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Abstract
We characterize disjoint hypercyclic and supercyclic tuples of unilateral Rolewicz-type
operators on c0(N) and ℓp(N), p ∈ [1, ∞), which are a generalization of the unilateral
backward shift operator. We show that disjoint hypercyclicity and disjoint supercyclicity
are equivalent among a subfamily of these operators and disjoint hypercyclic unilateral
Rolewicz-type operators always satisfy the Disjoint Hypercyclicity Criterion. We also
characterize simultaneous hypercyclic unilateral Rolewicz-type operators on c0(N) and
ℓp(N), p ∈ [1, ∞).
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1. Introduction
Let N denote the set of positive integers, X be a separable and infinite dimensional

Banach space over the real or complex scalar field K, and let B(X) denote the algebra
of bounded linear operators on X. An operator T ∈ B(X) is called hypercyclic if there
exists x ∈ X such that {T nx : n ∈ N} is dense in X and such a vector x is said to be a
hypercyclic vector for T .

The first example of a hypercyclic operator on a Banach space was given in 1969 by
Rolewicz [11], who showed that if B is the unweighted unilateral backward shift on ℓ2(N),
then λB is hypercyclic if and only if |λ| > 1. Recall that B is defined as Ben = en−1, for
n ≥ 2 and Be1 = 0 where {ej : j ≥ 1} is the canonical basis.

One can generalize these operators to unilateral weighted shifts by multiplying the
shifted vector by a weight sequence (wn)n∈N of scalars in K, that is, Bwen = wnen−1,
for n ≥ 2 and Bwe1 = 0. In a fundamental paper in the area, Salas [12] completely
characterized the hypercyclic unilateral weighted backward shifts on ℓp with 1 ≤ p < ∞
in terms of their weight sequences.

Another way to generalize Rolewicz’s operators is to change the way these operators
shift the vectors. In 2015, Bongiorno, Darji, and Di Piazza [6] studied the dynamics of
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operators which they call as the Rolewicz-type operators: Let the Rolewicz-type operator
λTf : X → X be defined as

λTf x = λTf (x1, x2, . . .) = (λxf(1), λxf(2), . . .),

where λ ∈ K, X = c0 or ℓp(N), 1 ≤ p < ∞, and f : N → N is a strictly increasing function
with f(1) ̸= 1. It is easy to see that, a Rolewicz-type operator λTf is hypercyclic if and
only if |λ| > 1.

The aim of this paper is to study joint dynamics of tuples of Rolewicz-type operators
on c0(N) and ℓp(N), 1 ≤ p < ∞. In particular, we will characterize disjoint hypercyclic
and simultaneous hypercyclic Rolewicz-type operators on these spaces.

Disjointness in hypercyclicity is introduced independently by Bernal [2] and by Bès and
Peris [5] in 2007. For N ≥ 2, operators T1, . . . , TN ∈ B(X) are called disjoint hypercyclic
or d-hypercyclic if the direct sum operator T1 ⊕ · · · ⊕ TN has a hypercyclic vector of the
form (x, . . . , x) ∈ XN . Such a vector x ∈ X is called a d-hypercyclic vector for T1, . . . , TN .
If the set of d-hypercyclic vectors of T1, . . . , TN is dense, then T1, . . . , TN are called to be
densely d-hypercyclic.

The similar and weaker notion of simultaneous hypercyclicity is introduced and studied
by Bernal and Jung [3] in 2018. Among many examples, they gave a characterization for
simultaneous hypercyclicity of different powers of weighted shifts.

Definition 1.1. [3, Definition 2.1] For N ≥ 2, the operators T1, . . . , TN ∈ B(X) are called
simultaneously hypercyclic (or s-hypercyclic) if there exists x ∈ X such that

{(T n
1 x, . . . , T n

N x) : n ∈ N} ⊃ ∆
(
XN

)
,

where ∆
(
XN

)
:= {(x, x, . . . , x) : x ∈ X} denotes the diagonal of XN . Such a vector x

is said to be a s-hypercyclic vector of T1, . . . , TN . If the set of s-hypercyclic vectors of
T1, . . . , TN is dense in X, then T1, . . . , TN ∈ B(X) are called as densely s-hypercyclic.

In Section 2, we will charcterize disjoint hypercyclic and disjoint supercyclic (see the
definition in the beginning of Section 2) Rolewicz-type operators on c0 and ℓp(N), 1 ≤ p <
∞. In Section 3, we will give a characterization for simultaneous hypercyclic Rolewicz-type
operators.

For more on disjoint hypercyclic and disjoint supercyclic weighted shifts, one can see
[4, 5, 9, 10]. For more on hypercyclic operators and chaotic linear dynamics, one can see
the books [1] and [8].

In the rest of the Introduction, we introduce the notation and results that we will use
throughout the paper.

For any positive integer n, we define [n] := {1, 2, . . . , n}, f(A) := {f(n) : n ∈ A} for
A ⊂ N, fn := f ◦ . . . ◦ f which is f composed with itself n many times, and f−n as the
inverse of fn defined on its image fn(N).

One way to prove the d-hypercyclicity of a tuple of operators is to show that they are
d-topologically transitive. T1, . . . , TN ∈ B(X) are called as d-topologically transitive if for
any non-empty open sets U, V1, . . . , VN ⊂ X, there exists a positive integer n such that
U ∩ T −n

1 (V1) ∩ . . . ∩ T −n
N (VN ) ̸= ∅. Bès and Peris [5] proved that operators T1, . . . , TN are

densely d-hypercyclic if and only if they are d-topologically transitive. In [13], contrary
to the single operator case, Sanders and Shkarin showed the existence of d-hypercyclic
operators which are not densely d-hypercyclic and, therefore, fail to be d-topologically
transitive.

Next, we recall another necessary condition for d-hypercyclicity, a natural extension of
the Hypercyclicity Criterion which has played a significant role in linear dynamics.

Definition 1.2. Let (nk) be a strictly increasing sequence of positive integers. We say
that T1, . . . , TN ∈ B(X) satisfy the Disjoint Hypercyclicity Criterion with respect to (nk)
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provided there exist dense subsets X0, X1, . . . , XN of X and mappings Sm,k : Xm → X
with 1 ≤ m ≤ N, k ∈ N satisfying

T nk
m −→

k→∞
0 pointwise on X0,

Sm,k −→
k→∞

0 pointwise on Xm, and

(T nk
m Si,k − δi,m IdXm) −→

k→∞
0 pointwise on Xm (1 ≤ i ≤ N).

(1.1)

In general, we say that T1, . . . , TN satisfy the d-Hypercyclicity Criterion if there exists
some sequence (nk) for which (1.1) is satisfied.

Proposition 1.3. [5, Theorem 2.7] T1, T2, . . . , TN ∈ B(X) satisfy the Disjoint Hyper-
cyclicity Criterion with respect to a sequence (nk) if and only if for each r ∈ N, the direct
sum operators

⊕r
j=1 T1, . . . ,

⊕r
j=1 TN are d-topologically mixing on XN . In particular, this

implies that T1,. . . , TN are densely d-hypercyclic.

We now state an analogous criterion for simultaneous hypercyclicity from [3]. Recall
that the convex hull conv(A) of a subset A of a vector space X is the smallest convex
subset of X containing A.

Definition 1.4. [3, Definition 3.6] Let (nk) ⊂ N be a strictly increasing sequence and
Tj ∈ B(X) (j = 1, . . . , N). We say that T1,. . ., TN satisfy the Simultaneous Hypercyclicity
Criterion with respect to (nk) if there are subsets X0 ⊂ X and W0 ⊂ XN such that X0 is
dense in X and

W0 ⊃ ∆(XN )

as well as mappings Rk : W0 → X (k ∈ N) such that
(i) T nk

j → 0 pointwise on X0 as k → ∞ (j = 1, . . . , N),
(ii) Rk → 0 pointwise on W0 as k → ∞, and
(iii) for every w = (w1, . . . , wN ) ∈ W0 and every j ∈ {1, . . . , N} there is yj ∈

conv({w1 . . . , wN }) such that T nk
j Rkw → yj as k → ∞.

Proposition 1.5. [3, Theorem 3.7] Let T1, . . . , TN ∈ B(X). If T1,. . ., TN satisfy the
Simultaneous Hypercyclicity Criterion with respect to some (nk) ⊂ N, then T1,. . ., TN are
densely s-hypercyclic.

2. Disjoint hypercyclic Rolewicz-type operators
In this section, we give a full characterization for d-hypercyclicity and d-supercyclicity of

Rolewicz-type operators and show that these two notions are equivalent among a subfamily
of these operators. Recall that T ∈ B(X) is called supercyclic if there exists a vector x ∈ X
such that the set {λT nx : λ ∈ K and n ∈ N} is dense in X. Such a vector x is said to be
a supercyclic vector for T .

For N ≥ 2, operators T1, . . . , TN ∈ B(X) are called disjoint supercyclic or d-supercyclic
if the direct sum operator T1⊕· · ·⊕TN has a supercyclic vector of the form (x, . . . , x) ∈ XN .
Such a vector x ∈ X is called a d-supercyclic vector for T1, . . . , TN . If the set of d-
supercyclic vectors of T1, . . . , TN is dense, then T1, . . . , TN are called to be densely d-
supercyclic.

Definition 2.1. Let (nk) be a strictly increasing sequence of positive integers. The op-
erators T1, . . . , TN ∈ B(X) are said to satisfy the Disjoint Supercyclicity Criterion with
respect to the sequence (nk) if there exist dense subsets X0, X1, . . . , XN of X, a sequence
(µk) in KN, and mappings Sm,k : Xm → X with 1 ≤ m ≤ N , k ∈ N so that for each
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1 ≤ m ≤ N we have

µkT nk
m −→

k→∞
0 pointwise on X0,

1
µk

Sm,k −→
k→∞

0 pointwise on Xm, and

(T nk
m Si,k − δi,m IdXm) −→

k→∞
0 pointwise on Xm (1 ≤ i ≤ N).

(2.1)

Proposition 2.2. [10, Proposition 1.11] Let T1, T2, . . . , TN be operators on X that satisfy
the Disjoint Supercyclicity Criterion with respect to a sequence (nk). Then, T1,. . . , TN

are densely d-supercyclic.

Now, we can give our first characterization.

Theorem 2.3. Let λ1Tf1 , . . . , λN TfN
be Rolewicz-type operators on c0 or ℓp(N), 1 ≤ p <

∞, with 1 < |λ1| ≤ · · · ≤ |λN |. Then, the following are equivalent:
(i) λ1Tf1 , . . . , λN TfN

are d-supercyclic.
(ii) λ1Tf1 , . . . , λN TfN

are d-hypercyclic.
(iii) λ1Tf1 , . . . , λN TfN

are densely d-hypercyclic.
(iv) λ1Tf1 , . . . , λN TfN

satisfy the Disjoint Hypercyclicity Criterion.
(v) For any k ∈ N there exists arbitrarily large n ∈ N such that

(a) if 1 ≤ t < s ≤ N with |λt| < |λs|, then fn
t ([k]) ∩ fn

s (N) = ∅, and
(b) if 1 ≤ t < s ≤ N with |λt| = |λs|, then fn

t ([k]) ∩ fn
s (N) = fn

s ([k]) ∩ fn
t (N) = ∅.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) are obvious and (iv) =⇒ (iii) follows from
Proposition 1.3.

(i) =⇒ (v):
Let k ∈ N and x = (x1, x2, . . .) be a d-supercyclic vector for λ1Tf1 , . . . , λN TfN

. Choose
0 ̸= α ∈ K and a large enough n ∈ N such that for all i ∈ [N ] we have

∥αλn
i T n

fi
x − i(e1 + · · · + ek)∥ < δ (2.2)

where 1/2 > δ > 0 satisfies

t

s
− 1

3N
<

t − δ

s + δ
<

t + δ

s − δ
<

t

s
+ 1

3N
(2.3)

and
δ

s − δ
<

1
3N

(2.4)

for any 1 ≤ t, s ≤ N , and n satisfies ∣∣∣∣λs

λt

∣∣∣∣n s − δ

s + δ
> 2N (2.5)

for any 1 ≤ t < s ≤ N with |λt| < |λs|.
Observe that, by (2.2), we have that for all t ∈ [N ] and j ∈ [k]

t − δ < |αλn
t xfn

t (j)| < t + δ (2.6)

and for j > k

|αλn
t xfn

t (j)| < δ. (2.7)

Now assume |λt| < |λs| for some 1 ≤ t < s ≤ N and, by way of contradiction, suppose
that fn

t (j0) ∈ fn
s (N) for some j0 ∈ [k]. We have two cases:

Case 1. Assume ℓ := f−n
s (fn

t (j0)) ∈ [k]. Then, by (2.3), (2.5), and (2.6),
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N + 1
3N

>
s + δ

t − δ
>

|αλn
s xfn

s (j0)|
|αλn

t xfn
t (j0)|

=
∣∣∣∣λs

λt

∣∣∣∣n |αλn
s xfn

s (j0)|
|αλn

s xfn
s (f−n

s (fn
t (j0)))|

>

∣∣∣∣λs

λt

∣∣∣∣n |αλn
s xfn

s (j0)|
|αλn

s xfn
s (ℓ)|

>

∣∣∣∣λs

λt

∣∣∣∣n s − δ

s + δ
> 2N,

which is a contradition.
Case 2. Assume ℓ := f−n

s (fn
t (j0)) > k. Then, by (2.3), (2.4), (2.6), and (2.7),

1
N

− 1
3N

<
t − δ

s + δ
<

|αλn
t xfn

t (j0)|
|αλn

s xfn
s (j0)|

=
∣∣∣∣ λt

λs

∣∣∣∣n |αλn
s xfn

s (f−n
s (fn

t (j0)))|
|αλn

s xfn
s (j0)|

<
|αλn

s xfn
s (ℓ)|

|αλn
s xfn

s (j0)|

<
δ

s − δ
<

1
3N

,

which is again a contradition. Therefore, we can conclude that fn
t ([k]) ∩ fn

s (N) = ∅.
Now let |λt| = |λs| for some 1 ≤ t < s ≤ N and, by way of contradiction, assume that

fn
t (j0) ∈ fn

s (N) or fn
s (j0) ∈ fn

t (N) for some j0 ∈ [k]. Both of these assumptions will lead
us to a similar contradiction so it is enough to consider the first one. Again, we have two
cases. Assuming that ℓ := f−n

s (fn
t (j0)) ∈ [k], by similar calculations above and by (2.3),

(2.5), and (2.6), we have
N − 1

N
+ 1

3N
>

|αλn
t xfn

t (j0)|
|αλn

s xfn
s (j0)|

> 1 − 1
3N

,

which gives us a contradition. On the other hand, assuming ℓ := f−n
s (fn

t (j0)) > k, by
(2.3), (2.4), (2.6), and (2.7), we have

1
N

− 1
3N

<
|αλn

t xfn
t (j0)|

|αλn
s xfn

s (j0)|
<

1
3N

,

which again gives a contradition and finishes the proof of the implication.
(v) =⇒ (iv):
Let X = {x(k) : k ∈ N} be a countable dense set in ℓp(N) such that x(k) ∈ span{e1, . . . , ek}.

Then for 1 ≤ j ≤ N and for all x ∈ X, we have λn
j T n

fj
x → 0 as n → ∞. Now we define

Sj := 1
λj

Ffj
where Ffj

: ℓp(N) → ℓp(N) is given as

Ffj
(x1, x2, . . .) := (0, . . . , 0, x1, 0, . . . , 0, x2, 0, . . .), (2.8)

where xk is in the f(k)th position, for k ∈ N. Since |λj | > 1, Sjx → 0 as n → ∞ and
λjTfj

Sjx = x for 1 ≤ j ≤ N and for all x ∈ X.
Observe that for 1 ≤ t, s ≤ N

λn
t T n

ft
Sn

s ek =
(

λt

λs

)n

T n
ft

F n
fs

ek =


(

λt
λs

)n
e

f
[−n]
t (f [n]

s (k)), if f
[n]
s (k) ∈ Im(f [n]

t ),
0, otherwise.

(2.9)

Now, for each k ∈ N we choose a big enough nk ∈ N such that for 1 ≤ t < s ≤ N with
|λt| = |λs| we have λnk

t T nk
ft

Snk
s x(k) = λnk

s T nk
fs

Snk
t x(k) = 0 and for 1 ≤ t < s ≤ N with

|λt| < |λs| we have λnk
s T nk

fs
Snk

t x(k) = 0 and

∥λnk
t T nk

ft
Snk

s x(k)∥ ≤
∣∣∣∣ λt

λs

∣∣∣∣nk

∥x(k)∥ <
1
k

.
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Therefore, it is easy to see that λ1Tf1 , . . . , λN TfN
satisfy the Disjoint Hypercyclicity

Criterion with respect to the sequence (nk)∞
k=1 where Xj = X and Sj,n = Sn

j for 1 ≤ j ≤
N . �

Recall that T1, T2 are said to be d-weakly mixing if the direct sums T1 ⊕ T1, T2 ⊕ T2 are
d-topologically transitive on X × X.

Example 2.4. Let T1 = λB = λTf1 and T2 = µB2 = µTf2 , where f1(n) = n + 1 and
f2(n) = n + 2 for n ∈ N. The following assertions are equivalent:

(1) the operators T1 and T2 are d-hypercyclic;
(2) the operators T1 and T2 are d-weakly mixing;
(3) 1 < |λ| < |µ|.

It is easy to see this using Theorem 2.3 and Proposition 1.3.

Example 2.5. Let f1, f2 : N → N be defined as f1(n) = 2n and f2(n) = 2n + 1 for n ∈ N.
Then, since fn

1 (N) ∩ fn
2 (N) = ∅ for all n ∈ N, λTf1 , µTf2 are d-hypercyclic if and only if

|λ|, |µ| > 1.

Of course, the condition |λ1|, . . . , |λN | > 1 is not necessary for d-supercyclicity. For
non-zero scalars, we can give the following characterization:

Theorem 2.6. Let λ1Tf1 , . . . , λN TfN
be Rolewicz-type operators on c0 or ℓp(N), 1 ≤ p <

∞, with 0 < |λ1| ≤ · · · ≤ |λN |. Then, the following are equivalent:
(i) λ1Tf1 , . . . , λN TfN

are d-supercyclic.
(ii) λ1Tf1 , . . . , λN TfN

are densely d-supercyclic.
(iii) λ1Tf1 , . . . , λN TfN

satisfy the d-Supercyclicity Criterion.
(iv) For any k ∈ N there exists arbitrarily large n ∈ N such that

(a) if 1 ≤ t < s ≤ N with |λt| < |λs|, then fn
t ([k]) ∩ fn

s (N) = ∅, and
(b) if 1 ≤ t < s ≤ N with |λt| = |λs|, then fn

t ([k]) ∩ fn
s (N) = fn

s ([k]) ∩ fn
t (N) = ∅.

Proof. (i) =⇒ (iv):
The proof of this implication is just like the proof of the implication (i) =⇒ (v) in

Theorem 2.3 since the condition |λ1|, . . . , |λN | > 1 is not used in the proof.
(iv) =⇒ (iii):
Let µ = max{ 1

|λ1| , . . . , 1
|λN |} and (µk)k∈N = ((1 + µ)k)k∈N. Let X = {x(k) : k ∈ N} be a

countable dense set in ℓp(N) such that x(k) ∈ span{e1, . . . , ek}. Then, for 1 ≤ j ≤ N and
for all x ∈ X, we have µnλn

j T n
fj

x → 0 as n → ∞.
Now we define Sj := 1

λj
Ffj

, where Ffj
: ℓp(N) → ℓp(N) is defined as in (2.8). Thus,

1
µn

Sn
j → 0 as n → ∞ and λjTfj

Sjx = x for 1 ≤ j ≤ N and for all x ∈ X.
Now, by similar calculations as in the proof of the implication (v) =⇒ (iv) in Theorem

2.3, we can see that for each k ∈ N we choose a big enough nk ∈ N such that for 1 ≤
t < s ≤ N with |λt| = |λs|, we have λnk

t T nk
ft

Snk
s x(k) = λnk

s T nk
fs

Snk
t x(k) = 0. Also, for

1 ≤ t < s ≤ N with |λt| < |λs|, we have λnk
s T nk

fs
Snk

t x(k) = 0 and ∥λnk
t T nk

ft
Snk

s x(k)∥ < 1
k .

Therefore, we see that λ1Tf1 , . . . , λN TfN
satisfy the Disjoint Supercyclicity Criterion

with respect to the sequences (nk)∞
k=1 in N and (µk)∞

k=1 in K, where Xj = X and Sj,n = Sn
j

for 1 ≤ j ≤ N .
(iii) =⇒ (ii) follows from Proposition 2.2 and the implication (ii) =⇒ (i) is obvious. �

3. Simultaneous hypercyclic Rolewicz-type operators
In this section, we characterize simultaneous hypercyclic Rolewicz-type operators.

Theorem 3.1. Let λ1Tf1 , . . . , λN TfN
be Rolewicz-type operators on c0 or ℓp(N), 1 ≤ p <

∞, with 1 < |λ1| ≤ · · · ≤ |λN |. Then, the following are equivalent:
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(i) λ1Tf1,. . ., λN TfN
are s-hypercyclic.

(ii) λ1Tf1,. . ., λN TfN
are densely s-hypercyclic.

(iii) λ1Tf1,. . ., λN TfN
satisfy the Simultaneous Hypercyclicity Criterion.

(iv) For every ε > 0 and for every k ∈ N there exists arbitrarily large nk ∈ N such that
(a) if 1 ≤ t < s ≤ N with |λt| < |λs|, then fnk

t ([k]) ∩ fnk
s (N) = ∅.

(b) if 1 ≤ t < s ≤ N with |λt| = |λs|, then

fnk
t ([k]) ∩ fnk

s (N \ [k]) = fnk
s ([k]) ∩ fnk

t (N \ [k]) = ∅

and one of the following is satisfied
(b1) fnk

t ([k]) ∩ fnk
s ([k]) = ∅,

(b2) for every ℓ ∈ fnk
t ([k]) ∩ fnk

s ([k]),

f−nk
t (ℓ) = f−nk

s (ℓ)

and ∣∣∣∣( λt

λs

)nk

− 1
∣∣∣∣ < ε.

Proof. (i) =⇒ (iv):
Let ε > 0, k ∈ N and let x = (x1, x2, . . .) be a s-hypercyclic vector for λ1Tf1 , . . . , λN TfN

.
Choose a large enough nk such that for i = 1, 2, . . . , N we have

∥λnk
i T nk

fi
x −

k∑
j=1

j ej∥ < δ, (3.1)

where 0 < δ < 1
k+2 and for all t, s ∈ {1, 2, . . . , N}, nk satisfies(

k + δ

1 − δ

)2
<

∣∣∣∣λs

λt

∣∣∣∣nk

(3.2)

if |λt| < |λs|.
Observe that, by (3.1), we have that for i = 1, 2, . . . , N and j ∈ [k]

j − δ <
∣∣∣λnk

i xf
nk
i (j)

∣∣∣ < j + δ (3.3)

and for j > k ∣∣∣λnk
i xf

nk
i (j)

∣∣∣ < δ. (3.4)

Now assume |λt| < |λs| and, by way of contradiction, suppose that fnk
t (j0) ∈ fnk

s (N)
for some j0 ∈ [k]. We have two cases:

Case 1. Assume ℓ := f−nk
s (fnk

t (j0)) ∈ [k]. Then, by (3.2) and (3.3),

k + δ

1 − δ
≥ j0 + δ

j0 − δ
>

∣∣∣λnk
s xf

nk
s (j0)

∣∣∣∣∣∣λnk
t xf

nk
t (j0)

∣∣∣ =
∣∣∣∣λs

λt

∣∣∣∣nk
∣∣∣∣∣λnk

s xf
nk
s (j0)

λnk
s xf

nk
s (ℓ)

∣∣∣∣∣
>

∣∣∣∣λs

λt

∣∣∣∣nk j0 − δ

ℓ + δ

>

(
k + δ

1 − δ

)2 1 − δ

k + δ

= k + δ

1 − δ
,

which is a contradition.
Case 2. Assume ℓ := f−nk

s (fnk
t (j0)) > k. Then, by (3.3) and (3.4),
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1 − δ

k + δ
≤ j0 − δ

j0 + δ
<

∣∣∣λnk
t xf

nk
t (j0)

∣∣∣∣∣∣λnk
s xf

nk
s (j0)

∣∣∣ =
∣∣∣∣ λt

λs

∣∣∣∣nk
∣∣∣∣∣ λnk

s xf
nk
s (ℓ)

λnk
s xf

nk
s (j0)

∣∣∣∣∣
<

δ

j0 − δ

≤ δ

1 − δ
,

which contradicts δ < 1
k+2 .

Therefore, we can conclude that fnk
t ([k]) ∩ fnk

s (N) = ∅.
Now let |λt| = |λs|. Note that the reasoning in Case 2 works here too. Consequently,

because of the symmetry, we have fmk
t ([k]) ∩ fnk

s (N \ [k]) = fnk
s ([k]) ∩ fnk

t (N \ [k]) = ∅.
Now, by way of contradiction, assume that ℓ ∈ fnk

t ([k]) ∩ fnk
s ([k]) and j1 = f−nk

t (ℓ) >
f−nk

s (ℓ) = j2. Then, by (3.3),

j1 − δ

j2 + δ
<

∣∣∣λnk
t xf

nk
t (j1)

∣∣∣∣∣∣λnk
s xf

nk
s (j2)

∣∣∣ =
∣∣∣∣ λt

λs

∣∣∣∣nk
∣∣∣∣xℓ

xℓ

∣∣∣∣ = 1,

which gives us a contradiction. Therefore, we conclude that f−nk
t (ℓ) = f−nk

s (ℓ).
Now we have two cases:
If fnk

t ([k]) ∩ fnk
s ([k]) = ∅ for all k ∈ N, then (iv)(b1) is satisfied.

Otherwise there exists a k0 such that
fnk

t ([k0]) ∩ fnk
s ([k0]) ̸= ∅ for all k ≥ k0. (3.5)

If this is not the case, then it is possible to choose a subsequence of (nk) for which (b1) is
satisfied. By (3.5), there exist j0 ∈ [k0] and (mk) ⊂ (nk) such that

fmk
t (j0) = fmk

s (j0) for all k ≥ k0.

By (3.1), it follows that as for all k ≥ k0

j0 − δ <
∣∣∣λmk

t xf
mk
t (j0)

∣∣∣ < j0 + δ

and
j0 − δ <

∣∣∣λmk
s xf

mk
s (j0)

∣∣∣ < j0 + δ.

Consequently,∣∣∣∣( λt

λs

)mk

− 1
∣∣∣∣ =

∣∣∣∣∣λmk
t xf

mk
t (j0)

λmk
s xf

mk
s (j0)

− 1
∣∣∣∣∣ =

∣∣∣∣∣λmk
t xf

mk
t (j0) − j0 + j0 − λmk

s xf
mk
s (j0)

λmk
s xf

mk
s (j0)

∣∣∣∣∣ <
2δ

j0 − δ
.

Then we rename (mk) as (nk) and (iv) is satisfied for (nk).
(iv) =⇒ (iii):
We will give the proof for two Rolewicz-type operators λ1Tf1 , λ2Tf2 for brevity. The

general case follows similarly.
If (iv)(a) is satisfied, then, from Theorem 2.3, it follows that λ1Tf1 , λ2Tf2 satisfy the

Disjoint Hypercyclicity Criterion and consequently, by [3, Remark 3.8.3], they satisfy the
Simultaneous Hypercyclicity Criterion.

If conditions of (iv)(b) are satisfied for some strictly increasing sequence (mk), let X :=
ℓp(N) and X0 be the set of finitely supported sequences in X. It follows that X0 = X. Let
W0 := ∆(X2

0 ) ⊂ X2. Note that W0 = ∆(X2
0 ) = ∆(X2). Now we want to show that λ1Tf1 ,

λ2Tf2 satisfy the conditions of the Simultaneous Hypercyclicity Criterion (Definition 1.4).
It is clear that (λiTfi

)mk → 0 pointwise on X0 as k → ∞ for i = 1, 2. Define, for any
k ∈ N, the mapping Rk : W0 → X as follows. Let Ak := {j ∈ [k] : fmk

1 (j) = fmk
2 (j)}.
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If x = (x1, x2, . . . , xN , 0, 0 . . .) ∈ X0 and w = (x, x) ∈ W0, then

Rkw :=


N∑

j=1

xj

λmk
1

ef
mk
1 (j) +

N∑
j=1

j /∈Ak

xj

λmk
2

ef
mk
2 (j), k ≥ N

0, k < N

.

Since 1 < |λ1| = |λ2|, Rk → 0 pointwise on W0 as k → ∞.
Note that

(λ1Tf1)mk Rkw =
N∑

j=1

xj

λmk
1

λmk
1 ej =

N∑
j=1

xj = x,

so (λ1Tf1)mk Rkw → x as k → ∞.
Note also that

(λ2Tf2)mk Rkw =
N∑

j=1
j∈Ak

xj

λmk
1

λmk
2 ej +

N∑
j=1

j /∈Ak

xj

λmk
2

λmk
2 ej =

N∑
j=1

j∈Ak

xj

(
λ2
λ1

)mk

ej +
N∑

j=1
j /∈Ak

xjej .

If (b1) is satisfied then Ak = ∅ for all k ∈ N and (λ2Tf2)mk Rkw = x. Otherwise
(λ2Tf2)mk Rkw → x,

since
(

λ1
λ2

)mk → 1, as k → ∞.
Therefore, λ1Tf1 , λ2Tf2 satisfy the Simultaneous Hypercyclicity Criterion.
(iii) =⇒ (ii): This is true by Proposition 1.5.
(ii) =⇒ (i): This is obvious. �

Example 3.2. Consider the Rolewicz-type operators T1 = λTf and T2 = λe2πiαTf , where
λ > 1 and α ∈ R. If α is rational, then there are infinitely many n ∈ N such that
e2πiαn = 1. On the other hand, it is well known that the set {e2πiαn : n ∈ N} is dense in
the unit circle {z : |z| = 1} ⊂ C if and only if α is irrational. Therefore, for any α, there
exists an increasing sequence (nk) of natural numbers such that e2πiαnk → 1 as k → ∞.
Therefore, T1, T2 are s-hypercyclic. On the other hand, using Theorem 2.3, it is easy to
see that these operators are not d-hypercyclic.

Corollary 3.3. [3, Proposition 5.3] For 1 ≤ ℓ ≤ N , let λℓ ∈ K and rℓ ∈ N with r1 ≤ r2 ≤
. . . ≤ rN . Then, λ1Br1 , . . . , λN BrN is s-hypercyclic on c0 or ℓp(N), 1 ≤ p < ∞, if and
only if

(1) 1 < |λj | for all j ∈ {1, . . . , N},
(2) |λj | < |λj+1| for all j ∈ {1, . . . , N − 1}\A,
(3) |λj | = |λj+1| for all j ∈ A,

where A = {j ∈ {1, . . . , N − 1} : rj = rj+1}.

Proof. Observe that λℓB
rℓ = λℓTfℓ

where fℓ(n) = n + rℓ for 1 ≤ ℓ ≤ N . First, assume
that the conditions (1), (2), and (3) hold. For any j ∈ {1, . . . , N − 1}\A and k ∈ N, let
nk = k. Then, for any m ∈ [k] we have

fnk
j (m) = m + krj ≤ k + krj = k(rj + 1) ≤ krj+1 /∈ {n + krj+1 : n ≥ 1} = fnk

j+1(N).

Also, for j ∈ A, as argued in Example 3.2, there exists (nk) such that (λj+1/λj)nk → 1.
Thus, conditions of Theorem 3.1 are satisfied and λ1Br1 , . . . , λN BrN are s-hypercyclic.

Now assume that λ1Br1 , . . . , λN BrN are s-hypercyclic. In particular each λjBrj is
hypercyclic and |λj | = |λj |∥Brj ∥ = ∥λjBrj ∥ > 1. Using Theorem 3.1, it is easy to see the
rest of the conditions are satisfied. �

One can generalize Rolewicz-type operators further by multiplying the shifted vector
with a weight sequence:
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Definition 3.4. Let w be a weight sequence and let f : N → N be a strictly increasing
map with f(1) ̸= 1. The unilateral pseudo-shift Tf,w on c0(N) or ℓp(N), 1 ≤ p < ∞, is
given by

Tf,w(
∞∑

j=1
xjej) =

∞∑
j=1

wf(j)xf(j)ej ,

where {ej : j ≥ 1} is the canonical basis.

In 2000, Grosse-Erdmann [7] studied the chaotic dynamics of pseudo-shifts. Wang and
Zhou [16], in 2018, characterized d-hypercyclicity of the tuples of pseudo-shifts of the
form Tf,w1 , . . . , Tf,wN

which have the same inducing maps. In 2019, Wang and Liang [15]
characterized d-supercyclicity of the tuples of pseudo-shifts of the same form. Wang, Chen
and Zhou [14], also in 2019, characterized d-hypercyclicity and d-supercyclicity of tuples of
pseudo-shifts of the form T r1

f1,w1
, . . . , T rN

fN ,wN
where powers are pairwise distinct. Observe

that none of these families cover the tuples of Rolewicz-type operators that we study in
this paper.

We finish the paper with the following open question.

Question 3.5. Which pseudo-shifts (raised to the same power) are disjoint hypercyclic
or simultaneous hypercyclic on c0(N) or ℓp(N), 1 ≤ p < ∞?

Acknowledgment. The first author was partially supported by Istanbul Technical
University Scientific Research Project [grant no. TAB-2017-40552]. The second author
was partially supported by Mimar Sinan Fine Arts University Scientific Research Project
[grant no. 2016-18].

References
[1] F. Bayart and E. Matheron, Dynamics of linear operators, Cambridge Tracts in Math-

ematics 179. Cambridge University Press, Cambridge, 2009.
[2] L. Bernal-González, Disjoint hypercyclic operators, Stud. Math. 182 (2), 113–130,

2007.
[3] L. Bernal-González and A. Jung, Simultaneous universality, J. Approx. Theory, 237,

43–65, 2018.
[4] J. Bès, Ö. Martin, and R. Sanders, Weighted shifts and disjoint hypercyclicity, J.

Operator Theory, 72 (1), 15–40, 2014.
[5] J. Bès and A. Peris, Disjointness in hypercyclicity, J. Math. Anal. Appl. 336, 297–315,

2007.
[6] D. Bongiorno, U.B. Darji and L. Di Piazza, Rolewicz-type chaotic operators, J. Math

Anal. Appl. 431 (1), 518–528, 2015.
[7] K.-G. Grosse-Erdmann, Hypercyclic and chaotic weighted shifts, Studia Math. 139

(1), 47–68, 2000.
[8] K.-G. Grosse-Erdmann and A. Peris, Linear chaos, Universitext: Tracts in mathe-

matics. Springer, New York, 2011.
[9] Ö. Martin, Disjoint hypercyclic and supercyclic composition operators, PhD thesis,

Bowling Green State University, 2010.
[10] Ö. Martin and R. Sanders, Disjoint supercyclic weighted shifts, Integr. Equ. Oper.

Theory, 85, 191–220, 2016.
[11] S. Rolewicz, On orbits of elements, Studia Math. 32, 17–22, 1969.
[12] H. Salas, Hypercyclic weighted shifts, Trans. Amer. Math. Soc. 347 (3), 993–1004,

1995.
[13] R. Sanders and S. Shkarin, Existence of disjoint weakly mixing operators that fail

to satisfy the Disjoint Hypercyclicity Criterion, J. Math. Anal. Appl. 417, 834-855,
2014.



Disjoint and simultaneous hypercyclic Rolewicz-type operators 1619

[14] Y. Wang, C. Chen, and Z-H. Zhou, Disjoint hypercyclic weighted pseudoshift operators
generated by different shifts, Banach J. Math. Anal. 13 (4), 815–836, 2019.

[15] Y. Wang and Y-X Liang, Disjoint supercyclic weighted pseudo-shifts on Banach se-
quence spaces, Acta Math. Sci. 39B (4), 1089–1102, 2019.

[16] Y. Wang and Z-H. Zhou, Disjoint hypercyclic weighted pseudo-shifts on Banach se-
quence spaces, Collect. Math. 69, 437–449, 2018.


