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Abstract
A module M is called a C21-module if, whenever A and B are submodules of M with
A ∼= B, A is nonsingular and B is a direct summand of M , then A is a direct summand
of M . Various examples of C21-modules are presented. Some basic properties of these
modules are investigated. It is shown that the class of rings R over which every C21-
module is a C2-module is exactly that of right SI-rings. Also, we prove that for a ring R,
every R-module has (C21) if and only if R is a right t-semisimple ring.
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1. Introduction
Among many generalizations of (quasi-) injective modules, the notion of continuous

modules and its related properties have attracted considerable attention since 1971 (see,
for example, [13, 20–22, 25, 27]). Following [21, Definition 2.3], a module M is called
continuous if M satisfies the following two conditions:

(C1): Every submodule of M is essential in a direct summand of M ;
(C2): If a submodule N of M is isomorphic to a direct summand of M , then N is a

direct summand of M .
A module M is said to be extending if M satisfies the condition (C1) (see [8]). Also, a

module M is called quasi-continuous if M is extending and whenever A and B are direct
summands of M with A ∩ B = 0, then A ⊕ B is a direct summand of M (see [21]). Asgari
and Haghany introduced and studied some generalizations of these notions. According to
[4, Definition 2.10 and Theorem 2.11], a module M is called t-extending if every submodule
of M which contains Z2(M) is essential in a direct summand of M . A module M is called
t-continuous if M is t-extending and every submodule of M which contains Z2(M) and
is isomorphic to a direct summand of M , is itself a direct summand (see [2]). Also, a
module M is called t-quasi-continuous if M is t-extending and whenever A and B are
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nonsingular direct summands of M with A ∩ B = 0, then A ⊕ B is a direct summand of
M (see [3]). It was shown in [2, Corollary 2.5] that a module M is t-continuous if and
only if M is t-extending and every nonsingular submodule of M which is isomorphic to a
direct summand of M , is itself a direct summand. Motivated by this result, we introduce
and investigate the notion of C21-modules which is a generalization of the notion of C2-
modules. A module M is called a C21-module if every nonsingular submodule of M which
is isomorphic to a direct summand of M , is itself a direct summand of M .

Various examples of C21-modules are presented in Section 2. For instance, it is shown
that every module M for which M/Z2(M) is a C2-module is a C21-module. Also, we
provide an example to show that the concept of C21-modules is a proper generalization of
that of C2-modules.

We begin Section 3 by showing that all direct summands of a C21-module inherit the
property. On the other hand, some examples are exhibited to prove that the class of
C21-modules is not closed under direct sums. Then we investigate some basic properties
of C21-modules. Moreover, we shed some light on the endomorphism ring of a hereditary
C21-module.

In Section 4, a number of characterizations of classes of rings in terms of C21-modules
are provided. Among others, we first investigate the natural question of when every C21-
module over a ring R has (C2). It turns out that this condition is equivalent to the fact
that every singular R-module is injective (i.e., R is a right SI-ring). It is also shown that
rings over which every module has (C21) are precisely the right t-semisimple rings (i.e.,
the rings R for which R/Z2(RR) is a semisimple ring). Moreover, we prove that a ring R
is a right GV-ring (i.e., every singular simple R-module is injective) if and only if every
C21-module is simple-direct-injective.

Throughout, all rings have identities and all modules are unital right modules. Let
R be a ring. For an R-module M , we denote by Rad(M), Soc(M), Z(M), Z2(M), and
E(M) the Jacobson radical, the socle, the singular submodule of M , the second singular
submodule of M , and the injective hull of M , respectively. The notation N ⊆ M means
that N is a subset of M and we write N ≤ M if N is a submodule of M . By Q, Z, and N,
we denote the set of rational numbers, the set of integers, and the set of positive integers,
respectively. For a prime number p, the Prüfer p-group is denoted by Z(p∞).

2. Examples
Let M be an R-module. Recall that the singular submodule Z(M) of M is defined by

Z(M) = {m ∈ M | mI = 0 for some essential right ideal I of R}.

The Goldie torsion submodule Z2(M) of M (also known as the second singular submodule
of M) is defined to be the submodule of M which contains Z(M) such that Z(M/Z(M)) =
Z2(M)/Z(M). The module M is called singular if Z(M) = M and is called nonsingular
if Z(M) = 0 (equivalently, Z2(M) = 0). The module M is said to be Z2-torsion if
Z2(M) = M . Recall that Z2(N) = Z2(M) ∩ N for every submodule N of M . Recall
further that, M/Z2(M) is a nonsingular module. Moreover, for every class of R-modules
Mλ (λ ∈ Λ), we have Z(⊕λ∈ΛMλ) = ⊕λ∈ΛZ(Mλ) and Z2(⊕λ∈ΛMλ) = ⊕λ∈ΛZ2(Mλ).
Definition 2.1. (i) An R-module M is called a C21-module (or has (C21)) if every non-
singular submodule of M which is isomorphic to a direct summand of M is itself a direct
summand of M .

(ii) The ring R is called a (left) right C21-ring if the (left) right R-module (RR) RR is
a C21-module.

In this section we exhibit many examples of C21-modules.
Example 2.2. Let R be a ring and let I be an essential right ideal of R. By [2, Example
2.6(i)], E ⊕ R/I is a C21-module for any injective R-module E.
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Let M be an indecomposable module. Then clearly M has (C21) if and only if M has
no nonzero proper nonsingular submodule isomorphic to M . For example, the Z-module
Z(p∞) (where p is any prime) has (C21) but the Z-module Z is not a C21-module. Next,
we shed more light on the structure of indecomposable C21-modules.
Proposition 2.3. The following are equivalent for an indecomposable module M :

(i) M is a C21-module;
(ii) Z(M) ̸= 0 or M is a nonsingular C2-module.

Proof. (i) ⇒ (ii) This follows from the fact that the class of nonsingular modules is closed
under submodules (see [11, Proposition 1.22(a)]).

(ii) ⇒ (i) Assume that Z(M) ̸= 0. Let N be a nonsingular submodule of M which is
isomorphic to a direct summand K of M . Since M is indecomposable and Z(M) ̸= 0, we
have N = 0 and hence N is a direct summand of M . Therefore M is a C21-module. �
Proposition 2.4. The following are equivalent for an indecomposable Z-module M :

(i) M is a C2-module;
(ii) M is a C21-module;
(iii) M ∼= Z(p∞) or M ∼= Z/pnZ or M ∼= Q, where p is a prime number and n is a

positive integer.
Proof. (i) ⇒ (ii) This is obvious.

(ii) ⇒ (iii) Let T (M) denote the torsion submodule of M. Suppose that T (M) ̸= 0.
Using [14, Theorem 10], we deduce that M ∼= Z(p∞) or M ∼= Z/pnZ for some prime
number p and some positive integer n. Now assume that T (M) = 0. Then qM ∼= M for
any prime number q. Since M is a C21-module, we conclude that qM = M for every prime
number q. That is, M is injective. This yields M ∼= Q.

(iii) ⇒ (i) This is clear. �
Example 2.5. Let M be a module whose endomorphism ring is a division ring. Then
clearly M is indecomposable. Moreover, if N is a submodule of M such that M is isomor-
phic to N then N = M . So M is a C21-module. Many examples belonging to this class of
modules are given in [19].

Note that one can easily observe that every module having no nonzero nonsingular
direct summands, is a C21-module. Next, we show that this idea provides a rich source of
examples of C21-modules.
Example 2.6. (i) Every Z2-torsion module is a C21-module, since the only nonsingular
submodule of a Z2-torsion module is the zero submodule.

(ii) From (i), it follows that every module M for which Z(M) is essential in M (for
instance, M is a singular module) has (C21). In particular, R/I is a C21-R-module for
every essential right ideal I of a ring R. Also, for any module M , E(M)/M is a C21-
module.

(iii) Let M be a torsion Z-module. Since M is singular, M has (C21) by (ii).
An abelian group G is called cotorsion if Ext(J, G) = 0 for every torsion-free abelian

group J (see [9, p. 232]). An abelian group G is called algebraically compact if G is a direct
summand in every abelian group H that contains G as a pure subgroup (see [9, p. 159]).
This is equivalent to the fact that G is a direct summand of a direct product of cocyclic
abelian groups (see [9, Theorem 38.1]). For example, the abelian group M =

∏∞
n=1 Z/pnZ

(where p is a prime) is algebraically compact. By [9, Proposition 54.1], an abelian group is
cotorsion if and only if it is an epimorphic image of an algebraically compact abelian group.
A cotorsion reduced abelian group G is called adjusted if G has no nonzero torsion-free
direct summands (see [9, p. 238]).

It was shown in [9, Theorem 55.5] that any reduced cotorsion abelian group G is the
direct sum G = A ⊕ C of a torsion-free algebraically compact abelian group A and an
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adjusted cotorsion abelian group C. Moreover, C is a uniquely determined subgroup of G
and C ∼= Ext(Q/Z, T (G)) where T (G) denotes the torsion subgroup of G.

Example 2.7. (i) It is clear that every reduced cotorsion adjusted abelian group is a
C21-module. So Ext(Q/Z, T ) has (C21) for any torsion abelian group T by [9, Lemma
55.4].

(ii) Let T be a reduced unbounded torsion abelian group and let G = Ext(Q/Z, T ). By
[10, p. 186 Example 1], G is an adjusted abelian group whose torsion part is T (G) = T .
Moreover, T is not a direct summand of G. In particular, G is a mixed abelian group.

(iii) Let p be a prime number and consider the Z-module M =
∏∞

n=1 Z/pnZ. Note that
M is a reduced module. Indeed, M has no nonzero elements of infinite p-height. Let
T (M) denote the torsion submodule of M . Since M/T (M) is not divisible, it follows that
M is not adjusted by [12, Proposition 2.2]. On the other hand, by [9, Theorem 55.5], M
has an adjusted direct summand N which contains T (M).

Let M be an R-module. It is clear that if M is a C2-module, then M is a C21-module.
Note that the converse holds when M is noncosingular but it is not true, in general, as
illustrated in the following two examples.

Example 2.8. Consider the Z-module M = Z/2Z ⊕ Z/8Z. Clearly, M is a torsion
module. So, by Example 2.6(iii), M is a C21-module. On the other hand, consider the
element x = (0, 4) of M . It is clear that xZ ∼= Z/2Z. So xZ is isomorphic to the direct
summand Z/2Z⊕ 0 of M . However, xZ is not a direct summand of M . This implies that
M is not a C2-module.

In the next example, we present a (right) C21-ring which is not a (right) C2-ring.

Example 2.9. Let p be a prime number and consider the trivial extension R = Z⊕Z(p∞).
Since Z(p∞) is a faithful module, we have Z(R) = pZ⊕Z(p∞) (see [11, p. 37 Exercise 16]).
Note that the ideals of R are 0 ⊕ N and nZ ⊕ Z(p∞), where N is a submodule of Z(p∞)
and n is a positive integer. It is easily seen that every nonzero ideal of R is essential in
R. So R is a uniform R-module. In particular, R is an indecomposable R-module. Also,
since Z(R) is essential in R, R is a Z2-torsion R-module. Hence R is a (right) C21-ring
(see Example 2.6(i)). On the other hand, taking a prime number q ̸= p and any element
x ∈ M , we can check that annR((q, x)) = 0. Therefore (q, x)R ∼= R. It is clear that (q, x)
is not invertible in R. This forces (q, x)R ̸= R. Consequently, R is not a (right) C2-ring.

The next proposition provides more examples of C21-modules.

Proposition 2.10. Let M be a module such that M/Z2(M) is a C21-module (i.e., M/Z2(M)
is a C2-module). Then M is a C21-module.

Proof. Let N be a nonsingular submodule of M and let K be a direct summand of M
such that N ∼= K. Then Z2(N) = N ∩ Z2(M) = 0 and Z2(K) = K ∩ Z2(M) = 0. Hence,

(N + Z2(M))/Z2(M) ∼= N/(N ∩ Z2(M)) ∼= K/(K ∩ Z2(M)) ∼= (K + Z2(M))/Z2(M).
Since Z2(M) is fully invariant in M , (K+Z2(M))/Z2(M) is a direct summand of M/Z2(M).
As M/Z2(M) is a nonsingular C21-module, it follows that (N + Z2(M))/Z2(M) is a
direct summand of M/Z2(M). Let L be a submodule of M with Z2(M) ⊆ L and
M/Z2(M) = ((N + Z2(M))/Z2(M)) ⊕ (L/Z2(M)). Thus M = N + L. Moreover,
N ∩ L ⊆ Z2(M) ∩ N = 0. Therefore M = N ⊕ L. So M has (C21). �
Corollary 2.11. Let M = M1 ⊕ M2 be a direct sum of submodules M1 and M2 such that
Z2(M1) = M1 and M2 is a nonsingular C21-module. Then M is a C21-module.

Proof. Since Z(M2) = 0, we have Z2(M2) = 0. Therefore Z2(M) = Z2(M1) = M1. Thus
M/Z2(M) ∼= M2 has (C21). So M has (C21) by Proposition 2.10. �
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Remark 2.12. Consider the ring R given in Example 2.9. So R/Z2(R) = 0 is a C2-module,
but the R-module R does not have (C2). This shows that the analogue of Proposition
2.10 for C2-modules does not hold true in general.

Note that all the modules presented in Example 2.6 are Z2-torsion. So they are t-
continuous. As an application of Proposition 2.10, we get the following three examples.
The first one exhibits a C21-module that is not t-continuous.

Example 2.13. Consider the Z-module M =
∏

p∈P Z/pZ where P is the set of all prime
numbers. It is easily seen that Z2(M) = ⊕p∈PZ/pZ. Note that M/Z2(M) is a divisible
(injective) Z-module. In particular, M/Z2(M) is a C2-module. So M is a C21-module by
Proposition 2.10. On the other hand, the Z-module M is not t-continuous by [4, Example
2.16].

Example 2.14. Let R be a right nonsingular ring (i.e., Z(RR) = 0) and let E be an
injective module. Let N be a proper submodule of E and set M = E/N . By [11,
Proposition 1.23(a)], Z(M/Z(M)) = 0. This gives Z2(M) = Z(M). Using [23, Theorem
2.10], it follows that M/Z2(M) is an injective module. Therefore M/Z2(M) is a C21-
module. From Proposition 2.10, we conclude that M is a C21-module.

Example 2.15. Let R be a right semiartinian ring in which every maximal right ideal
is essential (for example, R can be a local semiartinian ring which is not a division ring).
Let M be an R-module. Then Soc(M) is essential in M . Moreover, we have Soc(M) ⊆
Z(M) ⊆ Z2(M). Thus Z2(M) is an essential submodule of M . This implies that M/Z2(M)
is a singular module and hence M/Z2(M) is a C21-module. Applying Proposition 2.10, it
follows that every R-module is a C21-module.

3. Some properties of C21-modules
In this section we establish some properties of C21-modules. We begin by showing that

having (C21) is preserved by direct summands but it is not preserved under direct sums.

Proposition 3.1. Any direct summand of a C21-module is again a C21-module.

Proof. Let M be a C21-module and let N be a direct summand of M . Let K and L be
two isomorphic nonsingular submodules of N such that K is a direct summand of N . Note
that K is a direct summand of M . Then L is a direct summand of M . Hence M = L ⊕ L′

for some submodule L′ of M . By modularity, we have N = N ∩ (L ⊕ L′) = L ⊕ (N ∩ L′).
Hence L is a direct summand of N . Therefore N is a C21-module. �

A direct sum of C21-modules (or even C2-modules) need not be a C21-module as the
next two examples show. Note that the first one appeared in [21, Example 2.9] to show
that a direct sum of quasi-continuous modules may not be quasi-continuous. Also, this
example appeared in [22, p. 170] to show that a direct sum of C2-modules need not be a
C2-module.

Example 3.2. Consider the ring R =
[

F F
0 F

]
and its right ideals A =

[
F F
0 0

]
and

B =
[

0 0
0 F

]
, where F is a field. Clearly, RR = A ⊕ B. Since BR is simple, BR has

(C2). Moreover, AR has exactly one proper nonzero submodule J(R) =
[

0 F
0 0

]
, and

J(R) is not isomorphic to AR. Thus AR has (C2). On the other hand, the R-module RR

is not a C2-module (see [22, p. 168] or [21, Example 2.9]). In addition, it is well known
that R is a right hereditary ring (see for example, [8, Example 13.6]). Therefore RR is a
nonsingular R-module by [11, Proposition 1.27(a)]. Hence the R-module RR could not be
a C21-module.
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Example 3.3. Let T be a commutative local ring such that T is a unique factorization
domain (UFD). Assume also that T has infinitely many nonassociate prime elements, but
T is not a principal ideal domain (for example, T can be the ring of power series in two
variables over an infinite field or the polynomial ring Z[X] in one indeterminate, over
the domain Z of integers). Then there exist two nonassociate prime p and q in T such
that Tp + Tq ̸= T . Let M be the direct sum of all T/pT , p ranging over the primes of T .
Consider the trivial extension R = T ⊕M of T by M . From [15, p. 63 Exercise 7], it follows
that no nonzero element of R annihilates R(p, 0) + R(q, 0). Using [16, Corollary 2.4], we
conclude that R has a finitely generated free R-module F which is not a C2-module. On
the other hand, R is a C2-ring by [16, p. 285 Question]. Now we claim that Y = 0 ⊕ M
is an essential ideal in R. To show this, let I be an ideal of R such that I ∩ Y = 0. Then
there exist an ideal I of T and a T -submodule N of M such that I = I ⊕ N , IM ⊆ N
and I ∩ Y = 0 ⊕ N = 0. Thus N = 0. Moreover, since IM ⊆ N , we have IM = 0. As T
is a UFD, we deduce that I = 0 and hence I = 0. In addition, since Y 2 = 0, we obtain
Y ⊆ Z(R). This implies that Z(R) is an essential ideal in R. It follows that R/Z(R) is a
singular R-module. We thus get Z2(R) = R. So Z2(F ) = F and hence F is a C21-module.

Proposition 3.4. Let M be a C21-module. Then the following hold:
(i) For every direct summands A and B of M such that A∩B = 0 and B is nonsingular,

A ⊕ B is a direct summand of M .
(ii) Assume that M = A ⊕ B such that at least one of the submodules A and B is

nonsingular. Then for any homomorphism f : A −→ B such that Kerf is a direct
summand of A, Imf is a direct summand of B.

Proof. (i) Let A and B be two direct summands of M such that Z(B) = 0 and A∩B = 0.
Then M = A ⊕ L for some submodule L of M . Let π : M −→ L be the natural projection
map. It follows that π/B : B −→ π(B) is an isomorphim. Since M has (C21), π(B) is a
direct summand of M . Hence π(B) is a direct summand of L. Thus L = π(B) ⊕ X for
some X ≤ L. It follows that M = (A ⊕ π(B)) ⊕ X = (A ⊕ B) ⊕ X. So A ⊕ B is a direct
summand of M .

(ii) Let f : A −→ B be a homomorphism such that Kerf is a direct summand of A.
Then A = Kerf ⊕ N for some submodule N of A. Hence Imf ∼= A/Kerf ∼= N . From
the hypothesis, we infer that Imf is nonsingular. Since M has (C21), we conclude that
Imf is a direct summand of M . Thus Imf is a direct summand of B. �

The next corollary follows directly from Proposition 3.4(ii).

Corollary 3.5. Let A and B be submodules of a C21-module M such that Z(A) = 0 or
Z(B) = 0 and M = A ⊕ B. If f : A −→ B is a monomorphism, then Imf is a direct
summand of B.

Corollary 3.6. Let M be a nonsingular R-module such that M ⊕ E(M) is a C21-module.
Then M is an injective module.

Proof. Consider the inclusion map µ : M −→ E(M). Then, by Corollary 3.5, µ(M) = M
is a direct summand of E(M). This implies that M is injective, as required. �

Let R be a ring. Recall that an R-module M is said to be (semi)hereditary if every
(finitely generated) submodule of M is a projective module. It is well known that projective
right modules over a right hereditary ring are hereditary modules (see e.g., [29, 39.16]).
Note that for any nonzero element x in a semihereditary R-module M , annR(x) is a
direct summand of RR. So every semihereditary module is nonsingular. Next, we will be
concerned with the endomorphism ring of a (semi)hereditary C21-module.

Proposition 3.7. Let M be a C21-module. Assume that one of the following conditions
is satisfied:
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(i) M is a hereditary module.
(ii) M is a semihereditary finitely generated module.

Then EndR(M) is a von Neumann regular ring.

Proof. (i) Suppose M is a hereditary module and let f ∈ EndR(M). Then Imf is a
projective module. Since M/Kerf ∼= Imf , it follows that Kerf is a direct summand of
M . Thus M = Kerf ⊕ L for some submodule L of M . Hence Imf ∼= L. Since M is
a C21-module and Imf is nonsingular, we deduce that Imf is a direct summand of M .
Therefore EndR(M) is a von Neumann regular ring by [29, 37.7(2)].

(ii) This follows by the same method as in (i). �
The following corollary is a direct consequence of Proposition 3.7.

Corollary 3.8. The following conditions are equivalent for a ring R:
(i) R is a right semihereditary right C21-ring;
(ii) R is a von Neumann regular ring.

The next example shows that the condition “M is a semihereditary module” in the
hypothesis of Proposition 3.7 is not superfluous.

Example 3.9. It is clear that the Z-module M = Z/4Z is not semihereditary. Moreover,
since M is a torsion Z-module, M is a singular module. Hence M is a C21-module. On
the other hand, EndZ(Z/4Z) ∼= Z/4Z is not a von Neumann regular ring.

Recall that a module M is called regular if every cyclic submodule of M is a direct sum-
mand of M . Equivalently, every finitely generated submodule of M is a direct summand
of M (see [26, p. 67]).

Corollary 3.10. Let M be a hereditary C21-module over a ring R. Then the following
implications hold:

(i) If M is indecomposable, then EndR(M) is a division ring.
(ii) If M has finite uniform dimension, then EndR(M) is a semilocal ring.
(iii) If R is a commutative ring and M is a noetherian R-module, then M is a semisimple

module.

Proof. (i) This follows from Proposition 3.7.
(ii) Let f : M −→ M be a monomorphism. Then Imf ∼= M . Since M has finite

uniform dimension, Imf is an essential submodule of M by [8, 5.8(1)]. Moreover, Imf is
a direct summand of M by Proposition 3.7. This yields Imf = M . From [7, Proposition
19.5], it follows that EndR(M) is a semilocal ring.

(iii) By Proposition 3.7, EndR(M) is von Neumann regular. Using [28, Corollary 3.10],
we see that M is a regular module. Since M is noetherian, it follows that M is a semisimple
module. �

The condition “M has (C21)” in the hypothesis of Corollary 3.10 is not superfluous. To
see this, consider the following example.

Example 3.11. Consider the Z-module M = Z which is not a C21-module by Proposition
2.4. Since every nonzero submodule of M is isomorphic to M , M is a hereditary module.
Also, M is an indecomposable noetherian module (hence M has finite uniform dimension).
However, EndZ(M) ∼= Z is neither a division ring nor a semilocal ring and M is not
semisimple.

4. Rings over which certain modules have (C21)
In this section, we characterize some classes of rings in terms of C21-modules. We begin

with the following characterization of the class of rings R for which every C21-module is a
C2-module. This result should be contrasted with Examples 2.8 and 2.9.
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Recall that a ring R is said to be a right SI-ring if every singular right R-module is
injective (see [8, p. 160]). A module M is called a C3-module if whenever A and B are
direct summands of M with A ∩ B = 0, then A ⊕ B is a direct summand of M (see, for
example, [21]).
Theorem 4.1. The following conditions are equivalent for a ring R:

(i) R is a right SI-ring;
(ii) Every C21-R-module is a C2-module;
(iii) Every C21-R-module is a C3-module;
(iv) Every Z2-torsion R-module is a C3-module.

Proof. (i) ⇒ (ii) Suppose that R is a right SI-ring. Let A be an R-module. Since Z(A)
is singular, it follows that Z(A) is an injective module. Thus Z(A) is a direct summand
of A. Now let M be a C21-R-module. To prove that M is a C2-module, let N and K be
submodules of M such that N ∼= K and K is a direct summand of M . Therefore there
exist submodules N ′ and K ′ of M such that N = Z(N) ⊕ N ′ and K = Z(K) ⊕ K ′. Since
N ∼= K, it follows easily that Z(N) ∼= Z(K) and N ′ ∼= N/Z(N) ∼= K/Z(K) ∼= K ′. Note
that K ′ is a direct summand of M and N ′ is nonsingular. Since M has (C21), it follows
that N ′ is a direct summand of M . This implies that M = N ′ ⊕ L for some submodule
L of M . So Z(M) = Z(L) ⊆ L. As Z(M) is injective, there exists a submodule L′ of L
such that L = Z(M) ⊕ L′. Thus M = N ′ ⊕ Z(M) ⊕ L′. Moreover, since Z(N) is injective,
Z(M) = Z(N)⊕B for some submodule B of M . Consequently, M = N ′⊕Z(N)⊕B⊕L′ =
N ⊕ B ⊕ L′. It follows that M is a C21-module.

The implications (ii) ⇒ (iii) ⇒ (iv) are clear.
(iv) ⇒ (i) Let M be a singular R-module. Clearly, M is Z2-torsion. It is well known that

the class of Z2-torsion modules is closed under essential extensions and direct sums (see
[11, p. 37 Exercise 21]). Then M ⊕ E(M) is a Z2-torsion module. By (iv), M ⊕ E(M) is a
C3-module. Consider the inclusion map µ : M → E(M). Thus, according to [1, Corollary
2.4], we deduce that µ(M) = M is a direct summand of E(M). Hence M is an injective
module. It follows that R is a right SI-ring. �
Remark 4.2. Let R be a ring which is not a right SI-ring. From Theorem 4.1, it follows
that R has a C21-module that is not a C2-module.

It is shown in [5, Theorem 3.2] that for a ring R, R/Z2(RR) is a semisimple ring if and
only if every nonsingular R-module is injective. Moreover, the authors called a ring R
which satisfies these equivalent conditions a right t-semisimple ring. In the next result,
we determine the class of rings R for which every (nonsingular) R-module has (C21).

Proposition 4.3. Let R be a ring with R = R/Z2(RR). Then the following conditions
are equivalent:

(i) R is a right t-semisimple ring;
(ii) Every R-module is a C21-module;
(iii) Every nonsingular R-module is a C21-module;
(iv) Every R-submodule of R ⊕ R is a C21-module.

Proof. (i) ⇒ (ii) This follows from the definition of C21-modules and the fact that every
nonsingular module over a right t-semisimple ring is injective.

The implications (ii) ⇒ (iii) ⇒ (iv) are obvious.
(iv) ⇒ (i) Let I be a right ideal of R. Thus I ⊕ R being an R-submodule of R ⊕ R is a

C21-R-module by (iv). Let µ : I → R be the inclusion map. Note that R is nonsingular.
Then I is a direct summand of R by Corollary 3.5. Therefore R is a semisimple ring. This
completes the proof. �

It is shown in Example 2.6 that every Z2-torsion module has (C21). Also, in Example
2.13, we provide a C21-module which is not Z2-torsion. Next, we characterize the class
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of rings R for which each C21-R-module is Z2-torsion. It turns out that this class is a
subclass of that of t-semisimple rings.

Proposition 4.4. The following conditions are equivalent for a ring R:
(i) RR is a Z2-torsion R-module;
(ii) Every C21-R-module is Z2-torsion.

In this case, every R-module is a C21-module.

Proof. Let us first note that for any module R-homomorphism f : M → N , we have
f(Z2(M)) ⊆ Z2(N). Let M be an R-module. Given a ∈ Z2(RR), we consider the R-
homomorphism φ : R → aR defined by φ(r) = ar for all r ∈ R. Then φ(Z2(RR)) =
aZ2(RR) ⊆ Z2(M). It follows that MZ2(RR) ≤ Z2(M).

(i) ⇒ (ii) Suppose that Z2(R) = R and let M be an R-module. Then MZ2(RR) =
M ⊆ Z2(M). Hence M is a Z2-torsion module. Therefore M has (C21).

(ii) ⇒ (i) Note that E(RR) is a C21-module. Then E(RR) is Z2-torsion. But the class
of Z2-torsion modules is closed under submodules. Thus RR is Z2-torsion. �

For a ring R and an R-module M , the (Goldie) reduced rank of M (of R) is the uniform
dimension of M/Z2(M) (of RR/Z2(RR)) (see for example, [17, Definition 7.34]). The next
result shows that the class of rings R for which every direct sum of injective R-modules
has (C21) is exactly that of rings having finite reduced rank. Note that the proof of the
implication (iii) ⇒ (i) of this result is similar to that of [3, Theorem 4.9((1)⇒ (2))], but
it is given for completeness.

Proposition 4.5. The following conditions are equivalent for a ring R:
(i) R is of finite reduced rank;
(ii) Every direct sum of injective R-modules is a C21-module;
(iii) Every direct sum of nonsingular injective R-modules is a C21-module.

Proof. (i) ⇒ (ii) Suppose that R is of finite reduced rank and let M be an R-module
which is a direct sum of injective submodules. By [3, Proof of Theorem 4.9((2) ⇒ (1))],
M = Z2(M) ⊕ M ′ for some injective submodule M ′ of M . Clearly, M/Z2(M) ∼= M ′ is a
continuous module. By Proposition 2.10, M is a C21-module.

(ii) ⇒ (iii) This is clear.
(iii) ⇒ (i) Since R/Z2(RR) is a right nonsingular ring, it suffices to show that every

direct sum of nonsingular injective R/Z2(RR)-modules is an injective R/Z2(RR)-module by
[11, Theorem 3.17]. Let M = ⊕i∈IMi be a direct sum of nonsingular injective R/Z2(RR)-
modules Mi (i ∈ I). Then by [11, p. 48 Exercise 22], each Mi (i ∈ I) is a nonsingular
injective R-module. Since M is nonsingular, so is E(M). Thus, by hypothesis, M ⊕E(M)
is a C21-module. Now using Corollary 3.6, it follows that M is an injective R-module.
Hence M is an injective R/Z2(RR)-module (see [11, p. 48 Exercise 22]). �

It is easily seen that every right t-semisimple ring is of finite reduced rank. Using the
C21 property, we provide in the next theorem a necessary and sufficient condition for a
ring of finite reduced rank to be right t-semisimple. We first prove the following lemma.

Lemma 4.6. Let R be a ring such that every 2-generated R-module is a C21-module or
every direct sum of two uniform modules is a C21-module. Then:

(i) Every nonsingular uniform R-module is simple and injective.
(ii) Every nonsingular R-module having finite uniform dimension is a semisimple in-

jective module.

Proof. (i) Let U be a nonsingular uniform R-module. Then clearly E(U) is a nonsingular
uniform module. Let 0 ̸= x ∈ E(U) and take 0 ̸= y ∈ xR. By hypothesis, xR ⊕ yR is a
C21-module. Clearly, xR is a nonsingular R-module. So by Corollary 3.5, it follows that
yR is a direct summand of xR. Since xR is a uniform module, xR is indecomposable
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and hence xR = yR. This implies that xR is a simple module. Therefore E(U) is a
semisimple module. As E(U) is indecomposable, we see that E(U) is a simple module.
Thus U = E(U) is a simple injective R-module.

(ii) Let M be a nonsingular module having finite uniform dimension. So there exists
a non-negative integer n such that M has an essential submodule N = ⊕n

i=1Ui which
is a direct sum of uniform submodules Ui (1 ≤ i ≤ n) of M . It is clear that each Ui

(1 ≤ i ≤ n) is a nonsingular R-module. From (i), it follows that each Ui (1 ≤ i ≤ n) is a
simple injective R-module. Therefore N is semisimple and injective. This implies that N
is a direct summand of M and hence M = N . This completes the proof. �
Theorem 4.7. The following conditions are equivalent for a ring R:

(i) R is of finite reduced rank and every 2-generated R-module is a C21-module;
(ii) R is of finite reduced rank and every direct sum of two uniform R-modules is a

C21-module;
(iii) R is a right t-semi-simple ring.

Proof. (i) ⇒ (iii) Since R is of finite reduced rank, the R-module R = RR/Z2(RR) has
finite uniform dimension. Moreover, R is a nonsingular R-module. Then R is a semisimple
R-module by Lemma 4.6. Hence R is a right t-semi-simple ring.

(iii) ⇒ (i) This follows from Proposition 4.3.
(ii) ⇔ (iii) This follows by similar arguments as in the equivalence (i) ⇔ (iii). �

Proposition 4.8. Let R be a ring and let C be a class of R-modules such that C contains
every direct sum of nonsingular injective modules and every direct sum of two uniform
modules. Then the following assertions are equivalent:

(i) Every module in C has (C21);
(ii) R is a right t-semisimple ring.

Proof. (i) ⇒ (ii) Using Proposition 4.5, it follows that the ring R is of finite reduced
rank. Now we infer from Theorem 4.7 that R is a right t-semisimple ring.

(ii) ⇒ (i) By Proposition 4.3. �
Let N be a submodule of a module M . A complement of N in M is a submodule K of

M maximal with respect to the property N ∩ K = 0. Recall that a module M is said to
be a C11-module if every submodule of M has a complement which is a direct summand.
By [24, Theorem 2.4], every direct sum of injective modules is a C11-module and every
direct sum of two uniform modules is also a C11-module. As an application of Proposition
4.8, one can take the class C to be the class of C11-modules. So the following corollary is
a direct consequence of the preceding proposition.
Corollary 4.9. The following conditions are equivalent for a ring R:

(i) Every C11-module has (C21);
(ii) R is a right t-semisimple ring.
Recall that a module M is called regular if every cyclic submodule of M is a direct

summand. Following [18], a module M is said to be d-Rickart if Imφ is a direct summand
of M for every endomorphism φ of M .

Next, we provide a characterization in terms of C21-modules for a right semi-hereditary
ring to be von Neumann regular.
Proposition 4.10. The following conditions are equivalent for a right semi-hereditary
ring R:

(i) Every finitely generated projective R-module is a C2-module;
(ii) Every finitely generated projective R-module is a C21-module;
(iii) Every finitely generated projective R-module is a d-Rickart module;
(iv) Every finitely generated projective R-module is a regular module;
(v) R is a von Neumann regular ring.
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Proof. (i) ⇒ (ii) This is immediate.
(ii) ⇒ (iii) Let M be a finitely generated projective R-module and let f be an endomor-

phism of M . It is clear that Imf is finitely generated. Then Imf ⊕ M is a C21-module.
Since R is right semi-hereditary, R is right nonsingular. Hence M is nonsingular by
[29, 39.13(2)] and [11, Proposition 1.22(a)]. Using Corollary 3.5, we deduce that Imf is a
direct summand of M . Thus M is a d-Rickart module.

(iii) ⇒ (v) By (iii), RR is a d-Rickart module. So R is a von Neumann regular ring by
[18, Remark 2.2].

(v) ⇒ (iv) This follows from [26, Proposition 6.7(4)].
(iv) ⇒ (i) Let M be a finitely generated projective R-module. Let N and K be sub-

modules of M such that N ∼= K and K is a direct summand of M . Since K is finitely
generated, so is N . Therefore N is a direct summand of M as M is regular. Hence M is
a C2-module. �

Proposition 4.11. The following assertions are equivalent for a ring R:
(i) R is right hereditary and every projective R-module is a C21-module;
(ii) R is a semi-simple ring.

Proof. (i) ⇒ (ii) Let I be a right ideal of R. Since R is right hereditary, I is a projective
nonsingular right R-module. By assumption, I ⊕ RR is a C21-module. We infer from
Colloary 3.5 that I is a direct summand of RR. Consequently, R is a semisimple ring.

(ii) ⇒ (i) This is obvious. �

In 2014, Camillo, Ibrahim, Yousif and Zhou [6] introduced and studied the notion
of simple-direct-injective modules which is another generalization of the notion of C2-
modules. Recall that an R-module M is called simple-direct-injective if, whenever A and
B are simple submodules of M with A ∼= B and B is a direct summand of M , then A
is a direct summand of M . Moreover, a ring R is called a right generalized V-ring (or
a right GV-ring) if every simple R-module is either injective or projective; equivalently,
every singular simple R-module is injective.

In the next proposition, we characterize right GV-rings, but first we need the following
lemma.

Lemma 4.12. Let R be a ring. Then every direct sum of a singular R-module and an
injective R-module is a C21-module.

Proof. Let an R-module N = M ⊕ E be a direct sum of submodules M and E such
that M is singular and E is injective. Note that by [2, Theorem 2.4((1) ⇔ (3))], every
direct sum of a Z2-torsion module and a nonsingular continuous module is t-continuous.
Now, since E is injective, E = Z2(E) ⊕ E′ for some submodule E′ of E such that E′ is
nonsingular and injective (see [8, 7.11]). Thus N = (M ⊕ Z2(E)) ⊕ E′. Moreover, it is
clear that M ⊕ Z2(E) is Z2-torsion and E′ is continuous. Therefore N is a t-continuous
module, and so N is a C21-module by [2, Corollary 2.5]. �

Proposition 4.13. The following statements are equivalent for a ring R:
(i) R is a right GV-ring;
(ii) Every C21-module is simple-direct-injective.

Proof. (i) ⇒ (ii) Let M be a C21-module and let A and B be simple submodules of M
with A ∼= B and B is a direct summand of M . If A is singular, then, by hypothesis, it is
injective. Thus A is a direct summand of M . Now, suppose that A is nonsingular. Since
M is a C21-module, A is a direct summand of M . Hence M is simple-direct-injective.

(ii) ⇒ (i) Let M be a singular simple R-module and E(M) be the injective hull of M .
Then, by Lemma 4.12, M ⊕ E(M) is a C21-module. Therefore, by hypothesis, M ⊕ E(M)
is simple-direct-injective. Consequently, the inclusion map i : M → E(M) splits by
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[6, Proposition 2.1]. It follows that M is a direct summand of E(M). Hence M is injective
and R is a right GV-ring, as required. �
Acknowledgment. The authors would like to thank the referees for helpful comments
that improved the paper and for providing them with Lemma 4.12 and Proposition 4.13.

References
[1] I. Amin, Y. Ibrahim and M. Yousif, C3-modules, Algebra Colloq. 22 (4), 655-670,

2015.
[2] Sh. Asgari, T -continuous modules, Comm. Algebra, 45 (5), 1941-1952, 2017.
[3] Sh. Asgari, T -quasi-continuous modules, Comm. Algebra, 47 (5), 1939-1953, 2019.
[4] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Alge-

bra, 39 (5), 1605-1623, 2011.
[5] Sh. Asgari, A. Haghany and Y. Tolooei, T -semisimple modules and T -semisimple

rings, Comm. Algebra, 41 (5), 1882-1902, 2013.
[6] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J.

Algebra, 420, 39-53, 2014.
[7] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and

Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[8] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman

Research Notes in Mathematics series 313, Longman Scientific & Technical, Harlow,
1994.

[9] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
[10] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
[11] K.R. Goodearl, Ring Theory. Nonsigular Rings and Modules, Marcel Dekker, New

York, 1976.
[12] D.K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (2)

69 (2), 366-391, 1959.
[13] L. Jeremy, Sur les modules et anneaux quasi-continus, C. R. Acad. Sci. Paris (Série

A) 273, 80-83, 1971.
[14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math.

Soc. 72, 327-340, 1952.
[15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[16] F. Kourki, When maximal linearly independant subsets of a free module have the

same cardinality?, in: Modules and Comodules, Trends in Mathematics, 281-293,
Birkhäuser, Verlag, Basel, Switzerland, 2008.

[17] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189,
Springer-Verlag, New York, 1999.

[18] G. Lee, S.T. Rizvi and C.S. Roman, Dual Rickart modules, Comm. Algebra, 39 (11),
4036-4058, 2011.

[19] G. Lee, C.S. Roman and X. Zhang, Modules whose endomorphism rings are division
rings, Comm. Algebra, 42 (12), 5205-5223, 2014.

[20] S.H. Mohamed and T. Bouhy, Continuous modules, Arabian J. Sci. Eng. 2, 107-122,
1977.

[21] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math.
Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.

[22] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge University
Press, Cambridge, 2003.

[23] F.L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128,
112-120, 1967.

[24] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (6),
1809-1847, 1993.



442 A.D. Diallo, P.C. Diop, R. Tribak

[25] T. Takeuchi, On direct modules, Hokkaido Math. J. 1 (2), 168-177, 1972.
[26] A. Tuganbaev, Rings Close to Regular, Mathematics and Its Applications, vol. 545,

Kluwer Academic Publishers, Dordrecht, 2002.
[27] Y. Utumi, On continuous regular rings, Canad. Math. Bull. 4 (1), 63-69, 1961.
[28] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155

(1), 233-256, 1971.
[29] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science

Publishers, Philadelphia, 1991.


