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Abstract

In 2003, Connor and Grosse-Erdmann [1] introduced the definition of G-method by using G-linear functions instead of limit, based on
various types of convergence on real numbers. Later on, some mathematicians examined this concept in topological groups. Then new
concepts, which were important in topology such as G-sequential compactness and G-sequential connected, were defined and some properties
of those concepts are investigated. S. Lin and L. Liu defined G-method notion by taking any set instead of topological group in 2016. In this
paper, we give definition of clG∗ -closure which is more general than G-closure of a set with the help of hereditarily class. Then we define the
notion of τG∗ -topology and give the concepts of G∗-connected and G∗-component. Besides, we examine the relationship between these
concepts and previously given concepts.
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1. Introduction

The concept of sequential convergence and any concept related to sequential convergence play a crucial role not only in analysis and
topology, but also in other disciplines including mathematics such as computer science, information theory, biological science and dynamic
systems. In addition to the types of ordinary convergence at a point and uniform convergence, new types of convergence have been studied
by many mathematicians. Firtsly, the concept of statistical convergence was given by Zygmund [19] in his article Trigonometric Series in
1935. This concept was developed in 1951 by Fast and Steinhaus [6]. Then Di Maio and Koc̆inac [13] defined the concept of statistical
convergence in topological spaces. Besides, in topological spaces, Tang and Lin [17] studied on statistical sequential convergence and
statistical Frechet-Uryshon space. In addition to the concepts of convergence and statistical convergence, there are also a wide variety of
convergence concepts; for example A-convergence of a matrix method in summability theory, almost convergence in functional analysis,
Cesaro convergence in real analysis, I -convergence concepts defined in real analysis with the help of the ideal concept. Based on the various
convergence features in real analysis, convergence was expanded by Connor and Grosse-Erdmann [1] in 2003 using the G-linear continuous
function instead of the limit. This G-function is also called G-method. With the help of the G-method, the concepts of G-convergence and
G-continuity have also been defined and have expanded to some known results in the literature. Later, H. Çakallı [4, 5] studied on this
concept in generalized spaces by defining the concepts of G-sequential compactness and G-sequential connected in topological groups,
which provides the feature of being the first countable space by using topology and algebra. In addition, in 2014, O. Mucuk [14] also studied
on G-sequential open and G-sequential neighborhood notions in the first countable topological groups. In 2016, instead of examining those
concepts in the first countable topological groups, Shou Lin and Li Liu [9] defined G-method, G-submethod, G-open cluster, G-neighborhood,
G-kernel, G-hull and gave the concepts of G-continuity in an arbitrary set. Besides, with the help of these concepts, they gave the definition
of G-topology and examined the relationships and differences between the concept of openness defined in topological spaces and the concept
of G-openness. In his studies, published in 2016 and 2017, Liu [10, 11] examined the characteristics of the concepts of G-neighborhood,
G-accumulation point, G-boundaries and G-continuity at a point in an arbitrary set. In 2018, Liu [12] was given the definitions of G-kernel
open, G-kernel neighborhood and G-kernel accumulation points and the properties of these concepts were examined. In 2019, Wu and Li
[18] generalized the properties related to the concepts of G-connectedness, G-hull, G-kernel and studied the concept of G-topological group.
In this paper, we give the definition of G∗-closed, which is a more general structure than the G-closed definition of a set using concept of
heredity class on a set. Then, we obtained G∗-topology, which is a finer generalized topological structure than G-topology, obtained with
the help of G∗-closed sets. With the help of this definition, the concepts of connected and component was examined under a more general
framework.
Throughout the paper, X be a set, s(X) denote the set all X-valued sequences, i.e. x = {xn}n∈N is a sequence with each xn ∈ X . If f :
X → Y is a mapping, then f (x) = { f (xn)}n∈N for each x = {xn}n∈N ∈ s(X). If X is a topological space, the set of all X-valued sequences

This paper is supported by Ege University Scientific Research Projects Coordination Unit. Project Number: FYL-2020-21056
Email addresses: farukgurcan@hotmail.com (Faruk Gürcan), aysegul.caksu.guler@ege.edu.tr (Ayşegül Çaksu Güler)
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convergent sequences is denoted by c(X), and we put limx = limn→∞ xn for any x = {xn}n∈N ∈ c(X). All topological spaces are assumed to
satisfy the T2-separation property.

2. Preliminaries

Definition 2.1. [2] A generalized topology on a set X is collection µ of subsets of X such that /0 ∈ µ and µ is closed under arbitrary unions.

Definition 2.2. [8, 3] Let X be a non empty set. Then, a family of sets H ⊂ P(X) is said to be an ideal in X if

(a) A, B ∈H imply A∪B ∈H ,

(b) A ∈H and B⊂ A imply B ∈H .
In this paper, instead of the ideal, we consider a hereditary class, i.e. a class /0 6= H ⊆ P(X) satisfying (b) only.

Definition 2.3. [9] Let X be a non empty set.

(a) A method ( G-method) on X is a function G : cG(X)→ X defined on a subset cG(X) of s(X). A sequences x = {xn}n∈N in said to be
G-convergent to l ∈ X if x ∈ cG(X) and G(x)=l.

(b) Let X be a topological space.

(i) A method G : cG(X)→ X is called regular if c(X) ⊂ cG(X) and G(x)= limx for each x ∈ c(X).

(ii) A method G : cG(X)→ X is called subsequential if whenever x ∈ cG(X) is G-convergent to l ∈ X, then there exists a subsequence y
∈ c(X) of x with limy = l.

Definition 2.4. [9] Let X be a non empty set, G be a method on X and A ⊂ X.

(a) The G-hull of A is defined as the set G(x) : x ∈ s(A)∩ cG(X)} and G-hull of A is denoted by [A]G.

(b) A is called a G-closed set if whenever x ∈ s(A)∩ cG(X), then G(x) ∈ A.

(c) A is called a G-open set if X \A is a G-closed set.

(d) The G-closure of A is defined as intersection of G-closed sets containing A, and the G-closure of A is denoted by ClG(A).

(e) The G-interior of A is defined as union of G-open sets contained in A, and the G-interior of A is denoted by intG(A).

Proposition 2.5. [9] Let G be a method on a set X and A ⊂ X. Then,

x ∈ClG(A) if and only if U of X with x ∈ intG(U) intersects A.

Definition 2.6. [9] Let X be a set, G be a method on X and Y ⊂ X. Put cG|Y (Y ) = {x ∈ s(Y )∩ cG(X) : G(x) ∈ Y}. The function
G |Y : cG|Y (Y )→ Y is called the submethod of G on the subset Y of X.

Definition 2.7. [9] Let G be a method on a set X. Put τG = {A ⊂ X : A is G− open in X}. The family τG is called the G-generalized
topology on the set X.

Definition 2.8. [9] Let G be a method on a set X. The family τG is called the G-generalized topology on the set X.

(a) τG is called the G− topology on the set X if it is topology on X.

(b) If X carries a topology τ then (X ,τ) is called G− topologizable if τ=τG.

Definition 2.9. [9] Let G be a method on a topological space X.

(a) X is said to be G-sequential space if every G-closed set in X is closed.

(b) X is said to be G-Fréchet space if Cl(A) ⊂ [A]G for each A⊂ X.

Definition 2.10. [4] A non-empty subset A of a topological group X is called G-sequentially connected if there are no non-empty, disjoint
G-sequentially closed subsets U and V of X meeting A such that A⊂U ∪V . Particularly X is called G- sequentially connected, if there are
no non-empty, disjoint G-sequentially closed subsets of X whose union is X.

Definition 2.11. [4] The largest G-sequentially connected subset containing a point x in topological group X is called G-sequentially
connected component of x and denoted by CG

x .
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3. G∗-closed sets

In this section, we define local function of a set with respect to hereditary class and G-method on a arbitrary set X . By using this definition,
we give the concept of G∗-closure which is generalization of the concept of G-closure of a set.

Definition 3.1. Let G be a method, H be a hereditary class on a set X. For A⊂ X,

A∗G(H ,G) = A∗G= {x ∈ X : U ∩A 6∈H f or every U ∈UG(x)}

is called the local function of A with respect to H and G where UG(x)={U ⊂ X : x ∈U and U is G−open} .

Proposition 3.2. Let G be a method, H and H1 be hereditary classes on a set X. For A,B⊂ X,

(a) A⊂ B implies that A∗G ⊂ B∗G.

(b) A∗G ⊂ClG(A).

(c) A∗G is G-closed.

(d) (A∗G)∗G ⊂ A∗G.

(e) (A∪A∗G)∗G ⊂ A∗G.

(f) H ⊂H1 implies that A∗G(H1,G) ⊂ A∗G(H ,G).

Proof.

(a) Let x 6∈ B∗G. Then there exists a subset U ∈UG(x) such that U ∩B ∈H . By hypothesis, A∩U ⊂ B∩U so that A∩U ∈H and x 6∈ A∗G.

(b) Let x 6∈ ClG(A). Then there exists a subset U of X such that x ∈ intG(U) and U ∩A = /0 ∈H and hence intG(U) ∩A = /0 ∈H Since
intG(U) is G-open, x 6∈ A∗G.

(c) Let x 6∈ A∗G. Then there exists a subset U ∈UG(x) such that U ∩A ∈H . By definition of A∗G, we obtain U∩ A∗G = /0 and x 6∈ClG(A∗G)
by U=intG(U). So we get A∗G= ClG(A∗G) i.e. A∗G is G-closed.

(d) It is obvious from (b) and (c).

(e) Let x 6∈ A∗G. Then there exists a subset U ∈UG(x) such that U ∩A ∈H and U∩ A∗G = /0. Then (U∩ A∗G) ∪ (U∩ A) = U ∩ (A∗G∪A)
∈H . So x 6∈ (A∪A∗G)∗G.

(f) Let H ⊂H1 and x 6∈ A∗G(H ,G). Then there exists a subset U ∈UG(x) such that U ∩A ∈H1. Then U ∩A ∈H and we obtain x 6∈
A∗G(H1,G). Hence A∗G(H1,G) ⊂ A∗G(H ,G).

Corollary 3.3. Let G be a method, and H be a hereditary class on a set X. For A,B⊂ X, (A∪B)∗G ⊃ A∗G ∪ B∗G.

The following examples show that the converse of Corollary 3.3. is not true in general and (A∗G)∗G 6= A∗G for A⊂ X.

Example 3.4. Lin and Liu [9] gave the examples as follows. Let X be the set Z of all integers endowed with the discrete topology. Put
cG(X) = s(X) and G: cG(X)→ X is defined by G(x)=0 for each x ∈ cG(X). Then for any non-empty subset A of X, A is G-closed if and
only if 0 ∈ A.
Let H ={ /0,{1},{2}}, A={1} and B={2}. Then A∗G = B∗G = /0. (A∪B)∗G = {0}. Hence (A∪B)∗G 6= A∗G ∪ B∗G.

Example 3.5. Lin and Liu [9] gave the examples as follows. Let X be the set Z of all integers endowed with the discrete topology.
Put cG(X) ={{xn}n∈N ∈ s(X) : there exists an m ∈ N such that{xn − xn−1}n>m is aconstant sequences}. Define G1: cG(X)→ X by
G1(x)=limn→∞(xn+1− xn) for each x ∈ cG1(X).
Let Y = {0,1,2,3,4} and G=G1|Y . Let H ={ /0,{0},{1},{3}} and A={1,3}. Then A∗G ={0}. But (A∗G)∗G= /0 6= A∗G.

Let G be a method and H be a hereditary class on a set X. For A⊂ X , Cl∗G(A) = A ∪ A∗G.

Proposition 3.6. Let G be a method and H be a hereditary class on a set X. For A,B⊂ X,

(a) A ⊂ B implies that Cl∗G(A) ⊂Cl∗G(B).

(b) A ⊂Cl∗G(A).

(c) Cl∗G(Cl∗G(A))= Cl∗G(A).

Proof.

(a) It is obvious from Proposition 3.2

(c) Proposition 3.2 (e), Cl∗G(Cl∗G(A)) = Cl∗G(A∪A∗G) = (A∪A∗G) ∪ (A∪A∗G)∗ ⊂ (A∪A∗G) ∪ A∗G ⊂Cl∗G(A). Then we get Cl∗G(Cl∗G(A)) =
Cl∗G(A).

According to Lemma 1.4 of [2] and Proposition 3.6, there is a G-generalized topology τ?G i.e.

A ∈ τ?G iff A is τ∗G -open iff A is G∗-open iff X − A = Cl∗G(X−A).
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and Cl∗G(A) is the intersection of all G∗-closed sets contained in A.
If H = { /0}, A is G∗-open iff A is G-open.

Theorem 3.7. Let G be a method and H be a hereditary class on a set X. Then, τG ⊂ τ?G.

Let U ∈ τG. Then X− U is G-closed iff X− U = ClG(X−U). Proposition 3.2 (c), we obtain (X−U)∗G ⊂ X−U and then X− U = (X− U)
∪ (X−U)∗G = Cl∗G(X−U). So X− U is τ?G-closed i.e U ∈ τ?G.

Corollary 3.8. Let G be a method H be a hereditary class on a set X. For K ⊂ X, K is τ?G-closed iff K∗G ⊂ K.

Example 3.9. We consider at Example 3.4. We obtain that {1} and {2} are τ?G-closed from the previous Corollary. Then τ?G = {U : 0 6∈U}
∪ {X ,X−{1},X−{2}} is G-generalized topology.

Proposition 3.10. Let G be a method and H be a hereditary class on a set X. Then, the followings are equivalent:

(a) ClG(A) ⊂Cl∗G(A) for each A ⊂ X.

(b) Every G∗-closed set in X is G-closed.

(c) τG = τ∗G.

Proof. (a)⇒ (b) : Let A be a G∗-closed set. Then A=Cl∗G(A). By condition (a), A= ClG(A). Therefore, A is G-closed.
(b)⇒ (a) : Let A ⊂ X. Because Cl∗G(A) is G∗ -closed and by condition (b), Cl∗G(A) is G -closed. Then we obtain ClG(A) ⊂ Cl∗G(A) by
Definition 2.4 (d).
(b)⇒ (c) : Let A ∈ τ∗G. Then X− A = Cl∗G(X−A) and so X-A is G∗-closed. By condition (b), X-A is G-closed. Then, we obtain τG = τ∗G
by Theorem 3.7.
(c)⇒ (b) : It is obvious.

Proposition 3.11. Let G be a method and H be a hereditary class on a topological space (X ,τ). Then, the followings are equivalent:

(a) Cl∗G(A) ⊂Cl(A) for each A ⊂ X.

(b) Every closed set in X is G∗-closed.

(c) τ ⊂ τ?G.

Proof. (a)⇒ (b) : Let A be a closed set. Then A=ClG(A). By condition (a), A= Cl∗G(A). Therefore A is G-closed.
(b)⇒ (a) : Let A ⊂ X. Because Cl(A) is closed and by condition (b), Cl(A) is G∗-closed. Then we get Cl∗G(A) ⊂ClG(A) since Cl∗G(A) is
the smallest G∗-closed set contained in A.
(b)⇔ (c) : It is obvious.

Lemma 3.12. Let H be a hereditary class on a topological space X. Then, the followings are hold.

(a) If G is a regular method on X and H ={ /0}, then every G∗-closed in X is sequentially closed.

(b) If G is a subsequential method on X, then every closed set in X is G∗-closed.
As a result, if G is a regular subsequential method and H ={ /0} on a first-countable space (X ,τ), then τ∗G= τ .

Proof.

(a) Let G be a regular method on X and H ={ /0}. Let A is G∗-closed in X. Then, A is G-closed in X. So A is sequentially closed by Lemma
2.11 (1) of [9].

(b) The proof is obvious to Lemma 2.11 (2) of [9]

4. G∗-connected

In this section, we introduced concept of G∗-connected on a set X and obtained some basic properties.

Definition 4.1. Let G be a method and H be a hereditary class on a set X. For A,B⊂ X, A and B are called (G,G∗)-separated iff ClG(A)
∩ B = A ∩Cl∗G(B) = /0.

Lemma 4.2. Let G be a method and H be a hereditary class on a set X. If A, B ⊂ X, then the following properties are equivalent:

(a) A and B are (G,G∗)-separated;

(b) There are G-closed set F and G∗-closed set F ′ such that A⊂ F ⊂ X−B and B ⊂ F ′ ⊂ X−A;

(c) There are G-open set U and G∗-open set U ′ such that A ⊂U ′ ⊂ X−B and B ⊂U ⊂ X−A.
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Proof. (a)⇒ (b) : Set F =ClG(A), F ′= Cl∗G(B).
(b)⇒ (c) : Set U ′ =X−F ′, U = X−F .
(c)⇒ (b) : It is obvious.
(b)⇒ (a) : It is clear by the definitions of ClG and Cl∗G.

Definition 4.3. A set T ⊂ X is called G∗-connected if T cannot be written as the union of nonempty (G,G∗)-separated sets. i.e. T is
G∗-connected iff T = U ∪V , U and V are (G,G∗)-separated imply U = /0 or V = /0. The space X is said to be G∗-connected iff it is a
G∗-connected subset of itself.

Theorem 4.4. Let G be a method and H be a hereditary class on a set X. Then, the following statements are equivalent:

(a) The space X is G∗-connected;

(b) If X = M ∪ N, M ∩ N = /0, M is G-open and N is G∗-open then either M= /0 or N = /0.

(c) If X = K ∪ F, K ∩ F = /0, K is G-closed and F is G∗-closed then either K= /0 or F = /0.

(d) If H ⊂ X is both G-open and G∗-closed then either H= /0 or H = X.

Proof. (a)⇒ (b) : M and N are (G,G∗)-separated by Lemma 4.2.
(b)⇒ (a) : It is clear by the definitions of ClG and ClG∗ .
(b)⇒ (c) : Set M = X − K, N = X − F . Then it is obvious.
(c)⇒ (b) : It is obvious.
(c)⇒ (d) : Let H ⊂ X be both G-open and G∗-closed. Then X−H is G-closed. By (c), H= /0 or X−H = /0. So we obtain either H= /0 or H =
X.
(d)⇒ (c) : It is obvious.

Corollary 4.5. Let G be a method on a topological space X. Let X be a G-sequential space and H = { /0}. If X is connected space, then X is
a G∗-connected space.

Proof. The proof is obvious by Lemma 6.3 (1) of [9].

Corollary 4.6. Let G be a subsequential method on a topological group X. Let X be a G-Fréchet space. X is G-sequentially connected iff X
is a G∗-connected space.

Proof. The proof is obvious by Proposition 5.6 of [9] and by Lemma 3.12.

Corollary 4.7. Let G be a regular method on a topological space X. Let X be a sequential space and H = { /0}. If X is connected space, then
X is a G∗-connected space.

Proof. The proof is obvious by Lemma 3.12.

Corollary 4.8. Let G be a subsequential method on a topological space X and H be a hereditary class on X. If X is a G∗-connected space
then X is a connected space.

Proof. The proof is obvious by Lemma 3.12.

Corollary 4.9. Let G be a regular subsequential method on a first-countable space X and H = { /0}. X is a connected space iff X is a
G∗-connected space.

Proof. The proof is obvious by Lemma 3.12.

Corollary 4.10. Let G be a method on a topological space X. Let X be G-topologizable and H = { /0}. X is a connected space iff X is a
G∗-connected space.

Proof. The proof is obvious by the definition of G-topologizable.

Example 4.11 shows that the subsequential method condition of the method G in Corollary 4.8 can not be omitted.

Example 4.11. Let X be the set Z of all integers endowed with the discrete topology and H ={ /0}. Put cG(X) = s(X) and G: cG(X)→ X is
defined by G(x)= 0 for each x ∈ cG(X). Then G-sequential space X is G∗-connected but it is not connected.

Lemma 4.12. If T is G∗-connected, T ⊂ U ∪ V, and U and V are (G,G∗)-separated then T lies entirely within U or V.

Proof. Clearly T = ( T ∩ U) ∪ ( T ∩ V ). Since U and V are (G,G∗)-separated, then ClG∗(T ∩ U) ∩ ( T ∩ V ) = ( T ∩ U ) ∩ClG(T ∩ V ) =
/0. So T ∩ U and T ∩ V are G∗-separated. By hypothesis, T ∩ U = /0 or T ∩ V = /0. So, T lies entirely within U or V.

Theorem 4.13. If S is G∗-connected and S ⊂ T ⊂ClG∗(S), then T is G∗-connected.

Proof. Let T = U ∪ V such that U and V are (G,G∗)-separated. By Lemma 4.12 and S ⊂ T, S lies entirely within U or V. Then T ⊂ClG∗(S)
⊂ClG(S) ⊂ClG(U) ⊂ X−V or T ⊂Cl∗G(S) ⊂Cl∗G(V ) ⊂ X−U by Proposition 3.2 So either U = /0 or V = /0 i.e. T is G∗-connected.

Proposition 4.14. If S is G∗-connected then ClG∗(S) is G∗-connected.

Proof. The proof is obvious by Theorem 4.13.
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Lemma 4.15. Let G be a method and H be a hereditary class on a set X. If {Sλ : λ ∈ Λ} is a nonempty family of G∗-connected of X and
for λ , λ ′ ∈ Λ, Sλ ∩ Sλ ′ 6= /0, then S =

⋃
λ∈Λ Sλ is G∗-connected.

Proof. Let S = U ∪ V such that U and V are (G,G∗)-separated. By Lemma 4.12 and Sλ ⊂ S, Sλ lies entirely within U or V for λ ∈ Λ. By
hypothesis, there aren‘t exist λ ∈ Λ and λ ′ ∈ Λ such that Sλ ⊂ U and Sλ ′ ⊂ V. So Sλ ⊂ U or Sλ ⊂ V for each λ ∈ Λ. Then Sλ ⊂ U or Sλ ⊂
V i.e U = /0 or V = /0. Hence S is G∗-connected.

Definition 4.16. The union of all G∗-connected containing a point x in X is called G∗-connected component of x and denoted by CG∗
x .

Proposition 4.17. Let G be a regular subsequential method on a first-countable space X, H = { /0} and x ∈ X. CG∗
x is G∗-connected

component of x iff CG∗
x is connected component of x.

Proof. The proof is obvious by Lemma 3.12.

Proposition 4.18. Let G be a method on a topological space X. Let X be G-topologizable, H = { /0} and x ∈ X. CG∗
x is G∗-connected

component of x iff X is CG∗
x is connected component of x.

Proof. The proof is obvious by the definition of G-topologizable.

Proposition 4.19. Let G be a subsequential method on a topological group X. Let X be a G-Fréchet space, x ∈ X. CG∗
x is G-sequentially

connected component of x iff it is a G∗-connected component of x.

Proof. The proof is obvious by Lemma 3.12.

Theorem 4.20. Let CG∗
x be G∗–connected component of x in X. The following statements are equivalent:

(a) CG∗
x is G∗-connected.

(b) CG∗
x is G∗-closed.

(c) X =
⋃

x∈X CG∗
x . For each x,y ∈X, either CG∗

x ∩CG∗
y = /0 or CG∗

x =CG∗
y

Proof. (a) Since the intersection of all G∗-connected containing a point x is non empty set, CG∗
x is a G∗-connected by Lemma 4.15.

(b) By (a) and Proposition 4.14, ClG∗(CG∗
x ) is a G∗-connected. By the definition of G∗-connected component, ClG∗(CG∗

x ) ⊂CG∗
x . So, we

obtain that CG∗
x is G∗-closed.

(c) It is obvious that X=
⋃

x∈X CG∗
x . Let x, y ∈ X. If CG∗

x ∩CG∗
y 6= /0, CG∗

x ∪CG∗
y is G∗-connected containing x and y by Lemma 4.15. By (a),

CG∗
x ∪CG∗

y ⊂CG∗
x and CG∗

x ∪CG∗
y ⊂CG∗

y . Then, we obtain CG∗
x = CG∗

y

Acknowledgement

The authors are grateful to the editor and reviewers for their valuable comments.

References

[1] J. Connor and K. Grose-Erdmann, Sequential definitions of continuty for real functions, Rocky Mt. 33(1) (2003) 93-126.
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