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Abstract

In this paper, the nonlinear differential equation of the elliptic sn function is solved analyti-
cally using the Lindstedt-Poincaré perturbation method. This differential equation has a
cubic nonlinearity and a constant known as the modulus of elliptic integral. This constant
takes any value from zero to one and the square of its value is used as a small parameter.
Fortunately, there is an exact solution to this differential equation known as the Jacobi sn
elliptic function. When the modulus approaches zero, the differential equation becomes
linear with the circular sine function as exact solution. The Lindstedt-Poincaré technique is
used to render the perturbation solution uniformly valid at larger values of the independent
variable and a three-term perturbation solution is obtained. This solution is compared
analytically with the approximate expansion of the elliptic function into circular functions
in case of a small modulus. Then, it is compared with the exact, numerically calculated, sn
elliptic function. The relative percentage error is calculated at certain values of the modulus
and for all values of the independent variable. The relative error is reasonably small but
increases at larger values of the modulus. In addition, the approximate expansion of the
exact solution gives smaller relative error than that of the perturbation solution including
the same order of the modulus.

1. Introduction

In some nonlinear problems a perturbation solution may be obtained when a small parameter exists [1]. The obtained perturbation solution
depends mainly on the existence of an unperturbed solution i.e. the solution of the same problem when the small parameter vanishes.
Through an iterative like procedures, the solution is getting closer to the exact one by adding terms of order of magnitudes less than the
base or unperturbed solution. Difficulties arise when a singularity exists in the solution. In this case, it will be non-uniformly valid and
some techniques such as those established by Lindstedt-Poincaré or Lighthill can be used to eliminate the non-uniformity in the solution
[1, 2, 3]. When applying these techniques the analytical iterations become more difficult as more terms are included in each iteration step.
The differential equation of the Jacobi elliptic sn function is an example of a nonlinear ordinary differential equation which includes a cubic
nonlinearity and a small parameter. This small parameter has the property of deforming the solution from an initial function to a final one as
it goes from zero to unity. The nonlinear differential equation has an exact solution known as Jacobi elliptic sine function or sn function. The
value of this function can be obtained from tables or using scientific software such as Matlab or Maple. But when the value of the modulus is
close to zero the sn function can be approximated as series expansion of circular functions with different harmonics. This approximation can
be calculated without special software [4, 5] and its explicit analytical nature makes it useful in analytical comparison with the perturbation
solution.
In this paper the Lindstedt-Poincaré technique will be used to obtain a uniformly valid three-term perturbation solution to the differential
equation of the Jacobi elliptic function. In the second section, the perturbation solution is derived and the effect of the modulus on its
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behavior is analytically indicated. In the third section, an approximate series expansion to the exact solution is reviewed. The approximation
is derived so that it includes the same order of the small parameter as the perturbation solution. In the fourth section, the perturbation solution
is compared with the exact solution and its series expansion in case of small modulus. Solutions in addition to relative errors are tabulated
and represented graphically at different values of the modulus. Detailed analysis of behavior of solutions and errors are introduced. Finally,
conclusions are drawn in the fifth section.

2. Perturbation solution

Consider the nonlinear differential equation [6]

d2y/dx2 +(1+ k2)y−2k2y3 = 0,0≤ k ≤ 1 (1)

where k is constant known as the modulus of elliptic integral and k ∈ [0,1]. When the modulus k→ 0, (1) reduces to a simple harmonic
oscillator whose solution is a circular function. But when k takes any small positive value less than one i.e. k ∈ (0,1), a cubic nonlinearity
exists. Let define another small parameter ε = k2, where ε < k for k ∈ (0,1). Existence of the small parameter allows using the perturbation
technique to solve the above problem. Furthermore, to apply Lindstedt-Poincaré technique, let transform the independent variable from x to
u through the following transformation

u = ωx,ω =
∞

∑
i=0

ε
i
ωi = 1+ εω1 + ε

2
ω2 +O(ε3) (2)

substituting (2) into (1) gives

ω
2y′′+(1+ ε)y−2εy3 = 0, (3)

where (.)′ denotes differentiation with respect to u. The next step is expand the dependent variable as series in the small parameter ε

y(u;ε) =
∞

∑
i=0

ε
iyi = y0 + εy1 + ε

2y2 +O(ε3). (4)

When substituting (4) into (3) then collecting and equating coefficients of equal powers of ε one obtains the following set of linear differential
equations

y′′0 + y0 = 0 (5)

y′′1 + y1 = (2ω1−1)y0 +2y0
3 (6)

y′′2 + y2 = (2ω2 +2ω1−3ω1
2)y0 +(2ω1−1)y1−4ω1y0

3 +6y1y0
2. (7)

The solution to (5) is the unperturbed solution y0(u) = A0 sinu. Knowing from the initial conditions of the sn function and its derivative,
i.e. y(x = 0) = sn(0;k) = 0, dy

dx (x = 0) = cn(0;k)dn(0;k) = 1, and using the relation in (2), the initial conditions for (5) are y0(u = 0) =
0,y′0(u = 0) = 1. After applying these initial conditions, the unperturbed solution takes the form

y0(u) = sin(u). (8)

When substituting (8) into (6) one can solve for y1(u). But, to make sure that the solution of y1(u) converges at larger values of u, it is
necessary to set ω1 =−1/4. In this case, the solution to (6) reads

y1(u) =−
3
16

sin(u)+
1

16
sin(3u). (9)

Similarly by substituting y0(u),y1(u) from (8), (9) respectively into (7) one can solve for y2(u). To enforce convergence of y2(u), it is
necessary to set ω2 = 19/64. Then, by integrating (7) one obtains

y2(u) =
7

256
sin(u)− 1

64
sin(3u)+

1
256

sin(5u). (10)

Substituting (8),(9), and (10) into (4), a three term perturbation solution reads

yp(u) = sin(u)+ ε

(
− 3

16
sin(u)+

1
16

sin(3u)
)
+ ε

2
(

7
256

sin(u)− 1
64

sin(3u)+
1

256
sin(5u)

)
+O(ε3) (11)

or

yp(u) =
(

1− 3
16

ε +
7

256
ε

2
)

sin(u)+
(

1
16

ε− 1
64

ε
2
)

sin(3u)+
1

256
ε

2 sin(5u)+O(ε3)

Rewriting (11) after substituting ε = k2 gives

yp(u) = sin(u)+ k2
(
− 3

16
sin(u)+

1
16

sin(3u)
)
+ k4

(
7

256
sin(u)− 1

64
sin(3u)+

1
256

sin(5u)
)
+O(k6)

or

yp(u) =
(

1− 3
16

k2 +
7

256
k4
)

sin(u)+
(

1
16

k2− 1
64

k4
)

sin(3u)+
1

256
k4 sin(5u)+O(k6) (12)

where

u =

(
1− 1

4
k2 +

19
64

k4 +O(k6)

)
x.
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2.1. Behavior of the perturbation solution

Equation (12) shows that any term in the obtained solution takes the form of a circular function multiplied by a finite quantity. In addition for
the solution to converge the following condition should be satisfied

lim
n→∞
| ε

n+1yn+1

εnyn
|= ε|

(
yn+1

yn

)
|= o(1).

knowing that |
(

yn+1
yn

)
| = O(1), the condition of convergence, then, reduces to the condition ε = o(1), which is known by the definition

ε = k2, where k ∈ (0,1) as indicated in the second section.

3. Approximate series solution

The Jacobi elliptic function sn(x;k) is the solution to the differential equation in (1) [6]. For small values of the modulus k this function can
be expressed in terms of the circular sine and cosine functions. The derivation of this approximation can be started from knowing that the
independent variable in (1), which is the argument of the sn function, is the incomplete elliptic integral of the first kind F(φ ;k);

x = F(φ ;k) =
∫

φ

0

dθ√
1− k2sin2θ

or

x = F(χ;k) =
∫

χ=sinφ

0

dt√
1− t2

√
1− k2t2

where φ is known as the amplitude and θ , t are dummy variables. For small values of the modulus k, the sn function can be written as
follows [4, 5]

sn(x;k) = sinx− k2

4
cosx(x− sinxcosx).

As we derived our perturbation solution to include k4, it may be reasonable if we compare with approximation of the sn function including
k4 as well. Thus, with some efforts we could derive the following approximation

sn(x;k)approx = sinx− k2

4
cosxg(x;k)+

k4

32

(
2cosxg(x;k)− sinxg2(x;k)

)
, (13)

where

g(x;k) = (x− sinxcosx). (14)

4. Results and discussion

The perturbation solution is compared with the exact solution, i.e. the elliptic sn function, and its approximate series expansion in (13).
Equations (12), (13) show that when k→ 0 the two solutions there reduce to the same base solution sin(x). Also, the exact sn function
reduces to the same solution when k→ 0. In this specific case there is no need to compare these solutions numerically. For other values of
the modulus, the perturbation solution is expected to be different than the other ones. The three solutions are listed in Table 1 to Table 4 for
values of the modulus k = 0.2,0.4,0.6,0.8, respectively. In addition, the following relative percentage error form is used to show how close
are the explicit perturbation solution and snapprox to the exact, numerically calculated, sn solution.

Epert =
snexact−yp

snexact
×100 (15)

Eapprox =
snexact−snapp

snexact
×100. (16)

The perturbation solution, the approximate expansion, and the exact solution at values of the modulus k = 0.2,0.4,0.6,0.8 are graphically
represented in Figure 1 to Figure 4 respectively, for x ∈ [0,K(k)], where K(k) is the complete elliptic integral of the first kind. Figure 1 shows
that the solutions are very close when k = 0.2. In Figure 2 to Figure 4, with increasing k, the Difference between the perturbation solution
and the exact solution increases. However, one can notice the small rate of increase of the difference between the approximate expansion and
the exact solution.
The relative percentage errors indicated in (15), (16) are graphically represented at the values of the modulus k = 0.2,0.4,0.6,0.8 in Figure 5
to Figure 8. It is obvious from Figure 5 to Figure 8, that the relative percentage errors are undefined at x = 0 as all solutions are equal to zero
at this point. More importantly, the maximum difference between the errors Epert and Eapprox increases with k. Moreover,one can note that
in Figure 5 to Figure 8, this maximum difference occurs at the largest value x = K(k). Actually, such a behavior of the perturbation solution
is expected as this solution was not enforced to satisfy the end condition.
The behavior of the error in Figure 5 to Figure 8 can be attributed to the different terms of small and large magnitudes in both solutions
yp and snapprox. The reason can also go back to the different way each solution is mathematically derived, even though, the perturbation
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x ypert snapprox snexact Epert Eapprox
0 0 0 0 NaN NaN
0.083519 0.082624 0.083418 0.083418 0.95251 -4.6268e-05
0.16704 0.16465 0.16623 0.16623 0.95253 -0.00018229
0.25056 0.24548 0.24785 0.24784 0.95258 -0.00039997
0.33408 0.32455 0.32767 0.32767 0.95268 -0.00068665
0.4176 0.40128 0.40514 0.40514 0.95286 -0.0010262
0.50112 0.47513 0.47971 0.47971 0.95316 -0.0014004
0.58464 0.54561 0.55087 0.55086 0.95361 -0.00179
0.66815 0.61221 0.61812 0.61811 0.95426 -0.0021762
0.75167 0.67451 0.68103 0.68101 0.95517 -0.0025407
0.83519 0.73209 0.73918 0.73916 0.9564 -0.0028665
0.91871 0.78458 0.79219 0.79217 0.95799 -0.0031363
1.0022 0.83165 0.83974 0.83971 0.96003 -0.003332
1.0858 0.87301 0.88153 0.8815 0.96257 -0.0034321
1.1693 0.90841 0.9173 0.91727 0.96568 -0.0034096
1.2528 0.93765 0.94686 0.94683 0.96945 -0.0032287
1.3363 0.96055 0.97002 0.96999 0.97393 -0.0028421
1.4198 0.97697 0.98665 0.98663 0.97922 -0.002188
1.5033 0.98683 0.99667 0.99665 0.98539 -0.0011877
1.5869 0.99007 1 1 0.99254 0.00025687

Table 1: ypert , snapprox, sn, Epert , and Eapprox at k = 0.2

x ypert snapprox snexact Epert Eapprox
0 0 0 0 NaN NaN
0.086316 0.083399 0.086192 0.086192 3.2404 -0.00079054
0.17263 0.16608 0.17165 0.17164 3.2416 -0.0031128
0.25895 0.24733 0.25564 0.25562 3.2438 -0.0068231
0.34526 0.32648 0.33748 0.33744 3.2474 -0.011697
0.43158 0.40289 0.4165 0.41643 3.2525 -0.017449
0.51789 0.47597 0.49212 0.492 3.2598 -0.023755
0.60421 0.54518 0.56378 0.56361 3.2698 -0.030275
0.69053 0.61008 0.63102 0.63079 3.2831 -0.036669
0.77684 0.67023 0.6934 0.69311 3.3003 -0.042609
0.86316 0.72532 0.7506 0.75024 3.3222 -0.047775
0.94947 0.77504 0.80232 0.8019 3.3496 -0.051849
1.0358 0.81918 0.84833 0.84787 3.3834 -0.054485
1.1221 0.85755 0.88845 0.88796 3.4246 -0.055282
1.2084 0.89002 0.92254 0.92205 3.4742 -0.053743
1.2947 0.91647 0.95051 0.95004 3.5333 -0.049231
1.3811 0.93685 0.97227 0.97187 3.6031 -0.040921
1.4674 0.9511 0.98776 0.98749 3.6851 -0.027764
1.5537 0.95918 0.99696 0.99687 3.7807 -0.0084412
1.64 0.96109 0.99981 1 3.8914 0.018666

Table 2: ypert , snapprox, sn, Epert , and Eapprox at k = 0.4
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x ypert snapprox snexact Epert Eapprox
0 0 0 0 NaN NaN
0.092145 0.087225 0.091972 0.091968 5.1574 -0.0045588
0.18429 0.17342 0.18291 0.18288 5.1722 -0.017926
0.27643 0.2576 0.27183 0.27173 5.1976 -0.039204
0.36858 0.33885 0.35781 0.35757 5.2343 -0.066992
0.46072 0.41634 0.44001 0.43957 5.2834 -0.099508
0.55287 0.48938 0.51772 0.51702 5.3462 -0.13473
0.64501 0.5574 0.59037 0.58937 5.4243 -0.17051
0.73716 0.61995 0.65751 0.65617 5.5193 -0.20469
0.8293 0.67673 0.71881 0.71713 5.6334 -0.23514
0.92145 0.72753 0.77407 0.77207 5.7689 -0.25971
1.0136 0.77224 0.82318 0.82091 5.9288 -0.27624
1.1057 0.81084 0.86611 0.86367 6.1169 -0.28239
1.1979 0.84333 0.90287 0.90039 6.3375 -0.27554
1.29 0.86976 0.93353 0.93118 6.5958 -0.25258
1.3822 0.89019 0.95816 0.95615 6.8981 -0.20977
1.4743 0.90469 0.97682 0.97543 7.2513 -0.1425
1.5665 0.91331 0.98955 0.98911 7.6633 -0.045073
1.6586 0.91607 0.99639 0.99728 8.143 0.08948
1.7508 0.913 0.9973 1 8.7005 0.26966

Table 3: ypert , snapprox, sn, Epert , and Eapprox at k = 0.6

x ypert snapprox snexact Epert Eapprox
0 0 0 0 NaN NaN
0.10502 0.10064 0.10472 0.1047 3.8767 -0.018692
0.21003 0.19926 0.20769 0.20753 3.9862 -0.073237
0.31505 0.29398 0.30725 0.30676 4.1665 -0.1592
0.42006 0.38318 0.40195 0.40087 4.4146 -0.26971
0.52508 0.46558 0.49061 0.48867 4.7261 -0.39603
0.6301 0.5403 0.57232 0.56931 5.0957 -0.52824
0.73511 0.60684 0.64649 0.64228 5.5183 -0.6557
0.84013 0.66503 0.71283 0.7074 5.9903 -0.76743
0.94514 0.71495 0.77126 0.76474 6.5109 -0.8523
1.0502 0.75687 0.82189 0.81457 7.084 -0.89918
1.1552 0.79113 0.86499 0.8573 7.7188 -0.89703
1.2602 0.8181 0.90089 0.89343 8.431 -0.83504
1.3652 0.83812 0.92995 0.92346 9.2418 -0.70262
1.4702 0.85143 0.95254 0.9479 10.178 -0.48913
1.5752 0.85821 0.96899 0.96722 11.27 -0.18316
1.6803 0.85856 0.97956 0.98181 12.553 0.22877
1.7853 0.85249 0.98442 0.992 14.063 0.7641
1.8903 0.8399 0.98357 0.99801 15.842 1.4465
1.9953 0.82064 0.97692 1 17.936 2.308

Table 4: ypert , snapprox, sn, Epert , and Eapprox at k = 0.8
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Figure 1: yp, snapprox, and exact sn at k = 0.2.

Figure 2: yp, snapprox, and exact sn at k = 0.4.
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Figure 3: yp, snapprox, and exact sn at k = 0.6.

Figure 4: yp, snapprox, and exact sn at k = 0.8.
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Figure 5: Relative percentage error at k = 0.2.

Figure 6: Relative percentage error at k = 0.4.
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Figure 7: Relative percentage error at k = 0.6.

Figure 8: Relative percentage error at k = 0.8.
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solution and the approximate expansion are built on the assumption of a small value of the modulus. The approximate series expansion in
(13) includes the function g(x;k) = (x− sinxcosx) that does not exist in the perturbation solution in (12). At k = 0.2,0.4,0.6 the maximum
absolute value of Epert is 0.99254%,3.8914%,8.7005% respectively, while at k = 0.8 this value jumps to 17.936%. Thus, for small values
of k the relative percentage error is reasonably small and the perturbation solution based on this assumption can be used. Fortunately, in this
specific problem we have an exact solution and an approximation of this solution, to compare with the perturbation solution. However, the
shown results are indicative of how perturbation solution performs in cases when exact solution doesn’t exist.

5. Conclusion

An analytical approximate perturbation solution to the nonlinear ordinary differential equation of the Jacobi elliptic sn function is obtained
assuming a small value of the modulus. The relative percentage error between the perturbation solution and the numerical exact one is
reasonably small. But, at larger values of the modulus, this error becomes very big. An approximate series expansion of the sn function
gives smaller maximum errors than the perturbation solution. However, the magnitude and sign of the error of the series expansion change
at different values of the independent variable. Results also give insights into the effect of the mathematical basis of perturbation and
approximate series solutions on their accuracy even though they both depend on the small parameter assumption. In future, such results can
be considered when applying a Lindstedt-Poincaré perturbation solution to nonlinear problems.
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