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Abstract 

Given a finite universe and a collection of the subsets of the universe, the minimum hitting set of the 
collection is the smallest subset of the universe that has non-empty intersection with each set in the 
collection. Finding the minimum hitting set is an NP-Hard problem that has many real world 
applications.  In this study, we propose a progressive search-based approach to find the minimum 
hitting set of a given collection. The algorithm starts searching for the hitting sets of size 1 and 
increase the expected size of the minimum hitting set by a factor of d. After each unsuccessful search, 
it increases the expected size by d and generate the candidate sets with the expected size. After each 
successful search, the algorithm takes the average of last unsuccessful and successful searches and 
continue the searching with the new expected size. The algorithm terminates when the detected 
upper bound coincides with the detected lower bound. The effect of different values for d on the 
performance of the algorithm has been experimented on various data sets. Experimental results 
reveal that the proposed method effectively computes the minimum hitting set on real-world data 
and random dataset. 
Keywords: Minimum Hitting Set, NP-Hard Problems, Progressive Search 

 

Öz 

Sonlu bir evren ve evrenin alt kümelerinin bir birleşimi verildiğinde, birleşimin minimum isabet 
kümesi, birleşimdeki her kümeyle boş olmayan kesişimi olan evrenin en küçük alt kümesidir. 
Minimum isabet kümesini bulma, birçok gerçek dünya uygulaması olan bir NP-Hard problemidir. Bu 
çalışmada, verilen bir birleşimin minimum isabet kümesini bulmak için aşamalı arama tabanlı bir 
yaklaşım öneriyoruz. Algoritma, boyutu 1 olan isabet kümelerini aramayla başlar ve minimum isabet 
kümesinin beklenen boyutunu d faktörü kadar artırır. Her başarısız aramadan sonra, algoritma 
beklenen boyutu d kadar artırır ve beklenen boyuta sahip aday kümeleri oluşturur. Her başarılı 
aramadan sonra, algoritma son başarısız ve başarılı aramaların ortalamasını alır ve yeni beklenen 
boyutla aramaya devam eder. Algılanan üst sınır, algılanan alt sınırla çakıştığı zaman algoritma sona 
erer. d faktörünün farklı değerlerinin algoritmanın performansı üzerindeki etkisi çeşitli veri kümeleri 
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üzerinde denenmiştir. Deneysel sonuçlar, önerilen yöntemin gerçek dünya verileri ve rasgele veriler 
üzerindeki minimum isabet kümesini etkili bir şekilde hesapladığını ortaya koymaktadır. 
Anahtar Kelimeler: Minimum İsabet Kümesi, NP-Hard Problemler, Aşamalı Arama  

 

 

1. Introduction 

The minimum hitting set (MHS) problem is one 
of the NP-Hard optimization problems that has a 
wide range of applications in different real world 
problems such as Boolean algebra [1], model 
based diagnosis [2], computational biology [3], 
networking [4], and data mining [5]. In addition, 
many other problems can be reduced to the MHS 
problems. For example, transversal hypergraph 
problem [6], set cover problem [7], and 
independent set problem [8] are three important 
combinatorics problems that can be reduced to 
MHS. Given a universe U of items and a finite 
collection C={C1, C2,  C3,... ,Cm} of the subsets of the 
universe, the minimum hitting set H is the 
smallest subset of the universe that has non-
empty intersection with each set Ci C. 

For example, let U = {a, b, c, d, e, f, g, h, s, t} be a 
set of nodes in a computer network and assume 
that C = {{bgch}, {aefch}, {gebh}, {abh}, {adcf}} 
are all available communication paths between 
nodes n and t. In this case, the minimum hitting 
set of C will be the set of critical nodes used in all 
paths between nodes n and t. For this example, 
the minimum hitting set of C is H={a, h} since the 
intersection of H with each set in C contains at 
least one element. Therefore, if nodes a and h 
stop working for some reason, all paths between 
n and t will be disconnected. As another example, 
suppose that a complex system consists of 
several components, where each part consists of 
several building blocks that are commonly used 
in different components. In case of any error in 
such a system, we can create a collection of 
components that are working incorrectly and 
find the hitting set of this collection to detect the 
broken block faster. For example, let the building 
blocks of the system is represented by U = {a, b, 
c, d, e, f, g, h}, and the set of components which 
are not working properly is defined by C = {{c, d, 
g, h}, {a, b, g}, {e, f, h}, {e, d}}. The building blocks 
in the minimum hitting set of C, which is H={e, g}, 
are the first devices that need to be checked 
because these devices are used commonly in all 
malfunctioning parts. Figure 1 shows a graphical 
representation of collection C = {{c, d, g, h}, {a, b, 
g}, {e, f, h}, {e, d}} and its minimum hitting set. 

 

Figure 1. The MHS of C = {C1,C2,C3,C4} is H={e,g} 

 

Finding or generating the minimal hitting sets 
has been the subject of many research studies, 
and different heuristic-based and approximation 
algorithms have been proposed for these 
problems.  These algorithms can be grouped in 
two categories, which are tree-based and  
evolutionary algorithms. Reiter [9] introduced 
the first algorithm to provide an idea how to find  
the minimum hitting sets in 1987.  However, the 
algorithm consumed  too much time. Wotawa 
[10] introduced a variant of the Reiter's hitting 
set algorithm by reducing the graph. Pill and 
Quaritsch [11] used Boolean algebra to search 
the minimum hitting sets efficiently. Their 
methods greatly reduce the number of 
computations. Other algorithms have also been 
proposed for the problem [12, 13].  Although 
these algorithms compute the minimum hitting 
sets in a full accuracy, they are not suitable for 
computing the minimum hitting sets on a large 
scale. The algorithms generally create a large 
number of nodes and take a lot of run time to 
traverse all nodes, which is the main 
disadvantage. 

Evolutionary algorithms have been proposed to 
compute the minimum hitting set to overcome 
these difficulties. Genetic algorithms and their 
variations [14], particle swarm optimization 
[15] and improved differential evaluation 
algorithm [16] were initially proposed to 
compute the minimum hitting set using a fitness 
function. The hybrid versions of these 
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algorithms [17] and parallel hybrid algorithms 
are also proposed [18].  However, all of these 
algorithms have a major drawback in the sense 
that they may not guarantee exact minimum 
hitting sets. 

In this paper, we propose a progressive search 
based algorithm for the MHS Problem. The 
proposed algorithm starts from the smallest 
candidates for MHS and checks if any hitting set 
with the selected size exists in the collection. 
After each unsuccessful search, the algorithm 
increases the size of the candidate hitting sets by 
a factor of d and repeats the search for the new 
size. If a hitting set is detected, the algorithm 
takes the average of the MHS size in the last 
unsuccessful search and the MHS size in the 
current search, and it repeats the search with the 
new size until it finds the exact hitting set. The 
proposed algorithm efficiently computes the 
minimum hitting set on large scales especially 
when cardinality of the hitting sets is small, 
consistent with real world applications. 

The remaining parts of this paper have been 
organized as follows: Section 2 presents a formal 
definition of the problem and the required 
background. Section 3 includes the details of the 
proposed algorithm. Section 4 includes 
algorithm performance evaluation, and finally 
section 5 presents our conclusions. 

2. Problem Formulation 

Let |U| denote the number of items in universe U, 
i.e. n, and m=|C| denote the number of sets in C. 
Given a universe U of the items xi where i={1,...,n} 
and the set Cj where j={1,...,m}, the integer linear 
programming model of the minimum hitting set 
problem can be formulated as follows [19]: 

                  𝑚𝑖𝑛 ∑ 𝑥𝑖

𝑛

𝑖=1

 

such that 

∑ 𝑥𝑖

             𝑖∈𝐶𝑗

≥ 1, for all  𝐶𝑗  ∈  𝐶 

     𝑥𝑖 ∈ {0, 1},              𝑖 = {1, … , 𝑛} 

 

In the given formulation, the constraint ensures 
that every set Cj has at least an item xi of the 
hitting set, and the objective function minimizes 
the size of the hitting set. Note that the notation 
i Cj, means that the set Cj includes  item xi. 

3. Proposed Method 

The proposed algorithm performs a progressive 
search to find the minimum hitting set of a given 
collection. Initially, the algorithm tries to find a 
hitting set of size 1. If there is no such hitting set, 
the algorithm increases the expected hitting set 
size by a factor of d and search for the hitting sets 
of size d. If a hitting set of size d is not detected 
then we definitely have no hitting set with size 
less than d. In this way we may avoid checking  
all search space and find the solution more 
faster.  If a hitting set of size d is detected, the 
algorithm reduces the expected hitting set to the 
average of the last successful and the previous 
unsuccessful search. On the other hand, if the 
search for the hitting set of size d is unsuccessful, 
the algorithm increases the expected size by d 
again, and repeats the search.  For example, for 
d=4, the algorithm searches for the hitting set of 
sizes 1, 4, 8, 12 and so on. If all searches up to size 
8 is unsuccessful, and the procedure has found a 
hitting set of size 12, then the  size of the 
minimum hitting set is a value between 8 and 12. 
In this case, a  good strategy is to search for the 
average of the upper and lower bound size, 
which is (8+12)/2=10. If the sum of the lower 
bound and upper bound is odd  we take the floor 
of the average. If we find a hitting set of size 10, 
we should check the size 9 to ensure that no 
hitting set of smaller size exists. However, if we 
cannot find a hitting set of size 10, then we 
should also check hitting sets of size 11. If no 
hitting set of size 11 is detected then the 
minimum hitting set size is exactly 12.  

The steps of the proposed algorithm have been 
presented in Algorithm 1. The proposed 
ProgressiveSearch procedure accepts a progress 
factor d, the set collection C, the universe U and 
also an output variable H for holding the 
detected minimum hitting set.  In this procedure, 
k is the size of the candidate hitting sets in the 
last unsuccessful search (lower bound), p is the 
size in the current search, q is the size in the last 
successful search (upper bound), i is the index of 
the next hitting set of size p, and H is the index of 
selected items from the universe for the 
candidate hitting set. 

The algorithm calls the GenerateNextSubset 
procedure to get the next hitting set candidate of 
size p. This function generates a new set of size p 
based on the i value. If it can generate a candidate 
hitting set, the function returns a nonnegative  
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Algorithm 1: Minimum Hitting Set 

1: procedure   ProgressiveSearch(d, C, U, H): 
2:    k ⃪ 1,  p ⃪ 1, i ⃪ -1,  q ⃪ |U|, H ⃪ [ ] 
3:    do 
4:        do i ⃪ GenerateNextSubset(p, |U|, I, H) 
5:        while i ≥ 0 and Intersect(H, C, U) < |C| 
6:        if i <0 then 
7:               k ⃪  p+1, H ⃪ [ ] 
8:                if d > 1 then 
9:                    if p+d <q  then p ⃪ p+d 
10:                 else p ⃪ (p+q)/2 
11:              else p ⃪ k 
12:      else  if q > p then q ⃪ p-1, p ⃪ (k+q)/2 
13:      else h ⃪ |H| 
14:   while h = 0 
15:   return h 
 

16: procedure   GenerateNextSubset(r,n,I, H[]): 
17:    if i =-1 then 
18:        for  i ⃪ 0 to d do  H[i] ⃪ i 
19:        i ⃪ r-1 
20:   else if H[0] < n-r  then 
21:       H[i] ⃪ H[i] + 1 
22:       while i < r-1 do 
23:              H[i+1] = H[i] + 1 
24:              i ⃪ i+1 
25:   else i ⃪ -1 
26:   while i > 0 and H[i] = n-r+i do  i ⃪ I-1 
27:   return i 
 

28: procedure Intersect(H, C,U): 
29:      e ⃪ 0 
30:      for each S ∈ C do 
31:           if S  U[H] ≠  then e ⃪ e+1 
32:        return e 

value. Otherwise, it returns -1 to indicate that all 
candidate sets of size p have been generated.   
After generating a new candidate set in H, we 
check the intersection of H and every element in 
C using the Intresect procedure. The Intresect 
procedure returns the number of sets in C that 
have non empty intersection with H. Therefore, 
Intresect returns |C| if H is a hitting set.  

Generating new candidate sets of size d 
continues until  finding a hitting set (Intresect 
returns |C|) or checking all possible sets of size p 
and getting a negative value in i. After 
terminating the while loop, if i  0, then we have 
found a hitting set of size p. In this case, if q>p, we 
continue the search for finding a set of size 
(k+q)/2. Otherwise, we return H as the final 
minimum hitting set. If i < 0, then the size of the 
minimum hitting set is larger than p. In this case,  

Table 1. Properties of the Accident dataset 

Name |U| |C| 

ac200k 64 81 

ac150k 64 447 

ac130k 81 990  

ac110k 81 2000 

ac90k 336 4322 

ac70k 336 10968 

ac50k 336 32207 

ac30k 442 135439 

we set k to the current p value to determine the 
lower bound and increase p by a factor of d.  If 
increasing p by a factor of d exceeds q, we set p 
as the average of its current value and q.  

The GenerateNextSubset procedure accepts the 
set size r, the universe size n, the next set index i 
and generates a set in H. This procedure finds the 
i'th combination of size r from the set of size n. 
This function stores the index of the selected 
items in H. The  Intresect procedure finds the 
intersection of every set in C with H, and returns 
the number of sets with non empty intersections. 
Set H contains the indices of the selected 
elements from U for the candidate hitting set. 

4. Experimental Results 

This section presents the results of the proposed 
algorithm for computing the minimum hitting 
sets on random and real-world data. We 
generate 240 random instances with respect to 
three parameters, which are the cardinality of 
universe |U|, the number of sets |C|, and the 
cardinality of the minimum hitting set |H|. The 
intervals for these parameters are given below: 

 |U| changes between 20 and 100 
 |C| changes between 2000 and 10000 
 |H| changes between 1 and 10 

The real-world data, which is called as 
"accidents", present anonymized information 
about several hundred thousand accidents in 
Flanders during the period 1991–2000.  This 
data set is retrieved from the FIMI repository 
[20]. The properties of the data set is given in 
Table 1. 

All computations were executed on a 2.5 GHz 
single processor PC computer with 16 GB RAM  
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                                     (a)                                                                                           (b) 

Figure 2. (a) Cardinality of Universe vs Time (in seconds) and (b) Set Cardinality vs Time (in seconds). 

 

under Ubuntu operating system. The proposed 
algorithm was coded in C programming 
language. Three different progress factors called 
as Base1, Base2, Base3 where the progress factor 
d equals 1,2 and 3 respectively, are used to 
analyze the proposed progressive search 
algorithm.  The proposed algorithm achieves 
100% minimum hitting set calculation accuracy, 
and the results are evaluated based on run time.  

First, we evaluate time results on random data. 
To perform a precise analysis of the search 
methods, we average the run time results for 
each size of universe |U| and the number of sets 
|C|. Figure 2a shows the time of Base1, Base2 and 
Base3 against the number of items |U|. The 
performances of all search methods are similar 
and the times from all search methods fit a linear 
function of the number of items. Yet, Base2 is 
slightly faster than Base1 and Base3, and the 
differences increase as the number of items n 
increases. Figure 2b shows the time results of 
Base1, Base2 and Base3 against the number of 
sets |C|. It can be seen that Base2 performs better 
than Base1 and Base3. Base1 and Base2 can find 
solutions around 2 seconds, whereas Base3 
requires 2x more  time. 

Average of the run time results of Base1, Base2, 
and Base3 are presented in Figure 3 as the 
cardinality of the hitting set changes. For |U|=20, 
when the size of the hitting set is 4, Base3 is the  
fastest. However, as the size of the set increases, 
Base2 becomes faster than Base1 and Base3. 
When the number of items |U|>20, the search 

methods fail to find solutions for |H|=10 in 1200 
seconds. Thus, we report the results when the 
size of hitting sets equals to 1, 4 and 7. For 
|U|=40, although Base2 is a bit faster, the search 
methods have similar performances for the 
obtained solutions. For |U|=60,  when the size of 
hitting set equals to 1 and 7, all search methods 
have comparable performances, however when 
the size of hitting set equals to 4, Base2 is faster 
than Base1 and Base3. For |U|=80, Base2 is 1 s. 
faster than Base1 and 2 s. faster Base3 when the 
size of hitting sets equals to 4 and 7. Lastly, for 
|U|=100, Base2 is again faster than Base1 and 
Base3, and the difference between Base1 and 
Base3 increases as the size of the hitting sets 
increases. In conclusion, when the size of the 
hitting sets increases, Base2 seems to perform 
better than Base1 and Base3.  

Taking everything into account, Base3 has the 
worst performance on the random data set. 
Although Base1 and Base2 have a comparable 
performance as the number of the items 
increases, when the number of the sets and the 
size of the hitting sets increase, Base2 has a 
better performance than Base1. 

Next, we evaluate time results on the real-world 
data. Time results for the accident dataset are  
shown in Table 2.  The proposed method is able 
to  find the minimum hitting set accurately even 
if the cardinality of the universe and the number 
of sets are high.  Note that the time results for 
Base1 are  shown only since the cardinality of the 
hitting set is 1 for this dataset. 
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    (a)                                                                                           (b) 

 

  
(c)                                                                                           (d) 

 

                                                         
                                                                                              (e)  

Figure 3. Time results with respect to cardinality of the hitting sets where |U| = 20, 40, 60, 80, 100. 
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Table 2. Time results in seconds 

Name time in seconds 

ac_200k 0.002 

ac_150k 0.009 

ac_130k 0.03 

ac_110k 0.05 

ac_90k 1.08 

ac_70k 2.74 

ac_50k 8.08 

ac_30k 54.2 

 

5. Discussion and Conclusion 

In this paper, we study the minimum hitting set 
problem. A hitting set for a collection of finite 
sets is a set that has at least one common element 
with each set in the collection. The minimum 
hitting set problem seeks for a hitting set of 
minimum size. We present a fast exact algorithm 
for finding the minimum hitting set in a given 
collection of sets. The proposed algorithm 
performs a progressive search on solution space. 
We analyze the performance of three different 
progress factors, namely Base1, Base2 and Base3, 
where the progress factor d are equals 1,2 and 3, 
respectively. We conduct a comprehensive 
computational experiment on large-scale 
instances of the problem to test the performance 
of these search methods. Considering the 
performance of the search methods on the 
obtained solutions, Base2 is found to be the most 
effective search for finding the minimum hitting 
set with regard to execution times. Designing 
efficient reduction rules to improve the 
performance of progressive search might be an 
interesting topic as future work. 
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