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Abstract

In the present paper, formulas for the Rayleigh-quotient representation of the real parts,
imaginary parts, and moduli of the eigenvalues of general matrices are obtained that
resemble corresponding formulas for the eigenvalues of self-adjoint and diagonalizable
matrices. These formulas are of interest in Linear Algebra and in the theory of linear
dynamical systems. The key point is that a weighted scalar product is used that is defined
by means of a special positive definite matrix. As applications, one obtains convexity
properties of newly-defined numerical ranges of a matrix. A numerical example underpins
the theoretical findings.

1. Introduction

For self-adjoint matrices, there are formulas for the eigenvalues in the form of Rayleigh quotients; more precisely, max-, min-, min-max-,
and max-min-formulas are known; for this, see, e.g., the book [ 1, Section 5.4]. Recently, the author has carried over these formulas to the
real parts, imaginary parts, and moduli of diagonalizable matrices. The aim of the present paper is to extend these results to general matrices.
We mention also that the presentation of this paper parallels that of [ 2]. So, similarities in the formulation do not happen by accident, but are
intended in order to underline the similarities. As a consequence, many verbatim passages in the formulations are taken from there.
As it has already been said in [ 2], first, the obtained formulas are of interest on their own in Linear Algebra. Second, these are also of potential
interest, for example, in the theory of linear dynamical systems. The reason for this is as follows. The real parts of the eigenvalues multiplied
by the time are equal to the arguments of the exponential functions that describe the decay behavior of the solution (see, e.g., [ 3, Section 7.1,
p.2011, Formulas (89), (90)]). Further, the system is asymptotically stable if the real parts of all eigenvalues are negative. Moreover, when
the eigenvalues are pairwise conjugate-complex, then the moduli of the imaginary parts are the circular damped eigenfrequencies of the
system (see, e.g., [ 3, Section 7.1, p. 2011, (89)]). Third, the paper could be of interest in graduate/undergraduate teaching or research at
college level since its style is expository and since its subject can be seen as a supplement of the curriculum in Linear Algebra and Numerical
Analysis.
The paper is structured as follows. In Section 2, preliminary materials are assembled on biorthogonality relations for the principal vectors of
a general matrix A and the principal vectors of A∗ that will be useful in the sequel. Moreover, the construction of positive semi-definite
matrices R j and of the positive definite matrix R = ∑

n
j=1 R j is reviewed where the last one is employed to define a weighted scalar product

(·, ·)R that plays a key role in deriving the new results. In Sections 3, 4, and 5, formulas for the Rayleigh-quotient representation of the real
parts, imaginary parts, and moduli of the eigenvalues of a general matrix are given, as the case may be. In Section 6, a connection between
the matrices R−1 A∗R+RA

2 , R−1 RA−A∗R
2i , and R−1A∗RA is established that play a key role in the study of the real parts, imaginary parts, and

moduli of the eigenvalues of A, respectively. Section 7 describes the applications and, in Section 8, we give a numerical example. Finally,
Section 9 contains the conclusions. The non-cited references [ 4], [ 5], [ 6], [ 7], [ 8], [ 9], [10], and [11] are given because they may be
useful to the reader in the context of the present paper.
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2. Preliminaries

As a preparation to Theorem 2.1, we formulate the following conditions:

(C1′) A ∈C n×n

(C2′) λi, i = 1, · · · ,r are the eigenvalues of A corresponding to the Jordan blocks Ji(λi) ∈C mi×mi , i = 1, · · · ,r with the chains of principal
vectors p(i)1 , · · · , p(i)mi , i = 1, · · · ,r

(C3′) u(i)1
∗
, · · · ,u(i)mi

∗
, i = 1, · · · ,r are the principal vectors of A∗ corresponding to the eigenvalues λi, i = 1, · · · ,r of the Jordan blocks

Ji(λi) ∈C mi×mi , i = 1, · · · ,r
(C4′) λi 6= λ j, i 6= j, i, j = 1, · · · ,r

One has the following theorem.

Theorem 2.1. (Biorthogonality relations for principal vectors)

Let the conditions (C1′)-(C4′) be fulfilled. Then, the systems {p(1)1 , · · · , p(1)m1 ; · · · ; p(r)1 , · · · , p(r)mr } and {u(1)1
∗
, · · · ,u(1)m1

∗
; · · · ;u(r)1

∗
, · · · ,u(r)mr

∗
}

can be constructed such that the following biorthogonality relations hold:

(p(i)k ,u(i)l

∗
) =

{
1, l = mi− k+1
0, l 6= mi− k+1

k = 1, · · · ,mi, i = 1, · · · ,r and

(p(i)k ,u( j)
l

∗
) = 0, i 6= j,

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.
So, with

v(i)l

∗
:= u(i)mi−l+1

∗
,

l = 1, · · · ,mi, i = 1, · · · ,r one has the biorthogonality relations

(p(i)k ,v(i)l

∗
) = δkl ,

k, l = 1, · · · ,mi, i = 1, · · · ,r, and

(p(i)k ,v( j)
l

∗
) = 0, i 6= j,

k = 1, · · · ,mi, l = 1, · · · ,m j, i, j = 1, · · · ,r.

Proof. See proof of [12, Theorem 2].

Remark 2.2. The hypothesis λi 6= λ j, i 6= j, i, j = 1, · · · ,r can be omitted, see [12, Theorem 4]. But, since in our example this condition is
fulfilled, we preserve it.

Theorem 2.3. (Construction of positive definite matrix R)
Let the conditions (C1′)-(C4′) be fulfilled. Let α j = λ j(A) be the eigenvalues and u( j)

1 , . . . ,u( j)
m j be a chain of associated left principal vectors

for j = 1, . . . ,r. Further, let A∗ ∈C n×n be the adjoint matrix of A so that u( j)
1
∗
, . . . ,u( j)

m j

∗
is a chain of right principal vectors corresponding

to the eigenvalues α j = λ j(A∗) for j = 1, · · · ,r, i.e.,

u( j)
k A = α ju

( j)
k +u( j)

k−1

with u( j)
0 = 0, k = 1, . . . ,m j; j = 1, . . . ,r and

A∗u( j)
k

∗
= α ju

( j)
k

∗
+u( j)

k−1

∗

with u( j)
0
∗
= 0, j = 1, . . . ,r.

Let

ρ j = α j +α j = 2Reα j = 2Reα j, j = 1, · · · ,r,

σ j = α j−α j = 2 i Imα j, j = 1, · · · ,r,

and

R(k,k)
j := u( j)

k

∗
u( j)

k , k = 1, · · · ,m j, j = 1, · · · ,r.

Then,

A∗R(1,1)
j +R(1,1)

j A = ρ jR
(1,1)
j , j = 1, · · · ,r ,
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R(1,1)
j A−A∗R(1,1)

j = σ jR
(1,1)
j , j = 1, · · · ,r .

In other word, the matrix eigenvalue problem

A∗V +VA = µV

has the r solution pairs

(µ,V ) = (ρ j,R
(1,1)
j )

with real ρ j, and the matrix eigenvalue problem

VA−A∗V = µV

has the r solution pairs

(µ,V ) = (σ j,R
(1,1)
j )

with purely imaginary σ j.

The matrices R(k,k)
j ∈C n×n, k = 1, . . . ,m j, j = 1, . . . ,r are positive semi-definite. Further,

R :=
r

∑
j=1

R j =
r

∑
j=1

m j

∑
k=1

R(k,k)
j (2.1)

is positive definite.

Proof. See [13, Theorem 2].

Remark 2.4. Since R in (2.1) is positive definite, by

(u,v)R := (Ru,v), u, v ∈C n,

a weighted scalar product (·, ·)R is defined and by

‖u‖R := (Ru,u)
1
2 , u ∈C n,

a weighted norm ‖ · ‖R.

3. Formulas for the representation of the real parts of the eigenvalues of a general matrix

In this section, we want to derive formulas for the representation of the real parts of the eigenvalues of a general matrix A by Rayleigh
quotients. More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the
eigenvalues of diagonalizable matrices in [ 2] or to the eigenvalues of self-adjoint matrices, assembled, for instance, in the book of [ 1,
Section 5.4].
First, we derive a result similar to that of [ 2, Lemma 3.1]. For this, with the identity matrix E, we introduce the abbreviation

Nλ j(A) := {u ∈C n |(A−λ j(A)E)u = 0}, j = 1, . . . ,r

for the geometric eigenspaces so that

Nλ j(A) = [p( j)
1 ] = [p j], j = 1, . . . ,r.

Herewith, we define

Nσ(A) :=
r⊕

j=1
Nλ j(A).

We have the following lemma.

Lemma 3.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).
Then, with the denotations of Theorem 2.3,

(Au,u)R =
r

∑
j=1

λ j(A)(u,u)R j +
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
), u ∈C n (3.1)

leading to

(Au,u)R =
r

∑
j=1

λ j(A)(u,u)R j , u ∈ Nσ(A) (3.2)

and thus to

Re(Au,u)R =
r

∑
j=1

Reλ j(A)(u,u)R j , u ∈ Nσ(A) (3.3)
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where

R j =
m j

∑
k=1

R(k,k)
j =

m j

∑
k=1

u( j)
k

∗
u( j)

k =
m j

∑
k=1

v( j)
k

∗
v( j)

k ,

j = 1, . . . ,r.
If matrix A is, beyond this, asymptotically stable, i.e., if

Reλ j(A) < 0, j = 1, · · · ,r,

then

Re(Au,u)R =−
r

∑
j=1
|Reλ j(A)|(u,u)R j , u ∈ Nσ(A),

so that, in this case,

Re(Au,u)R < 0, 0 6= u ∈ Nσ(A) (3.4)

and

|Re(Au,u)R|=
r

∑
j=1
|Reλ j(A)|(u,u)R j , u ∈ Nσ(A). (3.5)

Proof. First, we prove (3.1). For this, let u ∈C n. Then with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
)Ap( j)

k

=
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) [λ j p( j)

k + p( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k +
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
) p( j)

k−1

since p( j)
0 = 0, j = 1, . . . ,r. This implies

(Au,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(p( j)

k−1,Ru)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(Rp( j)

k ,u)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(Rp( j)

k−1,u).

Now,

Rp( j)
k−1 =

r

∑
l=1

ml

∑
s=1

R(s,s)
l p( j)

k−1 =
r

∑
l=1

ml

∑
s=1

v(l)s
∗
v(l)s p( j)

k−1

=
r

∑
l=1

ml

∑
s=1

v(l)s
∗
(p( j)

k−1,v
(l)
s
∗
)

=
r

∑
l=1

ml

∑
s=1

v(l)s
∗

δ jl δs,k−1 =
m j

∑
s=1

v( j)
s
∗

δs,k−1 = v( j)
k−1

∗
.

This leads to

(Au,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(v( j)

k−1

∗
,u)

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,Ru)+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
).
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Further,

(p( j)
k−1,Ru) = (Rp( j)

k−1,u)

and, as before,

Rp( j)
k−1 = v( j)

k−1

∗
= R j p( j)

k−1.

Therefore,

(p( j)
k ,Ru) = (Rp( j)

k ,u) = (v( j)
k

∗
,u)

and thus

r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(p( j)

k ,Ru) =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(v( j)

k

∗
,u)

=
r

∑
j=1

λ j

m j

∑
k=1
|(u,v( j)

k

∗
)|=

r

∑
j=1

λ j(u,u)R j

since

(u,u)R j = (R ju,u) =
m j

∑
k=1

(R(k,k)
j u,u) =

m j

∑
k=1

(v( j)
k

∗
vku,u) =

m j

∑
k=1

(v( j)
k u,v( j)

k u) =
m j

∑
k=1
|(u,v( j)

k

∗
)|.

So, we obtain (3.1).
In order to get (3.2), i.e.,

(Au,Ru) =
r

∑
j=1

λ j(A)(u,u)R j ,

we must have

r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
) = 0.

Sufficient for this is

(u,v( j)
k

∗
) = 0, k = 2, . . . ,m j, j = 1, . . . ,r,

for example,

u ∈
r⊕

j=1
[p( j)

1 ] =
r⊕

j=1
Nλ j(A) = Nσ(A).

The rest of the proof is clear.

Remark 3.2. We have shown that

Nσ(A) ⊂ {u ∈C n |
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
) = 0}=: N.

But, the set on the right-hand side can be larger than the set Nσ(A). For, if ms > 1 for some s ∈ {1, . . . ,r}, then

p(s)ms ∈ N,

even though p(s)ms 6∈ Nσ(A) . Moreover, we have even for all single p(k)j j = 1, · · · ,mk,k = 1, · · · ,r the relations

p(k)j ∈ N.

Remark 3.3. If condition (C4′) is not fulfilled, then the results of Lemma 3.1 remain valid if its formulation is adapted to [14, Theorem 4].
The details are left to the reader.

Next, we have the following lemma.

Lemma 3.4. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1). Further, let matrix A be asymptotically stable.
Then, A∗R+RA is negative definite on Nσ(A).
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Proof. With Lemma 3.1, Formula (3.3), and ρ j = 2Reλ j(A), j = 1, · · · ,n, we obtain

(−[A∗R+RA]u,u) =
n

∑
j=1

(−ρ j)(u,u)R j = 2
r

∑
j=1

Re(−λ j(A))(u,u)R j

= 2
r

∑
j=1
|Reλ j(A)|(u,u)R j

≥ 2 min
j=1,··· ,r

|Reλ j(A)|
n

∑
j=1

(u,u)R j

= c0(Ru,u)> 0, 0 6= u ∈ Nσ(A)

with c0 = 2 min
j=1,··· ,r

|Reλ j(A)|> 0.

Similarly as in [ 2, Formula (3.6)], we define the following vector spaces.

M1,Nσ(A) := Nσ(A),

Mk,Nσ(A)
:= {u ∈ Nσ(A) |(u,u)Ri = 0, i = 1,2, · · · ,k−1}, k = 2, · · · ,r.

(3.6)

The next lemma characterizes these spaces.

Lemma 3.5. Let the conditions (C1′)-(C4′) be fulfilled.
Then,

Mk,Nσ(A)
= [pk, . . . , pr], k = 1,2, . . . ,r. (3.7)

Proof. The proof is done for k = 3. The general case can be made by induction. So, we have to prove

M3,Nσ(A) = {u ∈ Nσ(A) |(u,u)R1 = 0, (u,u)R2 = 0}= [p3, . . . , pr].

(i) [p3, p4, · · · , pr]⊂M3,Nσ(A) :

Let u ∈ [p3, p4, · · · , pr]. Then, u = ∑
r
j=3 β j p j with elements β j ∈C , j = 3, · · · ,r. Let s ∈ {1,2}. This entails, due to Theorem 2.3, Lemma

3.1, and (p j, pk)Rs = (p j, pk)R(1,1)
s

,

(u,u)Rs =
r

∑
j,k=3

β jβk(p j, pk)Rs =
r

∑
j,k=3

β jβk(p j, pk)R(1,1)
s

=
r

∑
j,k=3

β jβk(R
(1,1)
s p( j)

1 , p(k)1 ) =
r

∑
j,k=3

β jβk(v
(s)
1
∗
v(s)1 p( j)

1 , p(k)1 )

=
r

∑
j,k=3

β jβk(v
(s)
1
∗
(p( j)

1 ,v(s)1
∗
)︸ ︷︷ ︸

δ js=0

, p(k)1 ) = 0,

j ∈ {3, . . . ,r}, s ∈ {1,2}. Therefore, (u,u)Rs = 0, s = 1,2 and thus u ∈M3,Nσ(A) so that [p3, p4, · · · , pr]⊂M3,Nσ(A) is proven.

(ii) M3,Nσ(A) ⊂ [p3, p4, · · · , pr]:

Let u ∈M3,Nσ(A) . This implies u ∈ Nσ(A) with (u,u)Rs = 0, s = 1,2 or

(Rsu,u) = ∑
ms
l=1(R

(l,l)
s u,u) = ∑

ms
l=1(v

(s)
l

∗
v(s)l u,u) = ∑

ms
l=1(v

(s)
l

∗
(u,v(s)l

∗
),u)

= ∑
ms
l=1(v

(s)
l

∗
,u)(v(s)l

∗
,u) = ∑

ms
l=1 |(v

(s)
l

∗
,u)|2 = 0, s = 1,2,

that is, in particular,

u ∈ Nσ(A) with (u,v(s)1
∗
) = (u,v∗s ) = 0, s = 1,2. (3.8)

Since u ∈ Nσ(A), we have,

u =
r

∑
j=1

(u,v∗j)p j

so that with (3.8),

u =
r

∑
j=1

(u,v∗j)p j =
r

∑
j=3

(u,v∗j)p j ∈ [p3, . . . , pr].

This completes the proof of the assertion.
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Similarly to [ 2], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Reλ1(A)≥ Reλ2(A)≥ ·· · ≥ Reλr(A). (3.9)

If A is asymptotically stable, (3.9) is replaced by

|Reλ1(A)| ≥ |Reλ2(A)| ≥ · · · ≥ |Reλr(A)|. (3.10)

One has the following theorem.

Theorem 3.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9). Moreover, let the
vector spaces Mk,Nσ(A)

, k = 1, · · · ,r be defined by (3.6) or (3.7).
Then,

Reλk(A) = max
0 6=u∈Mk,N

σ(A)

Re(Au,u)R

(u,u)R
, k = 1,2, · · · ,r. (3.11)

If matrix A is, beyond this, asymptotically stable, and if the eigenvalues are arranged according to (3.10), then also

|Reλk(A)|= max
0 6=u∈Mk,N

σ(A)

|Re(Au,u)R|
(u,u)R

, k = 1,2, · · · ,r. (3.12)

The maximum is attained for u = pk.

Proof. According to (3.3), one has

Re(Au,u)R =
r

∑
j=1

Reλ j(A)(R ju,u), u ∈ Nσ(A).

Choosing k ∈ {1, · · · ,r} fixed and u ∈Mk,Nσ(A)
, using (3.6), one obtains

Re(Au,u)R =
r

∑
j=k

Reλ j(A)(R ju,u)≤ max
j=k,··· ,r

Reλ j(A)
r

∑
j=k

(R ju,u)

= Reλk(A)
r

∑
j=1

(R ju,u) = Reλk(A)(u,u)R,

that is,

Re(Au,u)R

(u,u)R
≤ Reλk(A), 0 6= u ∈Mk,Nσ(A)

and thus

max
0 6=u∈Mk,N

σ(A)

Re(Au,u)R

(u,u)R
≤ Reλk(A).

Now, the maximum is attained for u = pk ∈Mk,Nσ(A)
, that is,

Reλk(A) =
Re(Apk, pk)R

(pk, pk)R
≤ max

0 6=u∈Mk,N
σ(A)

Re(Au,u)R

(u,u)R
≤ Reλk(A)

so that the assertion (3.11) is proven.
Relation (3.12) is proven in the same way as (3.11), but based on (3.5) instead of (3.3) and (3.10) instead of (3.9).

Remark 3.7. As we have seen, the proof is similar to that of [ 2, Theorem 3.4]. The essential difference is that the full space C n is replaced
by the geometric eigenspace NNσ(A) ⊂C n. Therefore, in the sequel, we state the results without proofs.

Next, we want to state a min-max characterization for the real parts of eigenvalues similar to results for diagonalizable matrices in [ 2,
Theorem 3.5].
One has the following theorem.

Theorem 3.8. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9).
Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

Reλ j(A)≤ max
0 6=u∈M

Re(Au,u)R

(u,u)R
≤ Reλ1(A), (3.13)

and the following representation formulas hold:

Reλ j(A) = min
dimM=m

max
0 6=u∈M⊂Nσ(A)

Re(Au,u)R

(u,u)R
.

If matrix A is, beyond this, asymptotically stable and the eigenvalues are arranged according to (3.10), then also

|Reλ j(A)|= min
dimM=m

max
0 6=u∈M⊂Nσ(A)

|Re(Au,u)R|
(u,u)R

.



62 Journal of Mathematical Sciences and Modelling

Remark 3.9. From (3.13), it follows

Re(Au,u)R

(u,u)R
≤ ν [A] = max

j=1,··· ,r
Reλ j(A), 0 6= u ∈ Nσ(A).

For the following theorem, we need the vector spaces Nk defined by

Nk := [p1, p2, · · · , pk], k = 1,2, · · · ,r. (3.14)

Then, we have a result similar to that of Theorem 3.6.

Theorem 3.10. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9). Moreover, let the
vector spaces Nk, k = 1, · · · ,r be defined by (3.14).
Then,

Reλk(A) = min
0 6=u∈Nk

Re(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

If matrix A is, beyond this, asymptotically stable and if the eigenvalues are arranged according to (3.10), then also

|Reλk(A)|= min
0 6=u∈Nk

|Re(Au,u)R|
(u,u)R

, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Next, we want to derive a max-min characterization for the real parts of eigenvalues similar to results for diagonalizable matrices in [ 2].
One has the following theorem.

Theorem 3.11. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (3.9).
Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

Reλr(A)≤ min
0 6=u∈N

Re(Au,u)R

(u,u)R
≤ Reλ j(A), (3.15)

and the following representation formulas hold:

Reλ j(A) = max
dimN= j

min
06=u∈N

Re(Au,u)R

(u,u)R
.

If matrix A is, beyond this, asymptotically stable and the eigenvalues are arranged according to (3.10), then also

|Reλ j(A)|= max
dimN= j

min
06=u∈N

|Re(Au,u)R|
(u,u)R

.

Remark 3.12. From (3.15), it follows

Re(Au,u)R

(u,u)R
≥−ν [−A] = min

j=1,··· ,r
Reλ j(A), 0 6= u ∈ Nσ(A).

4. Formulas for the representation of the imaginary parts of the eigenvalues of a general matrix

In this section, we want to state formulas for the representation of the imaginary parts of the eigenvalues of a general matrix A by Rayleigh
quotients. More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the
eigenvalues of self-adjoint matrices in the textbook [ 1, Section 5.4] resp. corresponding to those for the imaginary parts of eigenvalues of
diagonalizable matrices in [ 2].
First, we state a result similar to that of [ 1, Section 5.4 (18)]. This is done in the following Formula (4.1).

Lemma 4.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).
Then, with the denotations of Theorem 2.3,

Im(Au,u)R =
r

∑
j=1

Imλ j(A)(u,u)R j , u ∈ Nσ(A). (4.1)

Proof. The proof follows immediately from (3.2).

Similarly to [ 1, Section 5.4 (22)] or (3.9), we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

Imλ1(A)≥ Imλ2(A)≥ ·· · ≥ Imλr(A). (4.2)

One has the following theorem.

Theorem 4.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2). Moreover, let the
vector spaces Mk,Nσ(A)

, k = 1, · · · ,r be defined by (3.6) or (3.7).
Then,

Imλk(A) = max
0 6=u∈Mk,N

σ(A)

Im(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

The maximum is attained for u = pk.
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Next, we want to state a min-max characterization for the imaginary parts of eigenvalues that corresponds to results for diagonalizable
matrices in [ 2] or that corresponds to results for the real parts of eigenvalues of general matrices in Section 3.
One has the following theorem.

Theorem 4.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2).
Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

Imλ j(A)≤ max
0 6=u∈M

Im(Au,u)R

(u,u)R
≤ Imλ1(A), (4.3)

and the following representation formulas hold:

Imλ j(A) = min
dimM=m

max
0 6=u∈M⊂Nσ(A)

Im(Au,u)R

(u,u)R
.

Remark 4.4. From (4.3), it follows

Im(Au,u)R

(u,u)R
≤ max

j=1,··· ,r
Imλ j(A), 0 6= u ∈ Nσ(A).

With the vector spaces Nk, we have the following theorem.

Theorem 4.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2). Moreover, let the
vector spaces Nk, k = 1, · · · ,r be defined by (3.14).
Then,

Imλk(A) = min
0 6=u∈Nk

Im(Au,u)R

(u,u)R
, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Next, we state a max-min characterization for the imaginary parts of eigenvalues for general matrices similar to results for the real parts in
Section 3.
One has the following theorem.

Theorem 4.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (4.2).
Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

Imλr(A)≤ min
0 6=u∈N

Im(Au,u)R

(u,u)R
≤ Imλ j(A), (4.4)

and the following representation formulas hold:

Imλ j(A) = max
dimN= j

min
06=u∈N

Im(Au,u)R

(u,u)R
.

Remark 4.7. From (4.4), it follows

Im(Au,u)R

(u,u)R
≥ min

j=1,··· ,r
Imλ j(A), 0 6= u ∈ Nσ(A).

5. Formulas for the representation of the moduli of the eigenvalues of a general matrix

In this section, we want to derive formulas for the representation of the moduli of the eigenvalues of a general matrix A by Rayleigh quotients.
More precisely, max-, min-, min-max-, and max-min-representations are obtained corresponding to associated formulas for the eigenvalues
of diagonalizable matrices in [ 2] and for the real and imaginary parts of eigenvalues of general matrices in Sections 3 and 4.
First, we derive a result similar to that of [ 2, Lemma 5.1].

Lemma 5.1. Let the conditions (C1′)-(C4′) be fulfilled and R be defined by (2.1).
Then, with the denotations of Theorem 2.1,

‖Au‖2
R = (RAu,Au) = (A∗RAu,u) = (R−1A∗RAu,u)R

=
r

∑
j=1
|λ j(A)|2 (u,u)R j

+
r

∑
j=1

λ j(A)
m j−1

∑
k=1

(u,v( j)
k

∗
)(u,v( j)

k+1

∗
)

+
r

∑
j=1

λ j(A)
m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
)

+
r

∑
j=1

m j

∑
k=2
|(u,v( j)

k

∗
)|2, u ∈C n

(5.1)
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leading to

‖Au‖2
R = (RAu,Au) = (A∗RAu,u) = (R−1A∗RAu,u)R

=
r

∑
j=1
|λ j(A)|2 (u,u)R j , u ∈ Nσ(A)

(5.2)

where

(u,u)R j = (u,u)
R(1,1)

j
, u ∈ Nσ(A),

j = 1, . . . ,r.

Proof. First, we prove (5.1). For this, let u ∈C n. Then with the denotations of Theorem 2.1,

u =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k (5.3)

leading to

Au =
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
)Ap( j)

k

=
r

∑
j=1

m j

∑
k=1

(u,v( j)
k

∗
) [λ j p( j)

k + p( j)
k−1]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
) p( j)

k +
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
) p( j)

k−1

since p( j)
0 = 0, j = 1, . . . ,r. This implies

RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)Rp( j)

k +
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)Rp( j)

k−1.

Now,

Rp( j)
k =

r

∑
l=1

ml

∑
s=1

R(s,s)
l p( j)

k =
r

∑
l=1

ml

∑
s=1

v(l)s
∗
v(l)s p( j)

k

=
r

∑
l=1

ml

∑
s=1

v(l)s
∗
(p( j)

k ,v(l)s
∗
)

=
r

∑
l=1

ml

∑
s=1

v(l)s
∗

δ jl δs,k =
m j

∑
s=1

v( j)
s
∗

δs,k = v( j)
k

∗

and correspondingly

Rp( j)
k−1 = v( j)

k−1

∗
.

This leads to

RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k

∗
+

r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)v( j)

k−1

∗
. (5.4)

Thus,

A∗RAu =
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)A∗v( j)

k

∗
+

r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)A∗v( j)

k−1

∗

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)A∗u( j)

m j−k+1

∗
+

r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)A∗u( j)

m j−(k−1)+1

∗

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
) [λ j u( j)

m j−k+1

∗
+u( j)

m j−k

∗
]

+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
) [λ j u( j)

m j−k+2

∗
+u( j)

m j−k+1

∗
]

=
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
) [λ j v( j)

k

∗
+ v( j)

k+1

∗
]

+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
) [λ j v( j)

k−1

∗
+ v( j)

k

∗
]
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and thus

A∗RAu =
r

∑
j=1
|λ j|2

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k

∗
+

r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k+1

∗

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v( j)
k

∗
)v( j)

k−1

∗
+

r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)v( j)

k

∗
.

(5.5)

From (5.3) and (5.5), we conclude that the following chain of equations is valid

(A∗RAu,u) = (
r

∑
j=1
|λ j|2

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k

∗
,

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) p(l)s )

+ (
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k+1

∗
,

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) p(l)s )

+ (
r

∑
j=1

λ j

m j

∑
k=2

(u,v( j)
k

∗
)v( j)

k−1

∗
,

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) p(l)s )

+ (
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)v( j)

k

∗
,

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) p(l)s )

=
r

∑
j=1
|λ j|2

m j

∑
k=1

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) (v( j)

k

∗
, p(l)s )︸ ︷︷ ︸

δl jδsk

+
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) (v( j)

k+1

∗
, p(l)s )︸ ︷︷ ︸

δl jδs,k+1

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) (v( j)

k−1

∗
, p(l)s )︸ ︷︷ ︸

δl jδs,k−1

+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)

r

∑
l=1

ml

∑
s=1

(u,v(l)s
∗
) (v( j)

k

∗
, p(l)s )︸ ︷︷ ︸

δl jδs,k

so that

(A∗RAu,u) =
r

∑
j=1
|λ j|2

m j

∑
k=1

(u,v( j)
k

∗
)(u,v( j)

k

∗
)

+
r

∑
j=1

λ j

m j

∑
k=1

(u,v( j)
k

∗
)(u,v( j)

k+1

∗
)

+
r

∑
j=1

λ j

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k−1

∗
)

+
r

∑
j=1

m j

∑
k=2

(u,v( j)
k

∗
)(u,v( j)

k

∗
) .

(5.6)

Now,
m j

∑
k=1

(u,v( j)
k

∗
)(u,v( j)

k

∗
) = (u,

m j

∑
k=1

(u,v( j)
k

∗
)v( j)

k

∗
) = (u,

m j

∑
k=1

v( j)
k

∗
v( j)

k u)

= (u,R ju) = (u,u)R j .

(5.7)

Further, for k = m j,

v( j)
k+1

∗
= u( j)

m j−(k+1)+1

∗
= v( j)

m j−(m j+1)+1

∗
= u( j)

0
∗
= 0. (5.8)

With (5.4)-(5.8), relation (5.1) follows. The rest is clear.

Similarly to [ 2], we suppose that the eigenvalues λ1(A), · · · ,λr(A) of matrix A are arranged such that

|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λr(A)|. (5.9)

One has the following theorem.

Theorem 5.2. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9). Moreover, let the
vector spaces Mk,Nσ(A)

, k = 1, · · · ,r be defined by (3.6) or (3.7).
Then,

|λk(A)|= max
0 6=u∈Mk,N

σ(A)

‖Au‖R

‖u‖R
, k = 1,2, · · · ,r.

The maximum is attained for u = pk.
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Proof. For the proof, one uses (5.2) and proceeds as in the proof of [ 2] with the only difference that the full space C n is replaced by the
subspace Nσ(A).

In the same way, one obtains the following results.

Theorem 5.3. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).
Then, for every j = 1, · · · ,r and every subspace M ⊂ Nσ(A) with dimM = m = r+1− j, the following inequalities are valid:

|λ j(A)| ≤ max
0 6=u∈M

‖Au‖R

‖u‖R
≤ |λ1(A)|, (5.10)

and the following representation formulas hold:

|λ j(A)|= min
dimM=m

max
0 6=u∈M⊂Nσ(A)

‖Au‖R

‖u‖R
.

Remark 5.4. From (5.9), it follows

‖Au‖R

‖u‖R
≤ max

j=1,··· ,r
|λ j(A)|= ρ(A), 0 6= u ∈ Nσ(A),

where ρ(A) is the spectral radius of matrix A.

Further, we have the following theorem.

Theorem 5.5. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9). Moreover, let the
vector spaces Nk, k = 1, · · · ,r be defined by (3.14).
Then,

|λk(A)|= min
0 6=u∈Nk

‖Au‖R

‖u‖R
, k = 1,2, · · · ,r.

The minimum is attained for u = pk.

Moreover, the following theorem holds.

Theorem 5.6. Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).
Then, for every j = 1, · · · ,r and every subspace N ⊂ Nσ(A) with dimN = j, the following inequalities are valid:

|λr(A)| ≤ min
0 6=u∈N

‖Au‖R

‖u‖R
≤ |λ j(A)|, (5.11)

and the following representation formulas hold:

|λ j(A)|= max
dimN= j

min
0 6=u∈N

‖Au‖R

‖u‖R
.

Remark 5.7. From (5.11), it follows

‖Au‖R

‖u‖R
≥ |λr(A)| = min

j=1,··· ,r
|λ j(A)|= min

j=1,··· ,r

1
|λ j(A−1)|

= 1
max

j=1,··· ,r
|λ j(A−1)|

=
1

ρ(A−1)
= (ρ(A−1))−1, 0 6= u ∈ Nσ(A).

6. Connection between the matrices R−1 A∗R+RA
2 , R−1 RA−A∗R

2i , and R−1A∗RA

In [ 2, Section 6], for diagonalizable matrices A ∈C n×n, we have shown that the equation(
R−1 A∗R+RA

2

)2
+
(

R−1 RA−A∗R
2i

)2
= R−1A∗RA (6.1)

is valid. In this section, we prove that this equation remains valid in the subspace

N′
σ(A) :=

r⊕
m j=1

j=1

Nλ j(A) ⊂
r⊕

j=1
Nλ j(A) = Nσ(A). (6.2)

One has the following theorem.

Theorem 6.1. Let the conditions (C1′)-(C4′) be fulfilled, and R be defined by (2.1).
Then, [(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
]

u = R−1A∗RAu, u ∈ N′
σ(A). (6.3)
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Proof. Let j ∈ {1, · · · ,r} with m j = 1. According to [13, Theorems 6 and 7], one has[(
R−1 A∗R+RA

2

)2
+
(

R−1 RA−A∗R
2i

)2
]

p j

=
(

R−1 A∗R+RA
2

)2
p j +

(
R−1 RA−A∗R

2i

)2
p j

= [Reλ j(A)]2 p j +[Imλ j(A)]2 p j

= |λ j(A)|2 p j = λ j(R−1A∗RA)p j = R−1A∗RAp j.

This implies (6.3).

Remark 6.2. For diagonalizable matrices A ∈C n×n, the equations (6.3) deliver (6.1) since then N′
σ(A) = Nσ(A) =C n×n.

7. Applications

In this section, we apply the results of Sections 3, 4, and 5 to obtain the convexity of newly-defined numerical ranges of a general matrix A.

7.1. Applications pertinent to Section 3

Let the conditions (C1′)-(C4′) be fulfilled.
The numerical range of A restricted to Nσ(A) with respect to the weighted scalar product (·, ·)R is defined by

WNσ(A),(·,·)R
(A) =

{
z ∈C |z = (Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}
.

Further, let

Re[WNσ(A),(·,·)R
(A)] :=

{
x ∈ IR |x = Re(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}
;

we call it real part of the numerical range WNσ(A),(·,·)R
(A).

Let σ(A) = {λ j(A), j = 1, · · · ,r} be the spectrum of A, i.e., the set of all eigenvalues of A.
Similarly as before, we define

Re[σ(A)] := {Reλ j(A), j = 1, · · · ,r}

and call it the real part of the spectrum of A.
Finally, let co{Re[σ(A)]} be the convex hull of Re[σ(A)].
Next, we show the following corollary as an application of Theorem 3.8, Formula (3.13), and Theorem 3.11, Formula (3.15).

Corollary 7.1. (Application 1)
Let the conditions (C1′)-(C4′) be fulfilled.
Then, the set Re[WNσ(A),(·,·)R

(A)] is convex, and one has the chain of equations

Re[WNσ(A),(·,·)R
(A)] =

{
x ∈ IR |x = Re(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

=

{
x ∈ IR |x =

(R−1 A∗R+RA
2 u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

= WNσ(A),(·,·)R
(R−1 A∗R+RA

2 )

= co{Re [σ(A)]}.

If the eigenvalues of A are arranged according to (3.9), then

Re[WNσ(A),(·,·)R
(A)] = [Reλr(A),Reλ1(A)].

Proof. Let 0 6= u ∈ Nσ(A). Then,

2
Re(Au,u)R

(u,u)R
=

([A∗R+RA]u,u)
(u,u)R

=
(R−1[A∗R+RA]u,u)R

(u,u)R
.

The convexity follows from the last form with R−1[A∗R+RA] and the scalar product (·, ·)R, see the convexity of the numerical range of a
matrix due to Hausdorff in [ 1, Section 5.4]. Since, with (3.9), one has

co{Re [σ(A)]}= [Reλr(A),Reλ1(A)],
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it remains to show that

Re[WNσ(A),(·,·)R
(A)] = [Reλr(A),Reλ1(A)].

The proof of this relation is as follows.
(i) Re[WNσ(A),(·,·)R

(A)]⊂ [Reλr(A),Reλ1(A)]

This inclusion can be deduced from (3.13) with dimM = m = r− j+1 for j = 1 and (3.15) with dimN = r. Namely, from (3.13), for j = 1
and dimM = r, i.e., M = Nσ(A), one has

max
0 6=u∈Nσ(A)

Re(Au,u)R

(u,u)R
≤ Reλ1(A)

and from (3.15), for j = r and dimN = r, i.e., N = Nσ(A),

min
0 6=u∈Nσ(A)

Re(Au,u)R

(u,u)R
≥ Reλr(A).

(ii) [Reλr(A),Reλ1(A)]⊂ Re[WNσ(A),(·,·)R
(A)]

Let β ∈ [Reλr(A),Reλ1(A)]. Then, there exists an α in 0≤ α ≤ 1 with

β = α Reλr(A)+(1−α)Reλ1(A).

Now, due to Theorem 2.3, with the eigenvectors pr and p1,

Reλr(A) =
Re(Apr, pr)R

(pr, pr)R
∈ Re[WNσ(A),(·,·)R

(A)]

and

Reλ1(A) =
Re(Ap1, p1)R

(p1, p1)R
∈ Re[WNσ(A),(·,·)R

(A)].

Thus, due to the convexity of Re[WNσ(A),(·,·)R
(A)], it follows that β ∈ Re[WNσ(A),(·,·)R

(A)].
In other words, the proof is done along the same line as for [ 2, Section 7.1] with (3.13) for j = 1 and (3.15) for j = r.

Remark 7.2. One has the relations

Reλ1(A) = max
j=1,··· ,r

Reλ j(A) = ν [A]

and

Reλr(A) = min
j=1,··· ,r

Reλ j(A) =−ν [−A].

Corollary 7.3. (Application 2)
Let the conditions (C1′)-(C4′) be fulfilled. Further, let A be asymptotically stable.
Then,

Re[WNσ(A),(·,·)R
(A)]⊂ IR− = {x ∈ IR |x < 0}.

If A is only stable, then

Re[WNσ(A),(·,·)R
(A)]⊂ IR−0 = {x ∈ IR |x≤ 0}.

Proof. The first assertion follows from (3.4). The second assertion follows in a similar way.

7.2. Applications pertinent to Section 4

In this section, we proceed in a similar way as in 7.1. So, let

Im[WNσ(A),(·,·)R
(A)] :=

{
x ∈ IR |x = Im(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}
;

we call it imaginary part of the numerical range WNσ(A),(·,·)R
(A).

Further, we define

Im[σ(A)] := {Imλ j(A), j = 1, · · · ,r}

and call it the imaginary part of the spectrum of A.
Finally, let co{Im[σ(A)]} be the convex hull of Im[σ(A)].

Herewith, we obtain the following corollary.
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Corollary 7.4. (Application 3)
Let the conditions (C1′)-(C4′) be fulfilled.
Then, the set Im[WNσ(A),(·,·)R

(A)] is convex, and one has the chain of equations

Im[WNσ(A),(·,·)R
(A)] =

{
x ∈ IR |x = Im(Au,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

=

{
x ∈ IR |x =

(R−1 RA−A∗R
2i u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}

= WNσ(A),(·,·)R
(R−1 RA−A∗R

2i )

= co{Im [σ(A)]}.
Proof. The assertion follows as in [ 2, Section 7.2] along with (4.3) for j = 1 and (4.4) for j = r.

7.3. Applications pertinent to Section 5

In this subsection, we continue along the same lines as in 7.1 and 7.2.
Let

WNσ(A),‖·‖R
(A) :=

{
x ∈ IR+

0 |x =
‖Au‖R

‖u‖R
, 0 6= u ∈ Nσ(A)

}
.

Further,

|σ(A)| := {|λ j(A)|, j = 1, · · · ,r}
is called the modulus of the spectrum of A.
Moreover, let co{|σ(A)|} be the convex hull of |σ(A)|.
Finally, let S⊂ IR+

0 be any subset. We define

S2 := {y |y = s2,s ∈ S}.
Next, we show the following corollary.

Corollary 7.5. (Application 4)
Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).
Then, the set [WNσ(A),‖·‖R

(A)]2 is convex, and one has the chain of relations

[WNσ(A),‖·‖R
(A)]2 =

{
x ∈ IR+

0 |x =
[
‖Au‖R

‖u‖R

]2
=
‖Au‖2

R
‖u‖2

R
, 0 6= u ∈ Nσ(A)

}

=

{
x ∈ IR+

0 |x =
([R−1A∗RA]u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)

}
= [|λr(A)|2, |λ1(A)|2]

= co{|σ(A)|2}.

If A is regular, then R−1A∗RA is positive definite.

Proof. The assertion follows as for [ 2, Corollary 7.4] along with (5.10) for j = 1 and (5.11) for j = r. Further, R−1A∗RA is apparently
regular if A is so as well as self-adjoint and positive definite in the weighted scalar product (·, ·)R.

Next, for S⊂ IR+
0 , we define

√
S := {y |y =

√
s, s ∈ S}.

Herewith, one can rewrite Corollary 7.5 in the following form.

Corollary 7.6. (Application 5)
Let the conditions (C1′)-(C4′) be fulfilled. Further, let the eigenvalues of A be arranged according to (5.9).
Then, the set WNσ(A),‖·‖R

(A) is convex, and one has the chain of relations

WNσ(A),‖·‖R
(A) =

{
x ∈ IR+

0 |x =
‖Au‖R

‖u‖R
, 0 6= u ∈ Nσ(A)

}

=

x ∈ IR+
0 |x =

√
([R−1A∗RA]u,u)R

(u,u)R
, 0 6= u ∈ Nσ(A)


= [|λr(A)|, |λ1(A)|]

= co{|σ(A)|}.
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Proof. For any subset S⊂ IR+
0 , one has √

S2 = (
√

S)2 = S.

Thus, from Corollary 7.5, the equations of Corollary 7.6 follow.

8. Numerical example

In this section, we check the results of Subsection 7.1 as well as of Theorem 6.1, Formula (6.3) numerically. The numerical check of the
results of Subsections 7.2 and 7.3 is left to the reader.

8.1. A two-mass vibration model

We take up the multi-mass vibration model of [12], shown in Figure 8.1.

. . .

. . .
k1 k2

b1 b2
y1 y2

kn

bn bn 1

kn 1

yn

m1 m2 mn

Figure 8.1: Multi-mass vibration model

and study the case n = 2 as in [13]. For the sake of completeness, we give again the details. The associated initial value problem is given by

M ÿ+Bẏ+K y = 0, y(0) = y0, ẏ(0) = ẏ0,

where y = [y1,y2]
T and

M =

[
m1 0
0 m2

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
,

K =

[
k1 + k2 −k2
−k2 k2 + k3

]
,

with the mass, damping, and stiffness matrices M, B, and K, as the case may be, and the displacement vector y. In state-space description,
this problem takes the form

ẋ = Ax, t ≥ 0, x(0) = x0,

where x = [yT ,zT ]T , z = ẏ, and where the system matrix A is given by

A =

[
0 E

−M−1K −M−1B

]
.

(i) Construction of a non-diagonalizable matrix A:
The pertinent characteristic equation reads

|λ 2M+λB+K| =
∣∣∣∣ λ 2m1 +λ (b1 +b2)+(k1 + k2) λ (−b2)− k2

λ (−b2)− k2 λ 2m2 +λ (b2 +b3)+(k2 + k3)

∣∣∣∣= 0.

As in [13], for the construction of a case with non-diagonalizable matrix A, we choose

b2 = 0, m2 = m1 = 1, b3 = b1, k3 = k1.

Then,

λ
2m1 +λb1 +(k1 + k2) = sk2 with s ∈ {+1,−1}.

Hence, with m1 = 1,

λ =−b1

2
±
√

(
b1

2
)2− k1− k2 + sk2.

Now, in order to get one real solution, we set

k1 := (
b1

2
)2.
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This implies

λ =


−b1

2
, s =+1,

−b1

2
± i
√

2k2, s =−1.

(ii) Data:
Like in [13], as numerical values for the quantities not yet specified, we choose b1 = 1/4, k2 = 23 = 8. On the whole, this delivers the
following data:

m1 = m2 = 1; b1 = 1/4, b2 = 0, b3 = 1/4; k1 = 1/64 = 1/24, k2 = 8, k3 = 1/64 = 1/24,

which leads to

M =

[
m1 0
0 m2

]
=

[
1 0
0 1

]
,

B =

[
b1 +b2 −b2
−b2 b2 +b3

]
=

[
0.25 0

0 0.25

]
,

K =

[
k1 + k2 −k2
−k2 k2 + k3

]
=

[
1/64+8 −1/2
−1/2 8+1/64

]
=

[
8.015625 −0.5
−0.5 8.015625

]
.

Further, we choose

t0 = 0

as well as

y0 = [−1,1]T

and

ẏ0 = [−1,−1]T ,

but y0 and ẏ0 are not needed here.

8.2. Computation of important quantities

Using the Matlab routine jordan, one obtains

λ1(A) = −0.1250+4.0000i,
λ2(A) = −0.1250−4.0000i,
λ3(A) = −0.1250,
λ4(A) = λ3(A).

The pertinent eigenvectors and principal vectors are[
p(1)1 , p(2)1 , p(3)1 , p(3)2

]
= [p1, p2, p3, p4]

with [
p(1)1 , p(2)1

]
= [p1, p2]

=


0.250000000000000−0.007812500000000i 0.250000000000000+0.007812500000000i
−0.250000000000000+0.007812500000000i −0.250000000000000−0.007812500000000i

0+1.000976562500000i 0−1.000976562500000i
0−1.000976562500000i 0+1.000976562500000i

 .
and [

p(3)1 , p(3)2

]
= [p3, p4]

=


0.062500000000000 0.500000000000000
0.062500000000000 0.500000000000000
−0.007812500000000 0
−0.007812500000000 0

 .
They are apparently unnormed. The algebraic multiplicities are thus m1 = m2 = 1 and m3 = 2.
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For the adjoint matrix A∗, we obtain

λ1(A∗) = −0.1250−4.0000i,
λ2(A∗) = −0.1250+4.0000i,
λ3(A∗) = −0.1250,
λ4(A∗) = λ3(A∗).

The associated eigenvectors and principal vectors are[
u(1)1
∗
,u(2)1

∗
,u(3)1

∗
,u(3)2

∗]
= [u∗1,u

∗
2,u
∗
3,u
∗
4]

with[
u(1)1
∗
,u(2)1

∗]
=

[
u∗1,u

∗
2
]

=


0.250000000000000+0.007812500000000i 0.250000000000000−0.007812500000000i
−0.250000000000000+0.007812500000000i −0.250000000000000−0.007812500000000i

0−0.062500000000000i 0+0.062500000000000i
0+0.062500000000000i 0−0.062500000000000i

 .
and [

u(3)1
∗
,u(3)2

∗]
=

[
u∗3,u

∗
4
]

=


0.062500000000000 0.500000000000000
0.062500000000000 0.500000000000000
0.500000000000000 0
0.500000000000000 0

 .
They are also unnormed.
Now, we biorthogonalize these vectors based on Theorem 2.1 such that the relations

(p(i)k ,u(i)l

∗
) =


1, l = mi− k+1

0, l 6= mi− k+1

and

(p(i)k ,u( j)
l

∗
) = 0, i 6= j.

So, with

v(i)l

∗
= u(i)mi−l+1

∗
,

one has the biorthogonality relations

(p(i)k ,v( j)
l

∗
) = δklδi j. (8.1)

We give the details. Define

v∗1 = v(1)1
∗
= u(1)1

∗
= u∗1,

v∗2 = v(2)1
∗
= u(2)1

∗
= u∗2,

v∗3 = v(3)1
∗
= u(3)2

∗
= u∗4,

v∗4 = v(3)2
∗
= u(3)1

∗
= u∗3.

Then,

α3 :=−
(p4 ,v∗3)
(p3 ,v∗3)

=−8.

Define

w4 = p4 +α3 p3

and replace p4 by w4, i.e., in Matlab set p4 = w4.
Normalize v∗i , i = 1, . . . ,4 by the substitutions

v∗i →
v∗i
‖v∗i ‖2

, i = 1, . . . ,4

and pi, i = 1, . . . ,4 by

pi→
pi

(pi ,v∗i )
i = 1, . . . ,4.
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Then, we obtain [
p(1)1 , p(2)1 , p(3)1 , p(3)2

]
= [p1, p2, p3, p4]

with [
p(1)1 , p(2)1

]
= [p1, p2]

=


0.364601934049314 0.364601934049314
−0.364601934049314 −0.364601934049314

−0.045575241756164+1.458407736197255i −0.045575241756164−1.458407736197255i
0.045575241756164−1.458407736197255i 0.045575241756164+1.458407736197255i

 .
and [

p(3)1 , p(3)2

]
= [p3, p4]

=


0.707106781186548 0
0.707106781186548 0
−0.088388347648318 0.712609640686961
−0.088388347648318 0.712609640686961

 .
as well as [

v(1)1
∗
,v(2)1

∗
,v(3)1

∗
,v(3)2

∗]
= [v∗1,v

∗
2,v
∗
3,v
∗
4]

with[
v(1)1
∗
,v(2)1

∗]
=

[
v∗1,v

∗
2
]

=


0.685679302968773+0.021427478217774i 0.685679302968773−0.021427478217774i
−0.685679302968773−0.021427478217774i −0.685679302968773+0.021427478217774i

0+0.171419825742193i 0−0.171419825742193i
0−0.171419825742193i 0+0.171419825742193i

 .
and [

v(3)1
∗
,v(3)2

∗]
=

[
v∗3,v

∗
4
]

=


0.707106781186547 0.087705801930703
0.707106781186547 0.087705801930703

0 0.701646415445623
0 0.701646415445623

 .
With these normed vectors, relations (8.1) are computationally verified.
Further, R in (2.1) can be written as

R = u(1)1
∗
u(1)1 +u(2)1

∗
u(2)1 +u(3)1

∗
u(3)1 +u(3)2

∗
u(3)2

= ∑
4
i=1 u∗i ui = ∑

4
i=1 v∗i vi

= v(1)1
∗
v(1)1 + v(2)1

∗
v(2)1 + v(3)1

∗
v(3)1 + v(3)2

∗
v(3)2 ,

where it goes without saying that the u∗i and ui are normed in a similar way as the v∗i and vi. Matlab delivers

R =


1.448922794377340 −0.433538178992724 0.068884650702833 0.054192272374091
−0.433538178992724 1.448922794377340 0.054192272374091 0.068884650702833

0.068884650702833 0.054192272374091 0.551077205622660 0.433538178992725
0.054192272374091 0.068884650702833 0.433538178992725 0.551077205622660

 .

The eigenvalues of R in (8.5) are given by

λ1(R) = 0.117416726023999,
λ2(R) = 0.875965265410791,
λ3(R) = 1.124034734589208,
λ4(R) = 1.882583273976000,

so that R is positive definite.
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Remark 8.1. The vector p(3)2 is a principal vector of stage 2 for matrix A. But, since it is normed such that (p(3)2 ,v(3)2
∗
) = 1 instead of

‖p(3)2 ‖2 = 1, the equation Ap(3)2 = λ3 p(3)2 + p(3)1 does not hold, but instead, the equation Ap(3)2 = λ3 p(3)2 + γ
(3)
1 p(3)1 is valid with a factor

γ
(3)
1 6= 0, γ

(3)
1 6= 1. Similarly, u(3)2

∗
is principal vector of stage 2 for A∗. Similarly, due to the biorthogonalization process, the equation

A∗u(3)2
∗
= λ3u(3)2

∗
+u(3)1

∗
does not hold, but instead, the equation A∗u(3)2

∗
= λ3u(3)2

∗
+δ

(3)
1 u(3)1

∗
is valid with a factor δ

(3)
1 6= 0, δ

(3)
1 6= 1.

We leave it to the reader to check this numerically on our example.

Remark 8.2. Due to the foregoing remark, Formula (3.1) looks somewhat different. But, Formula (3.2) remains valid which is the important
point since the subsequent findings are based on Formula (3.2), not on Formula (3.1).

8.3. Numerical check of the validity of Corollary 7.1 (Application 1)

Here, we check the validity of

Re(Au,u)R

(u,u)R
∈ Re[WNσ(A),(·,·)R

(A)] = [Reλ3(A),Reλ1(A)], 0 6= u ∈ Nσ(A).

or

Re(Au,u)R

(u,u)R
=−0.125, 0 6= u ∈ Nσ(A) ⊂C 4.

We choose u ∈ {p, q, w} where

p = p1+ p2,
q = 2 p1−3 p3,
w = −4 p2+5 p4.

We obtain

Re(Ap, p)R

(p, p)R
= −0.125000000000000,

Re(Aq,q)R

(q,q)R
= −0.125000000000000,

Re(Aw,w)R

(w,w)R
= −0.616601082213326 6=−0.125,

where the last result is not surprising since p4 = p(3)2 6∈ Nσ(A) and thus w 6∈ Nσ(A).

8.4. Computational verification of the validity of Theorem 6.1

Here, we check Formula (6.3) of Theorem 6.1 With (3.9), from (6.2) we obtain

N′
σ(A) = Nλ1(A)⊕Nλ2(A)

and

D :=
(

R−1 A∗R+RA
2

)2
+
(

R−1 RA−A∗R
2i

)2
−R−1A∗RA =


0.253906250000002 0.253906250000000 0.000000000000000 0.000000000000000
0.253906249999997 0.253906250000002 0.000000000000000 0.000000000000000
−0.063476562500000 −0.063476562500000 −0.253906249999998 −0.253906250000002
−0.063476562500000 −0.063476562500000 −0.253906250000002 −0.253906250000000

 .

For

p = 2p1−3ip2 ∈ N′
σ(A),

we obtain

p =


0.729203868098627−1.093805802147941i
−0.729203868098627+1.093805802147941i
−4.466373692104092+3.053541197663002i

4.466373692104092−3.053541197663002i


and

Dp =


0.010908063192107−0.018157611026833i
−0.030646883054894+0.047235291651105i
−0.153210777398272+0.103250741290140i

0.073274719625260−0.045519144009631i

×10−13 .
= 0
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so that (6.3) is fulfilled for u = p. On the other hand, for

q = p1 + p3 6∈ N′
σ(A),

we obtain

q =


1.071708715235861
0.342504847137234

−0.133963589404483+1.458407736197255i
−0.042813105892154−1.458407736197255i


and

Dq =


0.359077662321295+0.000000000000000i
0.359077662321291−0.000000000000000i
−0.044884707790162+0.000000000000005i
−0.044884707790162−0.000000000000003i

 6= 0

which is not surprising since q 6∈ N′
σ(A).

8.5. Computational aspects

In this subsection, we say something about the used computer equipment and the computation times.
(i) As to the computer equipment, the following hardware was available: an Intel Core2 Duo Processor at 3166 GHz, a 500 GB mass storage
facility, and two 2048 MB high-speed memories. As software package for the computations, we used MATLAB, Version 7.11.
(ii) The computation time t of an operation was determined by the command sequence t1=clock; operation; t=etime(clock,t1). It is put out
in seconds, rounded to four decimal places. For the computation of the eigenvalues of matrix A in Subsection 5.3, we used the command
[XA,DA]=eig(A); the pertinent computation time was less than 0.0001 s.

9. Conclusion

It has been shown that there exist Rayleigh-quotient representations of the real parts, imaginary parts, and moduli of the eigenvalues of
general matrices that parallel those representations known for the eigenvalues of self-adjoint matrices and corresponding to the ones for
diagonalizable matrices. The key idea is to use a weighted scalar product defined by a positive definite matrix that is constructed by means of
the left principal vectors of the considered matrix and the right principal vectors of its adjoint. As Formulas (3.3), (4.1), and (5.2) show, one
essentially obtains the results for general matrices in the same way as for diagonalizable matrices by replacing the full space C n with the
geometric eigenspace Nσ(A). The results are of interest on their own in Linear Algebra. They are also of potential interest in applications.
For example, in the theory of linear dynamical systems, in the study of stability of a vibration problem, the real parts of the eigenvalues
of the system matrix are important. Moreover, in systems with conjugate-complex eigenvalues, the moduli of the imaginary parts of the
eigenvalues are the circular damped eigenfrequencies of the system. Finally, it could also be of interest for college teaching or research. The
relation (R−1 A∗R+RA

2 )2 +(R−1 RA−A∗R
2i )2 = R−1A∗RA derived for diagonalizable matrices A in [ 2] turns out to be valid only on N′

σ(A). One
feature of the present paper is also that, in the special case of diagonalizable matrices, we get back the results of [ 2]. On the whole, the
results should be of interest to mathematicians as well as engineers.
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