
Communications in Advanced Mathematical Sciences
Vol. III, No. 3, 143-154, 2020

Research Article
e-ISSN: 2651-4001

DOI: 10.33434/cams.789085

On the Trigonometric and p-Trigonometric Functions
of Elliptical Complex Variables
Kahraman Esen Özen1*

Abstract
In the early 2000s, the geometry of a one-parameter family of generalized complex number systems was studied
(Math. Mag. 77(2)(2004)). This family is denoted by Cp. It is well known that Cp matches up with the elliptical
complex number system when p is any negative real number. By using this system, Özen and Tosun expressed
the elliptical complex valued trigonometric functions cosine, sine and p-trigonometric functions p-cosine, p-sine
(Adv. Appl. Clifford Algebras 28(3)(2018)). In this study, we introduce the remained elliptical complex valued
trigonometric and p-trigonometric functions. Also we define the corresponding single-valued principal values of
the inverse trigonometric and p-trigonometric functions by following the similar steps given in the literature.

Keywords: Generalized complex numbers, p-trigonometric functions, Elliptical complex numbers.
2010 AMS: 97F50, 33B10

1Sakarya, Turkey, ORCID: 0000-0002-3299-6709
*Corresponding author: kahraman.ozen1@ogr.sakarya.edu.tr
Received: 1 September 2020, Accepted: 22 September 2020, Available online: 29 September 2020

1. Introduction
The generalized complex numbers were introduced by Yaglom [1] as in the following:

z = x+ Iy (x,y ∈ R), I2 = Iq+ p (q, p ∈ R)

where I denotes a formal quantity which is subject to the relation indicated above.
In [2], Harkins studied the geometry of a one parameter family of generalized complex number systems. In this one

parameter family, q = 0 and I2 = p ∈ R. It is denoted by

Cp =
{

x+ Iy : x,y ∈ R, I2 = p, p ∈ R
}
.

In the special case p < 0, Cp corresponds to the set of elliptical complex numbers. Let this set be denoted by Cp
∗. That is,

Cp
∗ =

{
x+ Iy : x,y ∈ R, I2 = p, p ∈ R−

}
.

For z1 = (x1 + Iy1), z2 = (x2 + Iy2) ∈ Cp
∗, addition and multiplication are defined by

z1 + z2 = (x1 + Iy1)+(x2 + Iy2) = (x1 + x2)+ I(y1 + y2)

z1z2 = (x1x2 + py1y2)+ I (x1y2 + x2y1) .

As it is well known, Cp
∗ is a field under these two operations [2].
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On the other hand, the p-magnitude of z = x+ Iy ∈Cp
∗ is ‖z‖p =

√
x2− py2. As a result of this case, the unit circle in Cp

∗

is an Euclidean ellipse which is given by the equation x2− py2 = 1. Specially, if p =−1 this ellipse matches the Euclidean unit
circle [2].

Let z = x+ Iy be a number in Cp
∗. This number can be expressed with a position vector (see Figure 1.1). The arc of ellipse

between this vector and the real axis determines an elliptic angle θp. This angle is called p-argument of z.

 

Imaginary axis 

Real axis 

z = x+Iy 

O θp
 

Figure 1.1. Elliptic angle in Cp
∗

On the other hand, the p-trigonometric functions p-cosine, p-sine and p-tangent are defined in Cp
∗ as follows [2]:

cosp (θp) = cos
(

θp
√
|p|
)

(1.1)

sinp (θp) =
1√
|p|

sin
(

θp
√
|p|
)

(1.2)

tanp (θp) =
sinp (θp)

cosp (θp)
. (1.3)

There can be found some interesting studies [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] on the generalized complex numbers and elliptical
complex numbers in the literature.

Recently, Özen and Tosun have extended the trigonometric functions cosine, sine and p-trigonometric functions p-
cosine, p-sine to the elliptical complex variables [3]. The functions cos, sin, cosp and sinp of an elliptical complex variable
ϕp = x+ Iy ∈ Cp are given as in the following

cos(ϕp) = cos(x)cosh
(

y
√
|p|
)
− I

1√
|p|

sin(x)sinh
(

y
√
|p|
)

(1.4)

sin(ϕp) = sin(x)cosh
(

y
√
|p|
)
+ I

1√
|p|

cos(x)sinh
(

y
√
|p|
)

(1.5)

cosp (ϕp) = cosp (x)cosh(py)+ Isinp (x)sinh(py) (1.6)

sinp (ϕp) = sinp (x)cosh(py)+ I
1
p

cosp (x)sinh(py) (1.7)

in which case, ϕp is called elliptical complex angle. Also, these functions hold the following relations [3]:

cosp (ϕp) = cos
(

ϕp
√
|p|
)

sinp (ϕp) =
1√
|p|

sin
(

ϕp
√
|p|
)
.

Let the set of generalized complex numbers be showed with CG in the case I2 =−q− rI
(
r2−4q < 0

)
. Thanks to Yaglom

[1], it is known that there is an isomorphism between the set CG and the set C as in the following:

π : CG → C

a1 +b1I → π (a1 +b1I) =
(

a1−
r
2

b1

)
+

(
b1

2

√
4q− r2

)
i.
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If this isomorphism is restricted to the set of elliptical complex numbers, the following isomorphism

π
∗ : Cp

∗ → C

a1 +b1I→ π
∗ (a1 +b1I) = a1 + ib1

√
|p|

is immediately written by considering r = 0 and q =−p. Here the statement
√
|p| represents the positive square root of the

positive number |p|. Throughout the paper the statement
√
|p| will be used in this sense.

Theorem 1.1. [13] For the elliptical complex valued sine and cosine functions, the equalities

1. sin(π∗ (ϕp)) = π∗ (sin(ϕp))

2. cos(π∗ (ϕp)) = π∗ (cos(ϕp))

are satisfied where ϕp = x+ Iy ∈ Cp
∗.

The next two theorems, which reveal that the elliptical complex valued p-trigonometric functions cosp (ϕp) and sinp (ϕp)
are surjective, can be given as consequences of the last theorem.

Theorem 1.2. [3] For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equality cosp

(
λ k

p
)
= ψp is satisfied by the

elliptical complex angles

λ
k
p =

Arg(uk + ivk)√
|p|

+ I
ln |uk + ivk|

p
, k = 1,2

where u1 + iv1,u2 + iv2 ∈ C are the complex numbers derived from the expression

(
a+ ib

√
|p|+

√(
a+ ib

√
|p|
)2
−1

)
.

Theorem 1.3. [13] For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equality sinp

(
χk

p
)
= ψp is satisfied by the

elliptical complex angles

χ
k
p =

Arg(ςk + iτk)√
|p|

+ I
ln |ςk + iτk|

p
, k = 1,2

where ς1+ iτ1,ς2+ iτ2 ∈C are complex numbers derived from the expression

(
i
(

a
√
|p|+ ib |p|

)
+

√
1−
(

a
√
|p|+ ib |p|

)2
)

.

Note that the last three theorems will be used to obtain single-valued principal values of the inverse cosine, sine, p-cosine
and p-sine functions in Section 2.

Finally, we need to emphasize the principal square root of a complex number. Let z = reiϕ be a complex number given by
principal argument −π < ϕ ≤ π in the polar form. As it is well-known in the literature, the principal square root of z is defined
as
√

z =
√

rei ϕ

2 , −π

2 < ϕ

2 ≤
π

2 . We will use the statement ”principle square root” in this sense throughout the rest of the paper.

2. Main Results
In this section, we obtain the elliptical complex valued tangent, cotangent, secant and cosecant functions. Then we define the
corresponding single-valued principal values of the all inverse trigonometric functions by following the similar steps in [14].
Finally, we will repeat the same for p−trigonometric functions.

2.1 Results Related to Elliptical Complex-Valued Trigonometric Functions
In this subsection, firstly, we can give the following theorem by using the equations (1.4) and (1.5).

Theorem 2.1. Tangent, cotangent, secant and cosecant functions of an elliptical complex variable ϕp = x+ Iy ∈Cp
∗ are given

as in the following:

1. tan(ϕp) =
sin(ϕp)
cos(ϕp)

= sin(2x)

cos(2x)+cosh
(

2y
√
|p|
) + I 1√

|p|

sinh
(

2y
√
|p|
)

cos(2x)+cosh
(

2y
√
|p|
) ,
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2. cot(ϕp) =
cos(ϕp)
sin(ϕp)

=
sin(2x)

(
cos(2x)+cosh

(
2y
√
|p|
))

sin2(2x)+sinh2
(

2y
√
|p|
) − I 1√

|p|

sinh
(

2y
√
|p|
)(

cos(2x)+cosh
(

2y
√
|p|
))

sin2(2x)+sinh2
(

2y
√
|p|
) ,

3. sec(ϕp) =
1

cos(ϕp)
=

2cos(x)cosh
(

y
√
|p|
)

cos(2x)+cosh
(

2y
√
|p|
) + I 2√

|p|

sin(x)sinh
(

y
√
|p|
)

cos(2x)+cosh
(

2y
√
|p|
) ,

4. csc(ϕp) =
1

sin(ϕp)
=

2sin(x)cosh
(

y
√
|p|
)

cosh
(

2y
√
|p|
)
−cos(2x)

− I 2√
|p|

cos(x)sinh
(

y
√
|p|
)

cosh
(

2y
√
|p|
)
−cos(2x)

.

Proof. We will prove the first item. The proofs of other items can be similarly completed.
1. By considering |p|=−p and using some well-known trigonometric and hyperbolic identities, we get

tan
(
ϕp
)

=
sin
(
ϕp
)

cos
(
ϕp
)

=
sin(x)cosh

(
y
√
|p|
)
+ I 1√

|p|
cos(x)sinh

(
y
√
|p|
)

cos(x)cosh
(

y
√
|p|
)
− I 1√

|p|
sin(x)sinh

(
y
√
|p|
)

=
sin(x)cos(x)

(
cosh2

(
y
√
|p|
)
− sinh2

(
y
√
|p|
))

cos2 (x)cosh2
(

y
√
|p|
)
+ sin2 (x)sinh2

(
y
√
|p|
) +

I√
|p|

sinh
(

y
√
|p|
)

cosh
(

y
√
|p|
)(

cos2 (x)+ sin2 (x)
)

cos2 (x)cosh2
(

y
√
|p|
)
+ sin2 (x)sinh2

(
y
√
|p|
)

=
2
2

sin(x)cos(x)

cos2 (x)cosh2
(

y
√
|p|
)
+ sin2 (x)sinh2

(
y
√
|p|
) +

I√
|p|

2
2

sinh
(

y
√
|p|
)

cosh
(

y
√
|p|
)

cos2 (x)cosh2
(

y
√
|p|
)
+ sin2 (x)sinh2

(
y
√
|p|
)

=
sin(2x)

cos(2x)+ cosh
(

2y
√
|p|
) + I

1√
|p|

sinh
(

2y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
) .

Lemma 2.2. For the elliptical complex valued tangent, cotangent, secant and cosecant functions, the equalities

1. tan(π∗ (ϕp)) = π∗ (tan(ϕp)),

2. cot(π∗ (ϕp)) = π∗ (cot(ϕp)),

3. sec(π∗ (ϕp)) = π∗ (sec(ϕp)),

4. csc(π∗ (ϕp)) = π∗ (csc(ϕp)).

are satisfied where π∗ is the aforesaid isomorphism and ϕp = x+ Iy ∈ Cp
∗.

Proof. We will prove the first and third item. Other items can be similarly proved.

1. It is very easy to see

π
∗ (tan(ϕp)) = π

∗

 sin(2x)

cos(2x)+ cosh
(

2y
√
|p|
)
+ I

1√
|p|

 sinh
(

2y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)


=

 sin(2x)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

1√
|p|

√
|p|

 sinh
(

2y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)


=

 sin(2x)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

 sinh
(

2y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
 .
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On the other hand, according to the theory of complex trigonometric functions (see [14, 15] for more details on the theory of
complex trigonometric functions), it is clear that

tan(π∗ (ϕp)) = tan
(

x+ iy
√
|p|
)

=

 sin(2x)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

 sinh
(

2y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
 .

So, the proof is completed.

3. Similarly above, we have the equalities

π
∗ (sec(ϕp)) = π

∗

 2cos(x)cosh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
+ I

2√
|p|

 sin(x)sinh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)


=

 2cos(x)cosh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

2√
|p|

√
|p|

 sin(x)sinh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)


=

 2cos(x)cosh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

 2sin(x)sinh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
 .

and

sec(π∗ (ϕp)) = sec
(

x+ iy
√
|p|
)

=

 2cos(x)cosh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
+ i

 2sin(x)sinh
(

y
√
|p|
)

cos(2x)+ cosh
(

2y
√
|p|
)
 .

Thus the desired equality holds.

Theorem 2.3. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the equalities sinϕp = ψp, cosαp = ψp, tanβp = ψp,

cotγp = ψp, secθp = ψp and cscδp = ψp are satisfied by the principal elliptical complex angles

1. ϕp = Arg(σ + iω)− I ln|σ+iω|√
|p|

,

2. αp = Arg(ε + iκ)− I ln|ε+iκ|√
|p|

,

3. βp =
Arg
(

1+pb2−a2

1−2b
√
|p|+a2−pb2−i 2a

1−2b
√
|p|+a2−pb2

)
−2 + I

ln
∣∣∣∣ 1+pb2−a2

1−2b
√
|p|+a2−pb2−i 2a

1−2b
√
|p|+a2−pb2

∣∣∣∣
2
√
|p|

,

4. γp =
Arg
(

−1−pb2+a2

1+2b
√
|p|+a2−pb2−i 2a

1+2b
√
|p|+a2−pb2

)
−2 + I

ln
∣∣∣∣ −1−pb2+a2

1+2b
√
|p|+a2−pb2−i 2a

1+2b
√
|p|+a2−pb2

∣∣∣∣
2
√
|p|

,

5. θp = Arg(η + iζ )− I ln|η+iζ |√
|p|

,

6. δp = Arg(Ω+ if)− I ln|Ω+if|√
|p|

,
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where σ + iω ∈ C, ε + iκ ∈ C, η + iζ ∈ C and Ω+ if ∈ C are the principal complex values derived from the expressions(
i
(

a+ ib
√
|p|
)
+

√
1−
(

a+ ib
√
|p|
)2
)

,

(
a+ ib

√
|p|+

√(
a+ ib

√
|p|
)2
−1

)
,

(
1

a+ib
√
|p|

+
√

1(
a+ib
√
|p|
)2 −1

)
and(√

1− 1(
a+ib
√
|p|
)2 +

i
a+ib
√
|p|

)
, respectively.

Proof. Now, we will show that the first and third equalities are satisfied. Similar steps can be followed for the other equalities.
1. By considering Theorem 1.1 and the theory of complex trigonometric functions (see [14, 15] for more details), we can

write

sin(x+ Iy) = a+ Ib ⇔ π
∗ (sin(x+ Iy)) = π

∗ (a+ Ib)

⇔ sin(π∗ (x+ Iy)) = π
∗ (a+ Ib)

⇔ sin
(

x+ iy
√
|p|
)
= a+ ib

√
|p|

⇔ arcsin
(

a+ ib
√
|p|
)
= x+ iy

√
|p|

⇔ −i log

(
i
(

a+ ib
√
|p|
)
+

√
1−
(

a+ ib
√
|p|
)2
)

= x+ iy
√
|p|.

The purpose of us is to get unique solutions for x and y. To do so, we use the principal value of arcsine function. It is
determined by employing the principal value of the logarithm function and the principal value of the square-root function.
By keeping these situations in mind, let us denote by σ + iω the principal complex value derived from the expression(

i
(

a+ ib
√
|p|
)
+

√
1−
(

a+ ib
√
|p|
)2
)

. Then we have

−iLog(σ + iω) = x+ iy
√
|p|.

This equation yields the followings

−i(ln |σ + iω|+ iArg(σ + iω)) = x+ iy
√
|p|,

Arg(σ + iω)− i ln |σ + iω| = x+ iy
√
|p|.

Then we get the unique solutions for x and y as

x = Arg(σ + iω) , y =− ln |σ + iω|√
|p|

.

Thus, we can conclude

ϕp = Arg(σ + iω)− I
ln |σ + iω|√

|p|
.

3. Similarly above, we can write

tan(x+ Iy) = a+ Ib ⇔ π
∗ (tan(x+ Iy)) = π

∗ (a+ Ib)

⇔ tan(π∗ (x+ Iy)) = π
∗ (a+ Ib)

⇔ tan
(

x+ iy
√
|p|
)
= a+ ib

√
|p|

⇔ arctan
(

a+ ib
√
|p|
)
= x+ iy

√
|p|

⇔ i
2

log

 i+
(

a+ ib
√
|p|
)

i−
(

a+ ib
√
|p|
)
= x+ iy

√
|p|.



On the Trigonometric and p-Trigonometric Functions of Elliptical Complex Variables — 149/154

We aim to obtain the unique solutions for x and y. To do so, if we use the principal value of arctangent function which is
determined by employing the principal value of the logarithm function, we have

i
2

Log

 a+ i
(

1+b
√
|p|
)

−a+ i
(

1−b
√
|p|
)
= x+ iy

√
|p|.

This equation yields the followings

i
2

ln

∣∣∣∣∣∣
a+ i

(
1+b

√
|p|
)

−a+ i
(

1−b
√
|p|
)
∣∣∣∣∣∣+ iArg

 a+ i
(

1+b
√
|p|
)

−a+ i
(

1−b
√
|p|
)
 = x+ iy

√
|p|,

Arg
(

1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

)
−2

+ i
ln
∣∣∣∣ 1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

∣∣∣∣
2

= x+ iy
√
|p|.

In this case, we obtain the unique solutions for x and y as follows

x =
Arg

(
1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

)
−2

, y =
ln
∣∣∣∣ 1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

∣∣∣∣
2
√
|p|

.

Therefore, we can conclude

βp =

Arg
(

1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

)
−2

+ I
ln
∣∣∣∣ 1+pb2−a2

1−2b
√
|p|+a2−pb2 − i 2a

1−2b
√
|p|+a2−pb2

∣∣∣∣
2
√
|p|

.

By taking into consideration Theorem 2.3, we can give the following corollary.

Corollary 2.4. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the principal values of the inverse trigonometric

functions:

Arcsin(ψp) = ϕp

Arccos(ψp) = αp

Arctan(ψp) = βp

Arccot(ψp) = γp

Arcsec(ψp) = θp

Arccsc(ψp) = δp

can be expressed.

2.2 Results Related to Elliptical Complex-Valued p-Trigonometric Functions
In this subsection, firstly, let us define the elliptical complex valued p-trigonometric functions:

sinp (ϕp)

cosp (ϕp)
= tanp (ϕp) ,

cosp (ϕp)

sinp (ϕp)
= cotp (ϕp) ,

1
cosp (ϕp)

= secp (ϕp) ,
1

sinp (ϕp)
= cscp (ϕp)

by means of the elliptical complex valued p-trigonometric functions

cosp (ϕp) = cos
(

ϕp
√
|p|
)
= cosp (x)cosh(py)+ Isinp (x)sinh(py)

and

sinp (ϕp) =
1√
|p|

sin
(

ϕp
√
|p|
)
= sinp (x)cosh(py)+ I

1
p

cosp (x)sinh(py)

given in (1.6) and (1.7).
As mentioned earlier in Section 1, real-valued p-trigonometric functions p-cosine, p-sine and p-tangent are defined in

[2]. There is no such definition for neither cotangent function, secant function nor cosecant function. While the elliptical
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complex-valued functions cosp (ϕp), sinp (ϕp) and tanp (ϕp) are extensions of real-valued functions p-cosine, p-sine and
p-tangent, we can not say the same for the elliptical complex-valued functions cotp (ϕp), secp (ϕp) and cscp (ϕp). So, to use
the notations cosp (ϕp), sinp (ϕp), tanp (ϕp) and to use the statement ”p-trigonometric function” are very natural for these
functions. But, the reason of maintaining this situation for other functions cotp (ϕp), secp (ϕp) and cscp (ϕp) is not obvious.
This reason is based on the relationships of these functions with the elliptical complex-valued trigonometric functions cotangent,
secant and cosecant. Now, we give the next theorem including these relationships.

Theorem 2.5. For any elliptical complex angle ϕp = x+ Iy ∈ Cp
∗, the following equalities hold:

1. tanp (ϕp) =
1√
|p|

tan
(

ϕp
√
|p|
)
=

sinp(2x)
cosp(2x)+cosh(2yp) + I sinh(2yp)

pcosp(2x)+pcosh(2yp) ,

2. cotp (ϕp) =
√
|p|cot

(
ϕp
√
|p|
)
=

sinp(2x)(cosp(2x)+cosh(2yp))(
sinp

2(2x)− 1
p sinh2(2yp)

) + I
sinh(2yp)(cosp(2x)+cosh(2yp))

(sinh2(2yp)−psinp
2(2x))

,

3. secp (ϕp) =
1√
|p|

sec
(

ϕp
√
|p|
)
=

2cosp(x)cosh(yp)
cosp(2x)+cosh(2yp) − I 2sinp(x)sinh(yp)

cosp(2x)+cosh(2yp) ,

4. cscp (ϕp) =
√
|p|csc

(
ϕp
√
|p|
)
=
−2psinp(x)cosh(yp)
cosh(2yp)−cosp(2x) + I 2cosp(x)sinh(yp)

cosh(2yp)−cosp(2x) .

Proof. We will prove the second and last items. The other items can be proved similarly.
2. It is easy to see the equality

cotp (ϕp) =
cosp (ϕp)

sinp (ϕp)
=

cos
(

ϕp
√
|p|
)

1√
|p|

sin
(

ϕp
√
|p|
) =

√
|p|cot

(
ϕp
√
|p|
)
.

On the other hand, since ϕp
√
|p|= x

√
|p|+ Iy

√
|p|,

√
|p|cot

(
ϕp
√
|p|
)

=
√
|p|

 sin
(

2x
√
|p|
)(

cos
(

2x
√
|p|
)
+ cosh(2y |p|)

)
sin2

(
2x
√
|p|
)
+ sinh2 (2y |p|)

− I√
|p|

sinh(2y |p|)
(

cos
(

2x
√
|p|
)
+ cosh(2y |p|)

)
sin2

(
2x
√
|p|
)
+ sinh2 (2y |p|)



=

1√
|p|

sin
(

2x
√
|p|
)(

cos
(

2x
√
|p|
)
+ cosh(2y |p|)

)
1(√
|p|
)2

(
sin2

(
2x
√
|p|
)
+ sinh2 (2y |p|)

) − I
|p|

sinh(2y |p|)
(

cos
(

2x
√
|p|
)
+ cosh(2y |p|)

)
1(√
|p|
)2

(
sin2

(
2x
√
|p|
)
+ sinh2 (2y |p|)

)
=

sinp (2x)
(
cosp (2x)+ cosh(2yp)

)(
sinp

2 (2x)− 1
p sinh2 (2yp)

) + I
sinh(2yp)

(
cosp (2x)+ cosh(2yp)

)(
sinh2 (2yp)− psinp

2 (2x)
)

can be written from the second item of Theorem 2.1. Then, we can immediately obtain the desired equality.

4. It is not difficult to find the equality

cscp (ϕp) =
1

sinp (ϕp)
=

1
1√
|p|

sin
(

ϕp
√
|p|
) =

√
|p| 1

sin
(

ϕp
√
|p|
) =

√
|p|csc

(
ϕp
√
|p|
)
.

Also, from the fourth item of Theorem 2.1

√
|p|csc

(
ϕp
√
|p|
)

=
√
|p|

 2sin
(

x
√
|p|
)

cosh(y |p|)

cosh(2y |p|)− cos
(

2x
√
|p|
) − 2I√

|p|

cos
(

x
√
|p|
)

sinh(y |p|)

cosh(2y |p|)− cos
(

2x
√
|p|
)


=
2 |p| 1√

|p|
sin
(

x
√
|p|
)

cosh(y |p|)

cosh(2y |p|)− cos
(

2x
√
|p|
) −2I

cos
(

x
√
|p|
)

sinh(y |p|)

cosh(2y |p|)− cos
(

2x
√
|p|
)

=
−2psinp (x)cosh(yp)
cosh(2yp)− cosp (2x)

+ I
2cosp (x)sinh(yp)

cosh(2yp)− cosp (2x)
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can be written by keeping ϕp
√
|p|= x

√
|p|+ Iy

√
|p| in mind. From above, we immediately get

cscp (ϕp) =
√
|p|csc

(
ϕp
√
|p|
)
=
−2psinp (x)cosh(yp)
cosh(2yp)− cosp (2x)

+ I
2cosp (x)sinh(yp)

cosh(2yp)− cosp (2x)
.

Theorem 2.6. For any elliptical complex number ψp = a+Ib∈Cp
∗, the equalities cosp (λp) =ψp, sinp (χp) =ψp, tanp (Γp) =

ψp, cotp (Λp) = ψp, secp (∆p) = ψp and cscp (ϒp) = ψp are satisfied by the principal elliptical complex angles

1. λp =
Arg(u+iv)√

|p|
+ I ln|u+iv|

p ,

2. χp =
Arg(ς+iτ)√

|p|
+ I ln|ς+iτ|

p ,

3. Γp =
Arg
(

pa2−p2b2+1
−pa2+p2b2+1−2b|p|

+i −2a
√
|p|

−pa2+p2b2+1−2b|p|

)
−2
√
|p|

+ I
ln
∣∣∣∣ pa2−p2b2+1
−pa2+p2b2+1−2b|p|

+i −2a
√
|p|

−pa2+p2b2+1−2b|p|

∣∣∣∣
2|p| ,

4. Λp =
Arg
(

−a2+pb2−p
−a2+pb2+2bp+p

+i 2a
√
|p|

−a2+pb2+2bp+p

)
−2
√
|p|

+ I
ln
∣∣∣∣ −a2+pb2−p
−a2+pb2+2bp+p

+i 2a
√
|p|

−a2+pb2+2bp+p

∣∣∣∣
2|p|

5. ∆p =
Arg(c+id)√

|p|
+ I ln|c+id|

p ,

6. ϒp =
Arg(e+i f )√

|p|
+ I ln|e+i f |

p ,

where u+ iv∈C, ς + iτ ∈C, c+ id ∈C and e+ i f ∈C are the principal complex values which are derived from the expressions(
a+ ib

√
|p|+

√(
a+ ib

√
|p|
)2
−1

)
,

(
i
(

a
√
|p|+ ib |p|

)
+

√
1−
(

a
√
|p|+ ib |p|

)2
)

,

(
1

a+ib
√
|p|

+
√

1(
a+ib
√
|p|
)2 −1

)
,√1− 1(

a√
|p|

+ib
)2 +

i(
a√
|p|

+ib
)
, respectively.

Proof. We will show that the first, third and last equalities are satisfied. Similar steps can be followed for the other equalities.

1. Let us take into consideration the principle value of

√(
a+ ib

√
|p|
)2
−1 and calculate the principle value of the

statement

(
a+ ib

√
|p|+

√(
a+ ib

√
|p|
)2
−1

)
. If we show this principle value with u+ iv, Theorem 1.2 gives the proof of

this item.
3. By considering Lemma 2.2 and the theory of complex trigonometric functions, we can write

tanp (x+ Iy) = a+ Ib ⇔ 1√
|p|

tan
(

x
√
|p|+ Iy

√
|p|
)
= a+ Ib

⇔ tan
(

x
√
|p|+ Iy

√
|p|
)
= a
√
|p|+ Ib

√
|p|

⇔ π
∗
(

tan
(

x
√
|p|+ Iy

√
|p|
))

= π
∗
(

a
√
|p|+ Ib

√
|p|
)

⇔ tan
(

π
∗
(

x
√
|p|+ Iy

√
|p|
))

= π
∗
(

a
√
|p|+ Ib

√
|p|
)

⇔ tan
(

x
√
|p|+ iy |p|

)
= a
√
|p|+ ib |p|

⇔ arctan
(

a
√
|p|+ ib |p|

)
= x
√
|p|+ iy |p|

⇔ i
2

log

 i+
(

a
√
|p|+ ib |p|

)
i−
(

a
√
|p|+ ib |p|

)
= x

√
|p|+ iy |p| .
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To get unique solutions for x and y is our aim. To do so, if we use the principal value of arctangent function which is determined
by employing the principal value of the logarithm function, we obtain

i
2

Log

(
a
√
|p|+ i(1+b |p|)

−a
√
|p|+ i(1−b |p|)

)
= x
√
|p|+ iy |p|

and so

i
2

Log

(
pa2− p2b2 +1

−pa2 + p2b2 +1−2b |p|
+ i

−2a
√
|p|

−pa2 + p2b2 +1−2b |p|

)
= x
√
|p|+ iy |p| .

From here, the equalities

i
2

ln

∣∣∣∣∣∣
(

pa2− p2b2 +1
)
+ i
(
−2a

√
|p|
)

−pa2 + p2b2 +1−2b |p|

∣∣∣∣∣∣+ iArg

(pa2− p2b2 +1
)
+ i
(
−2a

√
|p|
)

−pa2 + p2b2 +1−2b |p|

 = x
√
|p|+ iy |p|

Arg
(

pa2−p2b2+1
−pa2+p2b2+1−2b|p| + i −2a

√
|p|

−pa2+p2b2+1−2b|p|

)
−2

+ i
ln
∣∣∣∣ pa2−p2b2+1
−pa2+p2b2+1−2b|p| + i −2a

√
|p|

−pa2+p2b2+1−2b|p|

∣∣∣∣
2

= x
√
|p|+ iy |p|

can be written. Thus we find the unique solutions for x and y as follows

x =
Arg

(
pa2−p2b2+1

−pa2+p2b2+1−2b|p| + i −2a
√
|p|

−pa2+p2b2+1−2b|p|

)
−2
√
|p|

, y =
ln
∣∣∣∣ pa2−p2b2+1
−pa2+p2b2+1−2b|p| + i −2a

√
|p|

−pa2+p2b2+1−2b|p|

∣∣∣∣
2 |p|

.

Therefore,

Γp =

Arg
(

pa2−p2b2+1
−pa2+p2b2+1−2b|p| + i −2a

√
|p|

−pa2+p2b2+1−2b|p|

)
−2
√
|p|

+ I
ln
∣∣∣∣ pa2−p2b2+1
−pa2+p2b2+1−2b|p| + i −2a

√
|p|

−pa2+p2b2+1−2b|p|

∣∣∣∣
2 |p|

can be concluded.
6. By considering Lemma 2.2 and the theory of complex trigonometric functions, we can write

cscp (x+ Iy) = a+ Ib ⇔
√
|p|csc

(
x
√
|p|+ Iy

√
|p|
)
= a+ Ib

⇔ csc
(

x
√
|p|+ Iy

√
|p|
)
=

a√
|p|

+ I
b√
|p|

⇔ π
∗
(

csc
(

x
√
|p|+ Iy

√
|p|
))

= π
∗

(
a√
|p|

+ I
b√
|p|

)

⇔ csc
(

π
∗
(

x
√
|p|+ Iy

√
|p|
))

= π
∗

(
a√
|p|

+ I
b√
|p|

)
⇔ csc

(
x
√
|p|+ iy |p|

)
=

a√
|p|

+ ib

⇔ arccsc

(
a√
|p|

+ ib

)
= x
√
|p|+ iy |p|

⇔ −i log


√√√√√1− 1(

a√
|p|

+ ib
)2 +

i(
a√
|p|

+ ib
)
= x

√
|p|+ iy |p| .

The aim of us is to obtain unique solutions for x and y. For this reason, we use the principal value of arccosecant func-
tion. It is determined by employing the principal value of the logarithm function and the principal value of square-root
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function. By considering these cases, let us denote by e+ i f the principal complex value derived from the expression√1− 1(
a√
|p|

+ib
)2 +

i(
a√
|p|

+ib
)
. In this case, we have

−iLog(e+ i f ) = x
√
|p|+ iy |p| .

This equation yields the followings

−i(ln |e+ i f |+ iArg(e+ i f )) = x
√
|p|+ iy |p| ,

Arg(e+ i f )− i ln |e+ i f | = x
√
|p|+ iy |p| .

Then we get the unique solutions for x and y as

x =
Arg(e+ i f )√

|p|
, y =

ln |e+ i f |
p

.

Thus, we can conclude

ϒp =
Arg(e+ i f )√

|p|
+ I

ln |e+ i f |
p

.

By taking into account of Theorem 2.6, the following corollary can be given.

Corollary 2.7. For any elliptical complex number ψp = a+ Ib ∈ Cp
∗, the principal values of the inverse p-trigonometric

functions:

Arccosp (ψp) = λp

Arcsinp (ψp) = χp

Arctanp (ψp) = Γp

Arccotp (ψp) = Λp

Arcsecp (ψp) = ∆p

Arccscp (ψp) = ϒp

can be expressed.

3. Conclusion
In this paper, the trigonometric and p−trigonometric functions of elliptical complex variables are considered. Also, the
corresponding single-valued principle values of the inverse trigonometric and p−trigonometric functions are defined.

In the case p = −1, elliptical complex numbers correspond to complex numbers. As a result of this case, the elliptical
complex valued trigonometric functions can be seen as generalized form of the complex valued trigonometric functions which
have important roles in many areas of science.

In the future, the results obtained here may be used as a valuable tool in many areas of science just like in the case of
complex valued trigonometric functions.
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