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1. Introduction
Finite-dimensional representations of a finite-dimensional semisimple Lie algebra is a

well-studied beautiful classical theory. There is a Weyl’s theorem on complete reducibil-
ity that claims that any finite-dimensional module over a semisimple Lie algebra is a
direct sum of simple modules. A textbook approach starts with the finite-dimensional
representations of the simple Lie algebra sl2. In this work we find all finite-dimensional
representations of sl2 in a larger category – Leibniz algebra representations of sl2.

The notion of a Leibniz algebra first appeared under the name of a D-algebra, introduced
by A. Bloh in [2] as one of the generalizations of Lie algebras, in which multiplication by an
element is a derivation. Later, they were discovered independently by J.-L. Loday [8] and
gain popularity under the name of Leibniz algebras. Given a Leibniz algebra L there is a
two-sided ideal Leib(L) = Span{[x, x] | x ∈ L}, associated to it, also known as the Leibniz
kernel by some authors. The canonical Lie algebra L/Leib(L) is called the liezation of L.
Due to Leibniz kernel, there are no simple non-Lie Leibniz algebras. However, by abuse
of standard terminology a simple Leibniz algebra is introduced in [4] as an algebra with
simple liezation and simple Leibniz kernel. All such algebras are described via irreducible
representations of simple Lie algebras.

While originally defined differently (cf. [3, 8]), the representation of a Leibniz algebra
is given in [9] as a K-module M with two actions - left and right, satisfying compatibility
conditions coming from a so called square-zero construction. It is known that the category
of Leibniz representations of a given Leibniz algebra is not semisimple and any non-Lie
Leibniz algebra admits a representation, which is neither simple, nor completely reducible
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[7, Proposition 1.2]. In [10] the indecomposable objects of the category of Leibniz represen-
tations of a Lie algebra are studied and for sl2 the indecomposable objects in that category
are described as extensions (see Theorem 2.5 below). Our goal in the current work is to
find explicitly indecomposable Leibniz representations. Remarkably, the authors of [10]
prove that for sln (n ≥ 3) the category of Leibniz representations is of wild type.

This work is a direct continuation of an investigation started in [7]. If M is an ir-
reducible Leibniz representation of sl2, by Weyl’s result the left action on M as a Lie
algebra representation decomposes into a direct sum of irreducible Lie representations of
sl2. Hence, the problem of description reduces to the study of the right action. In case
the number of such irreducible Lie representations is two, up to a Leibniz algebra repre-
sentation isomorphism there are exactly two types of irreducible Leibniz representations,
whose actions are described in [7, Theorem 3.1]. In the current work, we establish the
description in full generality providing an explicit description of actions up to isomorphism
in Theorem 3.5.

All representations and algebras in this work are finite-dimensional over a field of char-
acteristic zero.

2. Preliminaries
Definition 2.1. An algebra (L, [−,−]) over a field K is called a (right) Leibniz algebra if
for all x, y, z ∈ L the following identity holds:

[x, [y, z]] = [[x, y], z] − [[x, z], y].

In case the bracket is skew-symmetric, the identity above, called Leibniz identity trans-
forms into Jacobi identity. The category of Lie algebras is a full subcategory of the category
of Leibniz algebras.

Next we use definition from [9] to define a representation of a Leibniz algebra.

Definition 2.2. A K-vector space M with two bilinear maps [−,−] : L × M → M and
[−,−] : M×L → M is called a representation of a Leibniz algebra L if the following holds:

[m, [x, y]] = [[m,x], y] − [[m, y], x], (2.1)
[x, [m, y]] = [[x,m], y] − [[x, y],m], (2.2)
[x, [y,m]] = [[x, y],m] − [[x,m], y]. (2.3)

Note that, these are exactly the conditions for a direct sum L⊕M of K-vector spaces
to be the Leibniz algebra, where L and M are contained as subalgebra and abelian ideal,
correspondingly. Such construction is called square-zero construction. Adding identities
(2.2) and (2.3) we obtain

[x, [m, y] + [y,m]] = 0 (2.4)
which is often used instead of identity (2.3).

Given a representation M of a Leibniz algebra L, one defines linear maps λx, ρx : M →
M by λx(m) = [x,m] and ρx(m) = [m,x] for every x ∈ L, m ∈ M . Defining relations of
Leibniz representation yield for all x, y ∈ L the following:

ρ[x,y] = ρy ◦ ρx − ρx ◦ ρy, (2.5)
λ[x,y] = ρy ◦ λx − λx ◦ ρy, (2.6)

λx ◦ (ρy + λy) = 0. (2.7)

A representation of a Leibniz algebra L is called symmetric (anti-symmetric) if ρx = −λx

(respectively, λx = 0) for all x ∈ L. Considering a Lie algebra g as a Leibniz algebra,
equation (2.5) shows that the map ρ : g → End(M) defined by ρ(x) = ρx coincides with
Lie algebra representation of the Lie algebra g. Moreover, it is known from [9] that the
category of symmetric, as well as, the category of anti-symmetric representations of a
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given Leibniz algebra L is equivalent to the category of Lie algebra representations of the
liezation of L.

For the sake of convenience, throughout this work, for a Leibniz algebra L we call
representation M a bimodule M , and a Lie algebra module N an L-module N or simply
a module N . Given a module M over a Lie algebra g, one can introduce symmetric and
antisymmetric Leibniz bimodules M s and Ma, by taking the left action to be negative of
the right action for the first, and identically zero for the second bimodule, correspondingly.

A bimodule is called simple or irreducible, if it does not admit non-trivial subbimodules.
It is well-known that the simple objects in the category of Leibniz representations of a given
Leibniz algebra are exactly symmetric and anti-symmetric representations [1, Lemma 1.9].

A bimodule is called indecomposable, if it is not a direct sum of its subbimodules.
Obviously, a simple bimodule is indecomposable, while the converse is not necessarily true
(see [7, Proposition 1.2] and a paragraph that follows). To study bimodules it suffices
to study indecomposable ones. In case Leibniz algebra is a Lie algebra, we utilize the
following Weyl’s result on complete reducibility of the right action of the bimodule.
Theorem 2.3. ([6]) If g is a finite-dimensional semi-simple Lie algebra over a field of
characteristic zero, then every finite-dimensional module over g is completely reducible.

In order to describe all finite-dimensional indecomposable Leibniz bimodules of a Lie
algebra sl2 over a field of characteristic zero with basis {e, f, h} and the products

[e, f ] = h, [e, h] = 2e, [f, h] = −2f,
we use the following well-known description of simple sl2-modules.
Theorem 2.4. ([6]) For every non-negative integer m there exists up to an sl2-module
isomorphism one and only one irreducible sl2-module V (m) of dimension m + 1. The
module V (m) admits a basis {v0, v1, . . . , vm} in which the following holds for all k =
0, . . . ,m:

[h, vk] = (m− 2k)vk,
[f, vk] = vk+1,
[e, vk] = −k(m+ 1 − k)vk−1.

J.-L. Loday and T. Pirashvili described the Gabriel quiver of Leibniz representations of
sl2 using Clebsch-Gordon formula in [10], and citing results of [5] and [11] they found all
indecomposable objects in the category of Leibniz representations of sl2 as extensions of
simple objects. For the sake of convenience, we express their result as the following
Theorem 2.5. ([10]) For every non-negative integers n and k ≤ ⌊n/2⌋ + 1 there are
exactly two indecomposable sl2-bimodules M1 and M2 determined uniquely by the following
extensions:

0 −→
⊕

0≤i< k
2

V (n− 4i− 2)a −→ M1 −→
⊕

0≤i≤ k−1
2

V (n− 4i)s −→ 0,

0 −→
⊕

0≤i≤ k−1
2

V (n− 4i)a −→ M2 −→
⊕

0≤i< k
2

V (n− 4i− 2)s −→ 0,

where V (d)s and V (d)a are irreducible symmetric and antisymmetric Leibniz representa-
tions of sl2, correspondingly and V (0)a = V (0)s is a trivial one-dimensional representa-
tion.

Our goal is to build these extensions explicitly. Let M be a finite-dimensional Leibniz
bimodule of sl2. As a right module, by Theorem 2.3 it is completely reduces into a direct
sum of simple sl2-modules V1 ⊕ · · · ⊕ Vk, the right action on each simple submodule being
described by Theorem 2.4. Hence, the study is reduced to the left action only. In the case
k = 1 it is V (d)s and V (d)a, i.e. simple objects in the category of Leibniz representation
of sl2. In [7, Theorem 3.1] the case k = 2 is exploited:



848 T. Kurbanbaev, R. Turdibaev

Theorem 2.6. An sl2-module M = V (n) ⊕ V (m) is indecomposable as a Leibniz sl2-
bimodule if and only if m = n− 2. For any integer n ≥ 2, up to sl2-bimodule isomorphism
there are exactly two indecomposable bimodules. The non-zero brackets of the left action
are either

[h, vi] = −(n− 2i)vi − 2iwi−1 [h,wj ] = 2(m− j + 1)vj+1 − (m− 2j)wj

[f, vi] = −vi+1 + wi or [f, wj ] = vj+2 − wj+1

[e, vi] = i(n− i+ 1)vi−1 + i(i− 1)wi−2 [e, wj ] = (m− j + 1)((m− j + 2)vj + iwj−1)

corresponding to two bimodules, where {v0, . . . , vn} and {w0, . . . , wn−2} are bases of V (n)
and V (n− 2) of the Theorem 2.4.

Note that in the first case of Theorem 2.6, the bimodule M/V (n− 2) is symmetric and
V (n − 2) is anti-symmetric, while in the second one M/V (n) is symmetric and V (n) is
anti-symmetric, that is in accordance with Theorem 2.5.

In the current work, we use results on the left action established in [7] using only equality
(2.2). Till the rest of the section let M be an sl2-bimodule that decomposes as a right
module into the direct sum M = V (n) ⊕ V (m). The next statements shed light on the
general form of the left action depending on n and m, that satisfies only identity (2.2),
where {v0, . . . , vn} and {w0, . . . , wm} are bases of V (n) and V (m) of the Theorem 2.4.

Proposition 2.7. [7, Proposition 2.6] Let n = m. Then identity (2.2) implies the follow-
ing:

[h, vi] = (n− 2i)(ψ1vi + ψ2wi), 0 ≤ i ≤ n,

[f, vi] = ψ1vi+1 + ψ2wi+1, 0 ≤ i ≤ n− 1,
[e, vi] = −i(n− i+ 1)(ψ1vi−1 + ψ2wi−1), 1 ≤ i ≤ n,

[h,wi] = (n− 2i)(ψ3vi + ψ4wi), 0 ≤ i ≤ n,

[f, wi] = ψ3vi+1 + ψ4wi+1, 0 ≤ i ≤ n− 1,
[e, wi] = −i(n− i+ 1)(ψ3vi−1 + ψ4wi−1), 1 ≤ i ≤ n.

Proposition 2.8. [7, Proposition 2.5] Let n = m − 2. Then identity (2.2) implies the
following:

[h, vi] = (n− 2i)ϕ11vi − 2iϕ12wi−1, 0 ≤ i ≤ n,

[f, vi] = ϕ11vi+1 + ϕ12wi, 0 ≤ i ≤ n− 1,
[e, vi] = −i(n− i+ 1)ϕ11vi−1 + i(i− 1)ϕ12wi−2, 1 ≤ i ≤ n,

[h,wi] = 2(m− i+ 1)ϕ21vi+1 + (m− 2i)ϕ22wi, 0 ≤ i ≤ m,

[f, wi] = ϕ21vi+2 + ϕ22wi+1, 0 ≤ i ≤ m,

[e, wi] = (m− i+ 1)((m− i+ 2)ϕ21vi − iϕ22wi−1), 0 ≤ i ≤ m.

Proposition 2.9. Let n−m ≥ 4. Then identity (2.2) implies the following:

[f, vi] = ϕ11vi+1 0 ≤ i ≤ n− 1
[f, wj ] = ϕ22wj+1 0 ≤ j ≤ m− 1
[e, vi] = −i(n− i+ 1)ϕ11vi−1 0 ≤ i ≤ n
[e, wj ] = −j(m− j + 1)ϕ22wj−1 0 ≤ j ≤ m
[h, vi] = (n− 2i)ϕ11vi 0 ≤ i ≤ n
[h,wi] = (m− 2i)ϕ22wi 0 ≤ i ≤ m

.
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Proof. From [7, Proposition 2.2, 2.3, 2.4 ] we have the following table of brackets:

[f, vi] = ϕ11vi+1 0 ≤ i ≤ n− 1
[f, wj ] = ϕ22wj+1 0 ≤ j ≤ m− 1

[e, vi] = i(n− i+ 1)
n

ϵ11vi−1 0 ≤ i ≤ n

[e, wj ] = j(m− j + 1)
m

ϵ22wj−1 0 ≤ j ≤ m

[h, vi] = (η11 − 2iϕ11)vi 0 ≤ i ≤ n
[h,wi] = (η22 − 2iϕ22)wi 0 ≤ i ≤ m

.

Considering identity (2.2) for triples (f, v0, e) and (f, w0, e) one obtains η11 = nϕ11 and
η22 = mϕ22, correspondingly. Analogously, identity (2.2) for (h, vi, e) and (h,wi, e) implies
ϵ11 = −nϕ11 and ϵ22 = −mϕ22, correspondingly. This completes the proof. �

3. Main results
Throughout this section M is an sl2-bimodule that decomposes into the direct sum of

simple sl2-modules M = V (n1) ⊕ V (n2) ⊕ · · · ⊕ V (nk). Without loss of generality one can
assume that n1 ≥ n2 ≥ · · · ≥ nk. By Theorem 2.4 each simple module Vp (1 ≤ p ≤ k)
admits basis {vp

0 , v
p
1 , . . . , v

p
np

} such that for 0 ≤ i ≤ np the following holds:

[vp
i , h] = (np − 2i)vp

i ,

[vp
i , f ] = vp

i+1,

[vp
i , e] = −i(np + 1 − i)vp

i−1.

In general [sl2, Vp] ⊆ M and let us set the following for all 1 ≤ p ≤ k:

[h, vp
i ] =

k∑
q=1

nq∑
j=0

ηpq
ij v

q
j , [f, vp

i ] =
k∑

q=1

nq∑
j=0

ϕpq
ij v

q
j , [e, vp

i ] =
k∑

q=1

nq∑
j=0

ϵpq
ij v

q
j .

The description of Leibniz bimodules over sl2 is reduced to simplify the left action. As
the following proposition shows, most of the coefficients above are annihilated.

Proposition 3.1. Set lpq = 1
2(np − nq). Then

[h, vp
i ] =

k∑
q=1

ηpq
i v

q
i−lpq

, [f, vp
i ] =

k∑
q=1

ϕpq
i v

q
i+1−lpq

, [e, vp
i ] =

k∑
q=1

ϵpq
i v

q
i−1−lpq

,

where ηpq
i = ϕpq

i = ϵpq
i = 0 if lpq /∈ Z.

Proof. From [h, [m,h]] = [[h,m], h] we get

(np − 2i)
k∑

q=1

nq∑
j=0

ηpq
ij v

q
j = (np − 2i)[h, vp

i ] = [h, [vp
i , h]]

= [[h, vp
i ], h] = [

k∑
q=1

nq∑
j=0

ηpq
ij v

q
j , h] =

k∑
q=1

nq∑
j=0

(nq − 2j)ηpq
ij v

q
j .

Thus ηpq
ij = 0 unless j = 1

2(nq − np) + i. Denote by ηpq
i := ηpq

i,i−lpq
.

From [f, [m,h]] = [[f,m], h] − 2[f,m], as above we obtain

(np − 2i)
k∑

q=1

nq∑
j=0

ϕpq
ij v

q
j = (np − 2i)[f, vp

i ] = [f, [vp
i , h]] =

k∑
q=1

nq∑
j=0

(nq − 2j − 2)ϕpq
ij v

q
j .

Therefore ϕpq
ij = 0 unless j = 1

2(nq − np) + i+ 1. Denote by ϕpq
i := ϕpq

i,i+1−lpq
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From [e, [m,h]] = [[e,m], h] − 2[e,m] we get

(np − 2i)
k∑

q=1

nq∑
j=0

ϵpq
ij v

q
j =

k∑
q=1

nq∑
j=0

(nq − 2j − 2)ϵpq
ij v

q
j .

Hence, ϵpq
ij = 0 unless j = 1

2(nq − np) + i− 1 and denote by ϵpq
i := ϵpq

i,i−1−lpq
. �

The next proposition is the main tool in partially reducing the general case to the case
k = 2.

Proposition 3.2. For any x ∈ sl2 and 1 ≤ i ≤ j ≤ k, the restriction of the left action λx

on V (ni) ⊕ V (nj) coincides with the left action described in Propositions 2.7–2.9.

Proof. Let x ∈ sl2 and for any i, j from {1, . . . , k} let us denote by πi,j the linear projection
from M to V (ni) ⊕ V (nj). Consider m = v1

m + · · · + vk
m ∈ ⊕k

i=1V (ni). Using the fact that
ρx(V (ni)) ⊆ V (ni) for all 1 ≤ i ≤ k we have

πij(ρx(m)) = ρx(vi
m) + ρx(vj

m) = ρx(vi
m + vj

m) = ρx(πij(m)).
This implies that πij and ρx commute. Moreover, using equality (2.6) we have

πij(λx ◦ ρy) = πij(ρy ◦ λx − λ[x,y]) = ρy ◦ (πij ◦ λx) − πij ◦ λ[x,y].

Denote by λij
x := πij ◦λx. Then λij

x ρy = ρyλ
ij
x −λij

[x,y] that shows that λij
x satisfies equation

(2.2). However, for fixed i and j linear maps satisfying such condition are studied in
[7, Section 2] and are described in Propositions 2.7-2.9. �

Although it is known from Theorem 2.5 that for a bimodule M to be indecomposable
the sequence n1 ≥ n2 ≥ · · · ≥ nk must decrease by 2, there is a direct proof why M is
decomposable if n1 = n2 = · · · = nk.

Proposition 3.3. Let M = ⊕k
i=1Vi, where dimVi = n + 1. Then bimodule M is decom-

posable.

Proof. By Proposition 3.1 for all 1 ≤ i ≤ n+ 1, 1 ≤ p ≤ k we have

[h, vp
i ] =

k∑
q=1

ηpq
i v

q
i , [f, vp

i ] =
k∑

q=1
ϕpq

i v
q
i+1, [e, vp

i ] =
k∑

q=1
ϵpq
i v

q
i−1.

Furthermore, by Proposition 3.2 for (1 ≤ s, j ≤ k) and Proposition 2.7 we get the following
for all 1 ≤ i ≤ n+ 1, 1 ≤ p ≤ k:

[h, vp
i ] = (n−2i)

k∑
q=1

ϕpqvq
i , [f, vp

i ] =
k∑

q=1
ϕpqvq

i+1, [e, vp
i ] = −i(n− i+1)

k∑
q=1

ϕpqvq
i+1. (3.1)

In the matrix form, we can write the first equality of (3.1) as follows:
[h, v1

i ]
[h, v2

i ]
...

[h, vk
i ]


T

= (n− 2i)




ϕ11 ϕ12 . . . ϕ1k

ϕ21 ϕ22 . . . ϕ2k

...
... . . .

...
ϕk1 ϕk2 . . . ϕkk

 ·


v1

i

v2
i

...
vk

i




T

= (n− 2i) · [v1
i v

2
i ... v

k
i ]ΦT ,

where Φ = (ϕij)1≤i,j≤k is a matrix. Verifying identity (2.4) for h and vp
i , (1 ≤ p ≤ k) we

1 + ϕ11 ϕ12 . . . ϕ1k

ϕ21 1 + ϕ22 . . . ϕ2k

...
... . . .

...
ϕk1 ϕk2 . . . 1 + ϕkk

 · Φ ·


v1

i

v2
i
...
vk

i

 =


0
0
...
0

 .



Finite-dimensional Leibniz algebra representations of sl2 851

Hence, (I+Φ)Φ = O and therefore, Φ is diagonalizable. Let x⃗ =
k∑

q=1
xqv

q
i ∈ M (0 ≤ i ≤ n)

be an eigenvector of ΦT with an eigenvalue λ. Then

[h, x⃗] = [h, x1v
1
i + x2v

2
i + ...+ xkv

k
i ] = [[h, v1

i ] [h, v2
i ] ... [h, vk

i ]] ·


x1
x2
...
xk

 =

= (n− 2i)[v1
i v

2
i ... v

k
i ] · ΦT ·


x1
x2
...
xk

 = (n− 2i)[v1
i v

2
i ... v

k
i ]λ


x1
x2
...
xk

 = (n− 2i)λx⃗.

Consequently, this implies that [sl2, Vi] ⊆ Vi, which means the module M is decomposable.
�

The following statement describes all subbimodules of M when all ni’s are different.

Proposition 3.4. Let N be a subbimodule of M and ni ̸= nj for all 1 ≤ i ̸= j ≤ k. Then
N is expressed as N = Vni1

⊕ Vni2
⊕ · · · ⊕ Vnit

for some 1 ≤ i1 < i2 < · · · < it ≤ k.

Proof. Let N be a subbimodule of M and u = (α1v
i1
p1 + . . . )+(α2v

i2
p2 + . . . )+ · · ·+(αtv

it
pt

+
. . . ) ∈ N with α1α2 . . . αt ̸= 0. Acting with f from the right (ni1 − p1)-times on u we
obtain

α1v
i1
ni1

+ (α2v
i2
q2 + . . . ) + · · · + (αtv

it
qt

+ . . . ) ∈ N (3.2)

If all the brackets vanish, then vi1
ni1

∈ N and acting from the right with e consecutively,
one has Vni1

⊆ N . Therefore, u mod Vni1
∈ N and recursively, the process continues.

If some of the brackets are non-zero, apply h from the right to expression (3.2) and add
it to expression (3.2) multiplied by ni1 , to deduce

(α2(ni1 + ni2 − 2q2)vi2
q2 + . . . ) + · · · + (αt(n1 + nit − 2qt)vit

qt
+ . . . ) ∈ N.

Note that due to n1 > n2 > · · · > nk, none of the first coefficients is equal to zero in
the brackets that did not vanish in expression (3.2). Hence, we reduce the number of
components to one less and recursively we obtain vit

t ∈ N . Applying e from the right
continuously one has Vit ⊆ N . Therefore, u mod Vip ∈ N and applying the arguments
recursively from the start we are done. �

Note that if ni = nj for some i and j, the result of Proposition 3.4 is not true (cf. there
are two subbimodules constructed in Case 1 of the proof of [7, Proposition 3.1]).

Theorem 3.5. Let M be an sl2-bimodule and as a right sl2-module let it decompose as
M = V (n1) ⊕ V (n2) ⊕ · · · ⊕ V (nk), where V (ni) are simple sl2-modules of Theorem 2.4
with base {vi

0, . . . , v
i
ni

}, 1 ≤ i ≤ k and n1 ≥ n2 ≥ · · · ≥ nk. Then M is an indecomposable
Leibniz sl2-bimodule only if ni − ni+1 = 2 for all 1 ≤ i ≤ k − 1. Moreover, up to sl2-
bimodule isomorphism there are exactly two indecomposable sl2-bimodules. The non-zero
brackets of the left action is either

[h, v2p
i ] = 2(n− 2p− i+ 3)v2p−1

i+1 − (n− 2p− 2i+ 2)v2p
i+1 − 2iv2p+1

i−1 ,

[f, v2p
i ] = v2p−1

i+2 − v2p
i+1 + v2p+1

i ,

[e, v2p
i ] = (n− 2p− i+ 3)((n− 2p− i+ 4)v2p−1

i + iv2p
i−1) + i(i− 1)v2p+1

i−2 ,



852 T. Kurbanbaev, R. Turdibaev

for all 0 ≤ p ≤ k/2 or
[h, v1

i ] = −(n− 2i)v1
i − 2iv2

i−1,

[f, v1
i ] = −v1

i+1 + v2
i ,

[e, v1
i ] = i(n− i+ 1)v1

i−1 + i(i− 1)v2
i−2,

[h, v2p+1
i ] = (n− 4p− i+ 1)v2p

i+1 − (n− 4p− 2i)v2p+1
i+1 − 2iv2p+2

i−1 ,

[f, v2p+1
i ] = v2p

i+2 − v2p+1
i+1 + v2p+2

i ,

[e, v2p+1
i ] = (n− 4p− i+ 1)((n− 4p− i+ 2)v2p

i + iv2p+1
i−1 + i(i− 1)v2p+2

i−2 ,

for all 1 ≤ p ≤ (k − 1)/2, where n = n1.

Proof. By Theorem 2.5 it is clear that the sequence {ni | 1 ≤ i ≤ k} must decrease
by two. Let us denote by n = n1 and for the sake of convenience, denote by Vi =
V (n − 2i + 2) = {vi

0, v
i
1, . . . , v

i
n−2i+2}, 1 ≤ i ≤ k. First we use Proposition 3.2 for pair

(j, j + 1) for all 1 ≤ j ≤ k − 1 and Proposition 2.8, then we use Proposition 3.2 for pairs
(j, s), 1 ≤ j ≤ k − 2, j + 2 ≤ s ≤ k and Proposition 2.9 to obtain the following:

[h, v1
i ] = (n− 2i)ϕ1,1v

1
i − 2iϕ1,2v

2
i−1, 0 ≤ i ≤ n,

[f, v1
i ] = ϕ1,1v

1
i+1 + ϕ1,2v

2
i , 0 ≤ i ≤ n− 1,

[e, v1
i ] = −i(n− i+ 1)ϕ1,1v

1
i−1 + i(i− 1)ϕ1,2v

2
i−2, 1 ≤ i ≤ n,

2 ≤ j ≤ k − 1, 0 ≤ i ≤ n− 2j + 2 :
[h, vj

i ] = 2(n− 2j − i+ 3)ϕj,j−1v
j−1
i+1 + (n− 2j − 2i+ 2)ϕj,jv

j
i − 2iϕj,j+1v

j+1
i−1 ,

[f, vj
i ] = ϕj,j−1v

j−1
i+2 + ϕj,jv

j
i+1 + ϕj,j+1v

j+1
i ,

[e, vj
i ] = (n− 2j + 3 − i)((n− 2j + 4 − i)ϕj,j−1v

j−1
i − iϕj,jv

j
i−1) + i(i− 1)ϕj,j+1v

j+1
i−2 ,

0 ≤ i ≤ n− 2k + 2 :
[h, vk

i ] = 2(n− 2k + 3 − i)ϕk,k−1v
k−1
i+1 + (n− 2k + 2 − 2i)ϕk,kv

k
i ,

[f, vk
i ] = ϕk,k−1v

k−1
i+2 + ϕk,kv

k
i+1,

[e, vk
i ] = (n− 2k − i+ 3)((n− 2k + 4 − i)ϕk,k−1v

k−1
i − iϕk,kv

k
i−1.

Consider identity (2.4) for corresponding triples:
• For (f, v1

0, f) we have
(1 + ϕ1,1 + ϕ2,2)ϕ1,2 = 0, (3.3)

(1 + ϕ1,1)ϕ1,1 + ϕ1,2ϕ2,1 = 0, (3.4)
ϕ1,2ϕ2,3 = 0. (3.5)

• For (f, v1
0, h) we get

(1 + ϕ1,1)ϕ1,2 = 0, (3.6)
(1 + ϕ1,1)ϕ1,1 = 0. (3.7)

• For (f, vj
0, f), 2 ≤ j ≤ k − 1 we obtain

(1 + ϕj−1,j−1 + ϕj,j)ϕj,j−1 = 0, (3.8)
(1 + ϕj,j)ϕj,j + ϕj,j−1ϕj−1,j + ϕj,j+1ϕj+1,j = 0, (3.9)

(1 + ϕj,j + ϕj+1,j+1)ϕj,j+1 = 0. (3.10)

• For (f, vj
0, h), 2 ≤ j ≤ k − 1 we have

(1 + ϕj,j)ϕj,j+1 = 0. (3.11)
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• For (f, vj
0, e), 2 ≤ j ≤ k − 1 we get

ϕj,j−1ϕj−1,j−2 = ϕj,j−1ϕj−1,j−1 = ϕj,j−1ϕj−1,j = 0. (3.12)

Suppose k is odd and consider the following cases (the case when k is an even is carried
out analogously).

Case 1. Let ϕ1,1 = 0. Then by (3.6) we have ϕ1,2 = 0, hence [sl2, V1] = 0.
If ϕ2,1 = ϕ2,3 = 0, then bimodule M is decomposable. Thus ϕ2,1 ̸= and ϕ2,3 ̸= 0.

Hence, from (3.8) and (3.12) we get ϕ2,2 = −1 and ϕ3,2 = 0, respectively. Since ϕ2,3 ̸= 0,
then from equality (3.10) we have ϕ3,3 = 0, hence from (3.11) we obtain ϕ3,4 = 0. Thus
[sl2, V3] = 0.

Let ϕ4,3 ̸= 0, ϕ4,5 ̸= 0, otherwise M is decomposable. Then equalities (3.8) and (3.9)
imply ϕ4,4 = −1 and ϕ5,5 = 0. Hence by (3.11) and (3.12) we obtain ϕ5,6 = 0 and ϕ5,4 = 0,
correspondingly. This means that [sl2, V5] = 0. Continuing this process we will get the
following:

[f, v1
i ] = 0,

[f, v2
i ] = ϕ2,1v

1
i+2 − v2

i+1 + ϕ2,3v
3
i ,

[f, v3
i ] = 0,

[f, v4
i ] = ϕ4,3v

3
i+2 − v4

i+1 + ϕ4,5v
5
i ,

[f, v5
i ] = 0,

. . . . . . . .

[f, v2p
i ] = ϕ2p,2p−1v

2p−1
i+2 − v2p

i+1 + ϕ2p,2p+1v
2p+1
i ,

[f, v2p+1
i ] = 0,

where 6 ≤ p ≤ k−1
2 . Make a basis change

(v1
i )′ = v1

i , (v2
i )′ = 1

ϕ2,1
v2

i , (v3
i )′ = ϕ2,3

ϕ2,1
v3

i , (v4
i )′ = ϕ2,3

ϕ2,1ϕ4,3
v4

i , (v5
i )′ = ϕ2,3ϕ4,5

ϕ2,1ϕ4,3
v5

i ,

(v6
i )′ = ϕ2,3ϕ4,5

ϕ2,1ϕ4,3ϕ6,5
v6

i , . . . , (v
2p
i )′ = ϕ2,3ϕ4,5 . . . ϕ2p−2,2p−1

ϕ2,1ϕ4,3 . . . ϕ2p−2,2p−3ϕ2p,2p−1
v2p

i ,

(v2p+1
i )′ = ϕ2,3ϕ4,5 . . . ϕ2p,2p+1

ϕ2,1ϕ4,3 . . . ϕ2p,2p−1
v2p+1

i

to obtain the following
[f, v1

i ] = 0,
[f, v2

i ] = v1
i+2 − v2

i+1 + v3
i ,

[f, v3
i ] = 0,

. . . . . . . .

[f, v2p
i ] = v2p−1

i+2 − v2p
i+1 + v2p+1

i ,

[f, v2p+1
i ] = 0.

Thus for all 1 ≤ p ≤ k − 1
2

we obtain

[h, v2p
i ] = 2(n− 2p− i+ 3)v2p−1

i+1 − (n− 2p− 2i+ 2)v2p
i+1 − 2iv2p+1

i−1 , 0 ≤ i ≤ n− 4p+ 2,
[f, v2p

i ] = v2p−1
i+2 − v2p

i+1 + v2p+1
i , 0 ≤ i ≤ n− 4p+ 2,

[e, v2p
i ] = (n− 2p− i+ 3)((n− 2p− i+ 4)v2p−1

i + iv2p
i−1) + i(i− 1)v2p+1

i−2 , 0 ≤ i ≤ n− 4p+ 2,

[h, v2p+1
i ] = 0, 0 ≤ i ≤ n− 4p,

[f, v2p+1
i ] = 0, 0 ≤ i ≤ n− 4p,

[e, v2p+1
i ] = 0, 0 ≤ i ≤ n− 4p.
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Using Proposition 3.4 it is easy to see that M is indecomposable.

Case 2. Let ϕ1,1 ̸= 0. Then by (3.7) we have ϕ1,1 = −1. Hence in (3.12) we get
ϕ2,1 = 0. If ϕ1,2 = 0, then bimodule M is decomposable. So we may assume that ϕ1,2 ̸= 0.
Then by equations (3.3) and (3.5) one has ϕ2,2 = 0 and ϕ2,3 = 0. Hence [sl2, V2] = 0.

Continuing a similar reasoning as in the Case 1, we obtain for all 1 ≤ p ≤ k − 1
2

the
following:
[h, v1

i ] = −(n− 2i)v1
i − 2iv2

i−1, 0 ≤ i ≤ n,

[f, v1
i ] = −v1

i+1 + v2
i , 0 ≤ i ≤ n,

[e, v1
i ] = i(n− i+ 1)v1

i−1 + i(i− 1)v2
i−2, 0 ≤ i ≤ n,

[h, v2p
i ] = 0, 0 ≤ i ≤ n− 4p+ 2,

[f, v2p
i ] = 0, 0 ≤ i ≤ n− 4p+ 2,

[e, v2p
i ] = 0, 0 ≤ i ≤ n− 4p+ 2,

[h, v2p+1
i ] = (n− 4p− i+ 1)v2p

i+1 − (n− 4p− 2i)v2p+1
i+1 − 2iv2p+2

i−1 , 0 ≤ i ≤ n− 4p,
[f, v2p+1

i ] = v2p
i+2 − v2p+1

i+1 + v2p+2
i , 0 ≤ i ≤ n− 4p,

[e, v2p+1
i ] = (n− 4p− i+ 1)((n− 4p− i+ 2)v2p

i + iv2p+1
i−1 + i(i− 1)v2p+2

i−2 , 0 ≤ i ≤ n− 4p,

Once again, indecomposability is proved by using Proposition 3.4. �
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