. Hence, take them the same and then estimate it from only one
density, might not be a reasonable strategy. Albeit, there is no excuse for our unrealistic
procedure in this case and we should seek a proper inferential method to more accurately
estimate κ. This is a topic which we left for our future research. In contrast, if the value
of |1/λ− 1/κ|, is relatively small, which is the case in Table 1, one expects more accurate
estimates for κ and λ if the MLE method is employed to estimate the concentration and



A new extension of von Mises-Fisher distribution 1849

skewness parameters of the EvMF distribution. Note that for a very small value of κ
the density is unimodal. So, one expects not to see the skewness parameter appearing in
the distribution. Hence, an attempt to estimate λ might result in reasonable estimation.
Generally, extra care is required in estimating the concentration and skewness parameters
of the EvMF distribution when treating real-life examples.

Now, we consider analyzing real-life data using the EvMF distributions. To have a
basis for comparison, we also employ some other directional densities in fitting these data.
They are the vMF, Kent, Wood, angular central Gaussian (ACG) and the mixture of vMF
(movMF) with two clusters. The interested readers can consult [15] for more details on
these distributions. There are three sets of data, briefly described below:
Data set 1: Measurements of the orientation of the dendritic field at various sites in the
retinas of 6 cats, in response to different visual stimuli. The effect of the visual stimulus
was recorded as two angles and these effects were applied in three directions. The sample
size of data, which was initially analyzed by [12], is 94. The data worth to study because
it is a mixture of three groups of responses to different visual stimuli.
Data set 2 and 3: The data set was collected from a survey on household expenditures
in four commodity groups and give the expenses of 20 single men and 20 single women
on four commodity groups. The data were analyzed by [10] in which they normalized
three commodity groups (housing, food and service) while fitting mixtures of vMF on
S2. We divide the entire data into two new sets: housing, goods and food as data set 2
and housing, food and service as data set 3. In reality, the data were collected from two
different groups males and females, or in another word, they come from two clusters. So,
the distribution of the entire data might be properly fitted by a bimodal density.

Data set 1 can be found in the Appendix B15 of [8] and data sets 2 and 3 are available
in package HSAUR2 [7]. A schematic representation of data set 1, 2 and 3 are plotted
in Figure 2. As seen, groups are separated into two distinct clusters for data set 2 and 3
and so a bimodal spherical density might be an appropriate distribution to model the data
here. Due to the dispersion of dataset 1, we may have the symmetric unimodal model.
An example of this kind of model can be seen in the middle of Figure 1.
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Figure 2. Position of unit sized vectors for data set 1, 2 and 3 (left to right) over
the unit sphere.

After fitting these groups of data by implementing different spherical densities, the
Akaike information criterion (AIC) and Bayesian information criterion (BIC) were cal-
culated. Four spherical distributions considered here are the vMF, Kent, Wood, angular
central Gaussian (ACG) and mixture of vMF (movMF) with two components. We, also,
fit the data sets using our proposed density, i.e., EvMF. The results are shown in Table 4
with the AIC appeared first and the BIC inside the bracket.

As seen in Table 4, there is a better fitting of the EvMF density versus other distri-
butions while using data set 2. For data set 3, the considered criteria is the smallest if
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one uses movMF. Leaving this density aside, the EvMF distribution fits data reasonably
better than the other densities. Although fitting data using the movMF is better in some
cases, the general theory of the mixture distributions for directional statistics makes it
intractable here. Apart from this, choosing the numbers of mixing components and pa-
rameters for each mixing densities are two critical issues that one needs to deal with while
using the mixture distributions. Moreover, statistical inferences on the parameters can be
misleading on using the mixture distributions when the data involves highly asymmetric
observations. Data sets 1 is a special case in which the movMF and Wood are doing better
than the others. In fact, treating the former density needs extra investigation. The latter
distribution is only suitable for the axial data, although we were not interested in dealing
with the axial distribution in this paper.

Table 4. The values of AIC (BIC) criteria after fitting the vMF and EvMF, Kent,
Wood, ACG and movMF distributions when different data sets are used. See the
text for more details.

Data set vMF EvMF Kent Wood ACG movMF
1 421(429) 405(415) 416(429) 186(199) 464(480) 176(194)
2 63.8(68.9) 51.9(58.7) 64.5(72.9) 62.6(71.1) 146(157) 62.0(73.8)
3 28.0(33.0) 14.4(21.2) 17.3(25.7) 35.0(43.5) 91.3(101) 4.92(16.7)

Based on the results given in Table 4, one can see that the EvMF distribution is fitting
all three sets of data better than the vMF density. Hence, it is of interest to see the extent
by which the skewness control parameter affect the estimate of the other parameters. We
reported the estimates of the parameters after fitting these distributions when the values
of three real data sets are used as the spherical observations in Table 5. As seen, the
estimation of the mean parameter is relatively the same for both densities. However,
ignoring the skewness leads to an underestimate of the concentration parameter for all
three data sets. In other words, using the EvMF distribution to fit the data turns to
estimate κ as twice as bigger than the case in which we ignore λ.

Table 5. The estimations of the parameters after fitting the vMF and EvMF
distributions when three real data set are used as the spherical observations.

Data set 1 Data set 2 Data set 3
Parameters α β κ λ α β κ λ α β κ λ
vMF 2.81 −1.00 1.55 - 0.67 0.73 8.28 - 0.57 0.71 12.97 -
EvMF 2.81 −1.01 3.31 0.96 0.66 0.73 16.6 ≈ 1 0.56 0.72 25.94 ≈ 1

5. Conclusion
Invoking some unimodal distributions might not be suitable for describing the random

behavior of some spherical data. Particularly, if more than one mode is appearing in
the histogram of data under study, taking into account a multimodal spherical density is
recommended. To overcome this obstacle, we proposed an extended version of the von
Misses-Fisher distribution to tackle multimodality in this paper. Some properties of this
density have been investigated and the connection with previously proposed distributions
on the sphere was highlighted. We also detailed two procedures to estimate the parameters
of the distribution. To evaluate the performance of our estimators, we conducted simula-
tion studies. The results of simulations showed that the estimation through the maximum
likelihood method outperforms that given by the method of moment. In analyzing the
real-life data set, the flexibility of EvMF was shown by using the AIC and BIC criteria.
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However, the mixture of vMF distribution has a better performance in some particular
cases. This needs to be investigated in more details.

The research reported in this paper can be extended further in some other directions.
The methodology employed in this paper was initially constructed based on a density
existing in the Euclidean space. However, extending other spherical distributions can be
a good proposal. Moreover, seeking some proper inferential procedures for estimating the
concentration and skewness parameters of the EvMF distribution in order to be applicable
smoothly for both unimodal and multimodal cases, is a possible option for future research.
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Appendix
To calculate the normalized constant, ρ1 and ρ2, we first calculate some important

integrals. Given modified Bessel function integral representation as, see e.g. [3]

Iν(κ) =
(κ

2 )ν

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
(1 − t2)ν− 1

2 eκtdt, (5.1)

and the derivative properties of Bessel function, we have

∂Iν(κ)
∂κ

= ∂

∂κ

(κ
2 )ν

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
(1 − t2)ν− 1

2 eκtdt

=
ν
2 (κ

2 )ν−1

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
(1 − t2)ν− 1

2 eκtdt+
(κ

2 )ν

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
t(1 − t2)ν− 1

2 eκtdt

= ν

κ
Iν(κ) +

(κ
2 )ν

Γ(1
2)Γ(ν + 1

2)

∫ 1

−1
t(1 − t2)ν− 1

2 eκtdt.

From Equation (9.6.26) of [3], we can write

∫ 1

−1
t(1 − t2)ν− 1

2 eκtdt =
Γ(1

2)Γ(ν + 1
2)

(κ
2 )ν

Iν+1(κ). (5.2)

Also, we have

∫ 1

−1
t2(1 − t2)ν− 1

2 eκtdt =
∫ 1

−1
(1 − t2)ν− 1

2 eκtdt−
∫ 1

−1
(1 − t2)ν+1− 1

2 eκtdt

=
Γ(1

2)Γ(ν + 1
2)

(κ
2 )ν

{
Iν(κ) − 2ν + 1

κ
Iν+1(κ)

}
(5.3)

and ∫ 1

−1
t3(1 − t2)ν− 1

2 eκtdt =
∫ 1

−1
t(1 − t2)ν− 1

2 eκtdt−
∫ 1

−1
t(1 − t2)ν+1− 1

2 eκtdt

=
Γ(1

2)Γ(ν + 1
2)

(κ
2 )ν

{
Iν+1(κ) − 2ν + 1

κ
Iν+2(κ)

}
. (5.4)

To calculate the normalized constant, we use the density given in Equation (2.1), in
which its integration should be one. To compute the integral, we prefer to recall the
spherical coordinates. Without loss of generality, let us take α1 = 0. Then, we have
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µ = [1, 0, . . . , 0]T . Now, as discussed at the beginning of Section 2, we can write

1/Cd(κ, λ) =
∫
Sd−1

(1 − λxTµ)eκxTµdSd−1V

=
∫
Sd−2

∫ π

0
sind−2 θ1(1 − λ cos θ)eκ cos θ1dθ1dSd−2V

=
∫
Sd−2

∫ 1

−1
(1 − λt)(1 − t2)(d−3)/2eκtdtdSd−2V

= 2π(d−1)/2

Γ(d−1
2 )

{∫ 1

−1
(1 − t2)(d−3)/2eκtdt− λ

∫ 1

−1
t(1 − t2)(d−3)/2eκtdt

}
.

As seen, taking ν = d/2 − 1 in Equations (5.1) and (5.2), the normalized constant is
obtained via calculating the corresponding Bessel functions.

Now, we describe procedure to compute ρ1 and ρ2. Similar to the above discussion,
taking ν = d/2 − 1 and using Equations (5.2)-(5.4) and Equations (9.6.26) of [3], we have

ρ1 = Ey1(t) = Cy1
d (κ, λ)

∫ 1

−1
t(1 − λt)(1 − t2)(d−3)/2eκtdt (5.5)

= Cy1
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Moreover, it is seen that
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To prove the convergency of ρ1 and ρ2 for small values of κ, we first show an important
equality. Using the transformation u = (t+ 1)/2, and invoking the integral by part, it can
be shown that, for any m > 0,∫ 1

−1
tm(1 − λt)(1 − t2)ν−1dt = 22ν−1

∫ 1

0
(2u− 1)m(1 + λ− 2λu)(1 − u)ν−1uν−1du

=
m∑

i=0
22ν+i−1(−1)m−i

{
(1 + λ)

∫ 1

0
(1 − u)ν−1uν+i−1du

− 2λ
∫ 1

0
(1 − u)ν−1uν+idu

}
=

m∑
i=0

22ν+i−1(−1)m−i Γ(ν)Γ(ν + i)
Γ(2ν + i)

(1 + λ− 2λ ν + i

2ν + i
).

It is seen that the functions ρ1 and ρ2 are equivalent to the particular version of the above
integral for m = 0, 1, 2 while κ is getting close to zero. In particular, to recall Equation
(5.6) and the integral representation of the normalizing constant given by Equation (2.3),
we can write

lim
κ→0

ρ1 = lim
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−1(1 − λt)(1 − t2)(d−3)/2dt

= −λ
d
.

Similarly, we have

lim
κ→0

ρ2 = lim
κ→0

∫ 1
−1 t

2(1 − λt)(1 − t2)(d−3)/2eκtdt∫ 1
−1(1 − λt)(1 − t2)(d−3)/2eκtdt

=
∫ 1

−1 t
2(1 − λt)(1 − t2)(d−3)/2dt∫ 1

−1(1 − λt)(1 − t2)(d−3)/2dt
= d+ 1 − 2λ

d
.


