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Abstract

Given a finite universe and a collection of the subsets of the universe, the minimum hitting set of the
collection is the smallest subset of the universe that has non-empty intersection with each set in the
collection. Finding the minimum hitting set is an NP-Hard problem that has many real world
applications. In this study, we propose a progressive search-based approach to find the minimum
hitting set of a given collection. The algorithm starts searching for the hitting sets of size 1 and
increase the expected size of the minimum hitting set by a factor of d. After each unsuccessful search,
it increases the expected size by d and generate the candidate sets with the expected size. After each
successful search, the algorithm takes the average of last unsuccessful and successful searches and
continue the searching with the new expected size. The algorithm terminates when the detected
upper bound coincides with the detected lower bound. The effect of different values for d on the
performance of the algorithm has been experimented on various data sets. Experimental results
reveal that the proposed method effectively computes the minimum hitting set on real-world data
and random dataset.

Keywords: Minimum Hitting Set, NP-Hard Problems, Progressive Search

Oz

Sonlu bir evren ve evrenin alt kiimelerinin bir birlesimi verildiginde, birlesimin minimum isabet
kiimesi, birlesimdeki her kiimeyle bos olmayan kesisimi olan evrenin en kii¢iik alt kiimesidir.
Minimum isabet kiimesini bulma, bir¢ok gercek diinya uygulamasi olan bir NP-Hard problemidir. Bu
calismada, verilen bir birlesimin minimum isabet kiimesini bulmak i¢in asamali arama tabanlh bir
yaklasim dneriyoruz. Algoritma, boyutu 1 olan isabet kiimelerini aramayla baslar ve minimum isabet
kiimesinin beklenen boyutunu d faktorii kadar artirir. Her basarisiz aramadan sonra, algoritma
beklenen boyutu d kadar artirir ve beklenen boyuta sahip aday kiimeleri olusturur. Her basarili
aramadan sonra, algoritma son basarisiz ve basarili aramalarin ortalamasini alir ve yeni beklenen
boyutla aramaya devam eder. Algilanan iist sinir, algilanan alt sinirla ¢akistig1 zaman algoritma sona
erer. d faktoriiniin farkl degerlerinin algoritmanin performansi tizerindeki etkisi ¢esitli veri kiimeleri
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lizerinde denenmistir. Deneysel sonuglar, 6nerilen yontemin gercek diinya verileri ve rasgele veriler
tizerindeki minimum isabet kiimesini etkili bir sekilde hesapladigini ortaya koymaktadir.
Anahtar Kelimeler: Minimum Isabet Kiimesi, NP-Hard Problemler, Asamali Arama

1. Introduction

The minimum hitting set (MHS) problem is one
of the NP-Hard optimization problems that has a
wide range of applications in different real world
problems such as Boolean algebra [1], model
based diagnosis [2], computational biology [3],
networking [4], and data mining [5]. In addition,
many other problems can be reduced to the MHS
problems. For example, transversal hypergraph
problem [6], set cover problem [7], and
independent set problem [8] are three important
combinatorics problems that can be reduced to
MHS. Given a universe U of items and a finite
collection C={Cj, Cz, C3,...,Cm} of the subsets of the
universe, the minimum hitting set H is the
smallest subset of the universe that has non-
empty intersection with each set C; eC.

For example,let U={a, b, c, d e f g h, s t} be a
set of nodes in a computer network and assume
that C = {{bgch}, {aefch}, {gebh}, {abh}, {adcf}}
are all available communication paths between
nodes n and t. In this case, the minimum hitting
set of C will be the set of critical nodes used in all
paths between nodes n and t. For this example,
the minimum hitting set of C is H={a, h} since the
intersection of H with each set in C contains at
least one element. Therefore, if nodes a and h
stop working for some reason, all paths between
nand t will be disconnected. As another example,
suppose that a complex system consists of
several components, where each part consists of
several building blocks that are commonly used
in different components. In case of any error in
such a system, we can create a collection of
components that are working incorrectly and
find the hitting set of this collection to detect the
broken block faster. For example, let the building
blocks of the system is represented by U = {a, b,
¢, d, e f, g h}, and the set of components which
are not working properly is defined by C = {{c, d,
g, h}, {a b, g}, {e f, h}, {e d}}. The building blocks
in the minimum hitting set of C, which is H={e, g},
are the first devices that need to be checked
because these devices are used commonly in all
malfunctioning parts. Figure 1 shows a graphical
representation of collection C={{c, d, g, h}, {a, b,
g} {e f, h}, {e d}} and its minimum hitting set.
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Figure 1. The MHS of C={C1,(2,C3,C4} is H={e,g}

Finding or generating the minimal hitting sets
has been the subject of many research studies,
and different heuristic-based and approximation
algorithms have been proposed for these
problems. These algorithms can be grouped in
two categories, which are tree-based and
evolutionary algorithms. Reiter [9] introduced
the first algorithm to provide an idea how to find
the minimum hitting sets in 1987. However, the
algorithm consumed too much time. Wotawa
[10] introduced a variant of the Reiter's hitting
set algorithm by reducing the graph. Pill and
Quaritsch [11] used Boolean algebra to search
the minimum hitting sets efficiently. Their
methods greatly reduce the number of
computations. Other algorithms have also been
proposed for the problem [12, 13]. Although
these algorithms compute the minimum hitting
sets in a full accuracy, they are not suitable for
computing the minimum hitting sets on a large
scale. The algorithms generally create a large
number of nodes and take a lot of run time to
traverse all nodes, which is the main
disadvantage.

Evolutionary algorithms have been proposed to
compute the minimum hitting set to overcome
these difficulties. Genetic algorithms and their
variations [14], particle swarm optimization
[15] and improved differential evaluation
algorithm [16] were initially proposed to
compute the minimum hitting set using a fitness
function. The hybrid versions of these
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algorithms [17] and parallel hybrid algorithms
are also proposed [18]. However, all of these
algorithms have a major drawback in the sense
that they may not guarantee exact minimum
hitting sets.

In this paper, we propose a progressive search
based algorithm for the MHS Problem. The
proposed algorithm starts from the smallest
candidates for MHS and checks if any hitting set
with the selected size exists in the collection.
After each unsuccessful search, the algorithm
increases the size of the candidate hitting sets by
a factor of d and repeats the search for the new
size. If a hitting set is detected, the algorithm
takes the average of the MHS size in the last
unsuccessful search and the MHS size in the
current search, and it repeats the search with the
new size until it finds the exact hitting set. The
proposed algorithm efficiently computes the
minimum hitting set on large scales especially
when cardinality of the hitting sets is small,
consistent with real world applications.

The remaining parts of this paper have been
organized as follows: Section 2 presents a formal
definition of the problem and the required
background. Section 3 includes the details of the
proposed algorithm. Section 4 includes
algorithm performance evaluation, and finally
section 5 presents our conclusions.

2. Problem Formulation

Let |U| denote the number of items in universe U,
i.e. n, and m=|C| denote the number of sets in C.
Given a universe U of the items x; where i={1,...,n}
and the set (; where j={1,..,m}, the integer linear
programming model of the minimum hitting set
problem can be formulated as follows [19]:

n

min Z X

i=1
such that
x; =1, for all G ec
iec;
x; €{0,1}, i={1,..,n}

In the given formulation, the constraint ensures
that every set C; has at least an item x; of the
hitting set, and the objective function minimizes
the size of the hitting set. Note that the notation
ie (j, means that the set (jincludes item x;i.

3. Proposed Method

The proposed algorithm performs a progressive
search to find the minimum hitting set of a given
collection. Initially, the algorithm tries to find a
hitting set of size 1. If there is no such hitting set,
the algorithm increases the expected hitting set
size by a factor of d and search for the hitting sets
of size d. If a hitting set of size d is not detected
then we definitely have no hitting set with size
less than d. In this way we may avoid checking
all search space and find the solution more
faster. If a hitting set of size d is detected, the
algorithm reduces the expected hitting set to the
average of the last successful and the previous
unsuccessful search. On the other hand, if the
search for the hitting set of size d is unsuccessful,
the algorithm increases the expected size by d
again, and repeats the search. For example, for
d=4, the algorithm searches for the hitting set of
sizes 1,4, 8,12 and so on. If all searches up to size
8 is unsuccessful, and the procedure has found a
hitting set of size 12, then the size of the
minimum hitting set is a value between 8 and 12.
In this case, a good strategy is to search for the
average of the upper and lower bound size,
which is (8+12)/2=10. If the sum of the lower
bound and upper bound is odd we take the floor
of the average. If we find a hitting set of size 10,
we should check the size 9 to ensure that no
hitting set of smaller size exists. However, if we
cannot find a hitting set of size 10, then we
should also check hitting sets of size 11. If no
hitting set of size 11 is detected then the
minimum hitting set size is exactly 12.

The steps of the proposed algorithm have been
presented in Algorithm 1. The proposed
ProgressiveSearch procedure accepts a progress
factor d, the set collection C, the universe U and
also an output variable H for holding the
detected minimum hitting set. In this procedure,
k is the size of the candidate hitting sets in the
last unsuccessful search (lower bound), p is the
size in the current search, q is the size in the last
successful search (upper bound), i is the index of
the next hitting set of size p, and H is the index of
selected items from the universe for the
candidate hitting set.

The algorithm calls the GenerateNextSubset
procedure to get the next hitting set candidate of
size p. This function generates a new set of size p
based on the i value. If it can generate a candidate
hitting set, the function returns a nonnegative
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Algorithm 1: Minimum Hitting Set

1: procedure ProgressiveSearch(d, C, U, H):
2: ke1, pelie-1, q«|U|,He[]

3: do

4: do i < GenerateNextSubset(p, |U|, I, H)
5:  whileiz 0 and Intersect(H, C, U) < |C|
6: if i <0 then

7: ke p+l, He[]

8: ifd > 1 then

9: if p+d <q then p < p+d

10: else p < (p+q)/2

11: elsep <k

12: else if q>p then q < p-1, p < (k+q)/2
13: else h« |H|

14: whileh=0

15: returnh

16: procedure GenerateNextSubset(r,n,l, H[]):
17: ifi=-1then

18: for i< 0toddo HJ[i]«i

19: ier-1

20: elseif H[0] < n-r then

21:  HJ[i] «H[] +1

22:  whilei<r-1do

23: H[i+1] =H[i] + 1

24: i—i+l

25: elsei«-1

26: whilei>0and H[i] =n-r+ido i« I-1
27: returni

28: procedure Intersect(H, C,U):

29: e<0

30: foreachSeCdo

31: if SN U[H] # & then e —e+1
32: return e

Table 1. Properties of the Accident dataset

Name |U] |C|
ac200k 64 81
ac150k 64 447
ac130k 81 990
acl110k 81 2000
ac90k 336 4322
ac70k 336 10968
ac50k 336 32207
ac30k 442 135439

value. Otherwise, it returns -1 to indicate that all
candidate sets of size p have been generated.
After generating a new candidate set in H, we
check the intersection of H and every element in
C using the Intresect procedure. The Intresect
procedure returns the number of sets in C that
have non empty intersection with H. Therefore,
Intresect returns |C| if H is a hitting set.

Generating new candidate sets of size d
continues until finding a hitting set (Intresect
returns |C|) or checking all possible sets of size p
and getting a negative value in i After
terminating the while loop, if i > 0, then we have
found a hitting set of size p. In this case, if g>p, we
continue the search for finding a set of size
(k+q)/2. Otherwise, we return H as the final
minimum hitting set. If i < 0, then the size of the
minimum hitting set is larger than p. In this case,

we set k to the current p value to determine the
lower bound and increase p by a factor of d. If
increasing p by a factor of d exceeds g, we set p
as the average of its current value and gq.

The GenerateNextSubset procedure accepts the
set size r, the universe size n, the next set index i
and generates a setin H. This procedure finds the
i'th combination of size r from the set of size n.
This function stores the index of the selected
items in H. The Intresect procedure finds the
intersection of every set in C with H, and returns
the number of sets with non empty intersections.
Set H contains the indices of the selected
elements from U for the candidate hitting set.

4. Experimental Results

This section presents the results of the proposed
algorithm for computing the minimum hitting
sets on random and real-world data. We
generate 240 random instances with respect to
three parameters, which are the cardinality of
universe |U|, the number of sets |C|, and the
cardinality of the minimum hitting set |H|. The
intervals for these parameters are given below:

e |U| changes between 20 and 100
e |C| changes between 2000 and 10000
e |H| changes between 1 and 10

The real-world data, which is called as
"accidents", present anonymized information
about several hundred thousand accidents in
Flanders during the period 1991-2000. This
data set is retrieved from the FIMI repository
[20]. The properties of the data set is given in
Table 1.

All computations were executed on a 2.5 GHz
single processor PC computer with 16 GB RAM
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Figure 2. (a) Cardinality of Universe vs Time (in seconds) and (b) Set Cardinality vs Time (in seconds).

under Ubuntu operating system. The proposed
algorithm was coded in C programming
language. Three different progress factors called
as Basel, Base2, Base3 where the progress factor
d equals 1,2 and 3 respectively, are used to
analyze the proposed progressive search
algorithm. The proposed algorithm achieves
100% minimum hitting set calculation accuracy,
and the results are evaluated based on run time.

First, we evaluate time results on random data.
To perform a precise analysis of the search
methods, we average the run time results for
each size of universe |U| and the number of sets
|C|. Figure 2a shows the time of Basel, Base2 and
Base3 against the number of items |U|. The
performances of all search methods are similar
and the times from all search methods fit a linear
function of the number of items. Yet, Base2 is
slightly faster than Basel and Base3, and the
differences increase as the number of items n
increases. Figure 2b shows the time results of
Basel, Base2 and Base3 against the number of
sets |C|. It can be seen that Base2 performs better
than Basel and Base3. Basel and Base2 can find
solutions around 2 seconds, whereas Base3
requires 2x more time.

Average of the run time results of Basel, Base2,
and Base3 are presented in Figure 3 as the
cardinality of the hitting set changes. For |U|=20,
when the size of the hitting set is 4, Base3 is the
fastest. However, as the size of the set increases,
Base2 becomes faster than Basel and Base3.
When the number of items |U|>20, the search

methods fail to find solutions for |[H|=10 in 1200
seconds. Thus, we report the results when the
size of hitting sets equals to 1, 4 and 7. For
|U|=40, although Base?2 is a bit faster, the search
methods have similar performances for the
obtained solutions. For |U|=60, when the size of
hitting set equals to 1 and 7, all search methods
have comparable performances, however when
the size of hitting set equals to 4, Base2 is faster
than Basel and Base3. For |U|=80, Base2 is 1 s.
faster than Basel and 2 s. faster Base3 when the
size of hitting sets equals to 4 and 7. Lastly, for
|U|=100, Base2 is again faster than Basel and
Base3, and the difference between Basel and
Base3 increases as the size of the hitting sets
increases. In conclusion, when the size of the
hitting sets increases, Base2 seems to perform
better than Basel and Base3.

Taking everything into account, Base3 has the
worst performance on the random data set.
Although Basel and Base2 have a comparable
performance as the number of the items
increases, when the number of the sets and the
size of the hitting sets increase, Base2 has a
better performance than Basel.

Next, we evaluate time results on the real-world
data. Time results for the accident dataset are
shown in Table 2. The proposed method is able
to find the minimum hitting set accurately even
if the cardinality of the universe and the number
of sets are high. Note that the time results for
Basel are shown only since the cardinality of the
hitting set is 1 for this dataset.
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Table 2. Time results in seconds

Name time in seconds
ac_200k 0.002
ac_150k 0.009
ac_130k 0.03
ac_110k 0.05

ac_ 90k 1.08
ac_70k 2.74
ac_50k 8.08
ac_30k 54.2

5. Discussion and Conclusion

In this paper, we study the minimum hitting set
problem. A hitting set for a collection of finite
setsis a set that has atleast one common element
with each set in the collection. The minimum
hitting set problem seeks for a hitting set of
minimum size. We present a fast exact algorithm
for finding the minimum hitting set in a given
collection of sets. The proposed algorithm
performs a progressive search on solution space.
We analyze the performance of three different
progress factors, namely Basel, Base2 and Base3,
where the progress factor d are equals 1,2 and 3,
respectively. We conduct a comprehensive
computational experiment on large-scale
instances of the problem to test the performance
of these search methods. Considering the
performance of the search methods on the
obtained solutions, Base2 is found to be the most
effective search for finding the minimum hitting
set with regard to execution times. Designing
efficient reduction rules to improve the
performance of progressive search might be an
interesting topic as future work.
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