On a generalization of C_{2}-modules

Abdoul Djibril Diallo ${ }^{1}$ (D), Papa Cheikhou Diop ${ }^{2}$ (D) Rachid Tribak ${ }^{* 3}$ (D)
${ }^{1}$ Département de Mathématiques et d'Informatique, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Sénégal
${ }^{2}$ Département de Mathématiques, Université de Thiès, Thiès, Sénégal
${ }^{3}$ Centre Régional des Métiers de l'Education et de la Formation (CRMEF-TTH)-Tanger, Avenue My Abdelaziz, B.P. 3117 Souani, Tangier, Morocco

Abstract

A module M is called a C_{21}-module if, whenever A and B are submodules of M with $A \cong B, A$ is nonsingular and B is a direct summand of M, then A is a direct summand of M. Various examples of C_{21}-modules are presented. Some basic properties of these modules are investigated. It is shown that the class of rings R over which every $C_{21}{ }^{-}$ module is a C_{2}-module is exactly that of right SI-rings. Also, we prove that for a ring R, every R-module has (C_{21}) if and only if R is a right t -semisimple ring.

Mathematics Subject Classification (2020). 16D10, 16D99
Keywords. C_{21}-module, C_{2}-module, nonsingular module, singular module, SI-ring, t-semisimple ring

1. Introduction

Among many generalizations of (quasi-) injective modules, the notion of continuous modules and its related properties have attracted considerable attention since 1971 (see, for example, [13, 20-22, 25, 27]). Following [21, Definition 2.3], a module M is called continuous if M satisfies the following two conditions:
$\left(C_{1}\right)$: Every submodule of M is essential in a direct summand of M;
$\left(C_{2}\right)$: If a submodule N of M is isomorphic to a direct summand of M, then N is a direct summand of M.

A module M is said to be extending if M satisfies the condition $\left(C_{1}\right)$ (see [8]). Also, a module M is called quasi-continuous if M is extending and whenever A and B are direct summands of M with $A \cap B=0$, then $A \oplus B$ is a direct summand of M (see [21]). Asgari and Haghany introduced and studied some generalizations of these notions. According to [4, Definition 2.10 and Theorem 2.11], a module M is called t-extending if every submodule of M which contains $Z_{2}(M)$ is essential in a direct summand of M. A module M is called t-continuous if M is t-extending and every submodule of M which contains $Z_{2}(M)$ and is isomorphic to a direct summand of M, is itself a direct summand (see [2]). Also, a module M is called t-quasi-continuous if M is t-extending and whenever A and B are

[^0]nonsingular direct summands of M with $A \cap B=0$, then $A \oplus B$ is a direct summand of M (see [3]). It was shown in [2, Corollary 2.5] that a module M is t -continuous if and only if M is t-extending and every nonsingular submodule of M which is isomorphic to a direct summand of M, is itself a direct summand. Motivated by this result, we introduce and investigate the notion of C_{21}-modules which is a generalization of the notion of $C_{2^{-}}$ modules. A module M is called a C_{21}-module if every nonsingular submodule of M which is isomorphic to a direct summand of M, is itself a direct summand of M.

Various examples of C_{21}-modules are presented in Section 2. For instance, it is shown that every module M for which $M / Z_{2}(M)$ is a C_{2}-module is a C_{21}-module. Also, we provide an example to show that the concept of C_{21}-modules is a proper generalization of that of C_{2}-modules.

We begin Section 3 by showing that all direct summands of a C_{21}-module inherit the property. On the other hand, some examples are exhibited to prove that the class of C_{21}-modules is not closed under direct sums. Then we investigate some basic properties of C_{21}-modules. Moreover, we shed some light on the endomorphism ring of a hereditary C_{21}-module.

In Section 4, a number of characterizations of classes of rings in terms of C_{21}-modules are provided. Among others, we first investigate the natural question of when every $C_{21^{-}}$ module over a ring R has (C_{2}). It turns out that this condition is equivalent to the fact that every singular R-module is injective (i.e., R is a right SI-ring). It is also shown that rings over which every module has $\left(C_{21}\right)$ are precisely the right t-semisimple rings (i.e., the rings R for which $R / Z_{2}\left(R_{R}\right)$ is a semisimple ring). Moreover, we prove that a ring R is a right GV-ring (i.e., every singular simple R-module is injective) if and only if every C_{21}-module is simple-direct-injective.

Throughout, all rings have identities and all modules are unital right modules. Let R be a ring. For an R-module M, we denote by $\operatorname{Rad}(M), \operatorname{Soc}(M), Z(M), Z_{2}(M)$, and $E(M)$ the Jacobson radical, the socle, the singular submodule of M, the second singular submodule of M, and the injective hull of M, respectively. The notation $N \subseteq M$ means that N is a subset of M and we write $N \leq M$ if N is a submodule of M. By \mathbb{Q}, \mathbb{Z}, and \mathbb{N}, we denote the set of rational numbers, the set of integers, and the set of positive integers, respectively. For a prime number p, the Prüfer p-group is denoted by $\mathbb{Z}\left(p^{\infty}\right)$.

2. Examples

Let M be an R-module. Recall that the singular submodule $Z(M)$ of M is defined by

$$
Z(M)=\{m \in M \mid m I=0 \text { for some essential right ideal } I \text { of } R\} .
$$

The Goldie torsion submodule $Z_{2}(M)$ of M (also known as the second singular submodule of M) is defined to be the submodule of M which contains $Z(M)$ such that $Z(M / Z(M))=$ $Z_{2}(M) / Z(M)$. The module M is called singular if $Z(M)=M$ and is called nonsingular if $Z(M)=0$ (equivalently, $Z_{2}(M)=0$). The module M is said to be Z_{2}-torsion if $Z_{2}(M)=M$. Recall that $Z_{2}(N)=Z_{2}(M) \cap N$ for every submodule N of M. Recall further that, $M / Z_{2}(M)$ is a nonsingular module. Moreover, for every class of R-modules $M_{\lambda}(\lambda \in \Lambda)$, we have $Z\left(\oplus_{\lambda \in \Lambda} M_{\lambda}\right)=\oplus_{\lambda \in \Lambda} Z\left(M_{\lambda}\right)$ and $Z_{2}\left(\oplus_{\lambda \in \Lambda} M_{\lambda}\right)=\oplus_{\lambda \in \Lambda} Z_{2}\left(M_{\lambda}\right)$.
Definition 2.1. (i) An R-module M is called a C_{21}-module (or has $\left(C_{21}\right)$) if every nonsingular submodule of M which is isomorphic to a direct summand of M is itself a direct summand of M.
(ii) The ring R is called a (left) right C_{21}-ring if the (left) right R-module $\left({ }_{R} R\right) R_{R}$ is a C_{21}-module.

In this section we exhibit many examples of C_{21}-modules.
Example 2.2. Let R be a ring and let I be an essential right ideal of R. By [2, Example 2.6(i)], $E \oplus R / I$ is a C_{21}-module for any injective R-module E.

Let M be an indecomposable module. Then clearly M has $\left(C_{21}\right)$ if and only if M has no nonzero proper nonsingular submodule isomorphic to M. For example, the \mathbb{Z}-module $\mathbb{Z}\left(p^{\infty}\right)$ (where p is any prime) has (C_{21}) but the \mathbb{Z}-module \mathbb{Z} is not a C_{21}-module. Next, we shed more light on the structure of indecomposable C_{21}-modules.
Proposition 2.3. The following are equivalent for an indecomposable module M :
(i) M is a C_{21}-module;
(ii) $Z(M) \neq 0$ or M is a nonsingular C_{2}-module.

Proof. (i) \Rightarrow (ii) This follows from the fact that the class of nonsingular modules is closed under submodules (see [11, Proposition 1.22(a)]).
(ii) \Rightarrow (i) Assume that $Z(M) \neq 0$. Let N be a nonsingular submodule of M which is isomorphic to a direct summand K of M. Since M is indecomposable and $Z(M) \neq 0$, we have $N=0$ and hence N is a direct summand of M. Therefore M is a C_{21}-module.

Proposition 2.4. The following are equivalent for an indecomposable \mathbb{Z}-module M :
(i) M is a C_{2}-module;
(ii) M is a C_{21}-module;
(iii) $M \cong \mathbb{Z}\left(p^{\infty}\right)$ or $M \cong \mathbb{Z} / p^{n} \mathbb{Z}$ or $M \cong \mathbb{Q}$, where p is a prime number and n is a positive integer.
Proof. (i) \Rightarrow (ii) This is obvious.
(ii) \Rightarrow (iii) Let $T(M)$ denote the torsion submodule of M. Suppose that $T(M) \neq 0$. Using [14, Theorem 10], we deduce that $M \cong \mathbb{Z}\left(p^{\infty}\right)$ or $M \cong \mathbb{Z} / p^{n} \mathbb{Z}$ for some prime number p and some positive integer n. Now assume that $T(M)=0$. Then $q M \cong M$ for any prime number q. Since M is a C_{21}-module, we conclude that $q M=M$ for every prime number q. That is, M is injective. This yields $M \cong \mathbb{Q}$.
(iii) \Rightarrow (i) This is clear.

Example 2.5. Let M be a module whose endomorphism ring is a division ring. Then clearly M is indecomposable. Moreover, if N is a submodule of M such that M is isomorphic to N then $N=M$. So M is a C_{21}-module. Many examples belonging to this class of modules are given in [19].
Note that one can easily observe that every module having no nonzero nonsingular direct summands, is a C_{21}-module. Next, we show that this idea provides a rich source of examples of C_{21}-modules.
Example 2.6. (i) Every Z_{2}-torsion module is a C_{21}-module, since the only nonsingular submodule of a Z_{2}-torsion module is the zero submodule.
(ii) From (i), it follows that every module M for which $Z(M)$ is essential in M (for instance, M is a singular module) has $\left(C_{21}\right)$. In particular, R / I is a $C_{21}-R$-module for every essential right ideal I of a ring R. Also, for any module $M, E(M) / M$ is a $C_{21^{-}}$ module.
(iii) Let M be a torsion \mathbb{Z}-module. Since M is singular, M has $\left(C_{21}\right)$ by (ii).

An abelian group G is called cotorsion if $\operatorname{Ext}(J, G)=0$ for every torsion-free abelian group J (see [9, p. 232]). An abelian group G is called algebraically compact if G is a direct summand in every abelian group H that contains G as a pure subgroup (see [9, p. 159]). This is equivalent to the fact that G is a direct summand of a direct product of cocyclic abelian groups (see [9, Theorem 38.1]). For example, the abelian group $M=\prod_{n=1}^{\infty} \mathbb{Z} / p^{n} \mathbb{Z}$ (where p is a prime) is algebraically compact. By [9, Proposition 54.1], an abelian group is cotorsion if and only if it is an epimorphic image of an algebraically compact abelian group. A cotorsion reduced abelian group G is called adjusted if G has no nonzero torsion-free direct summands (see [9, p. 238]).

It was shown in [9, Theorem 55.5] that any reduced cotorsion abelian group G is the direct sum $G=A \oplus C$ of a torsion-free algebraically compact abelian group A and an
adjusted cotorsion abelian group C. Moreover, C is a uniquely determined subgroup of G and $C \cong \operatorname{Ext}(\mathbb{Q} / \mathbb{Z}, T(G))$ where $T(G)$ denotes the torsion subgroup of G.

Example 2.7. (i) It is clear that every reduced cotorsion adjusted abelian group is a C_{21}-module. So $\operatorname{Ext}(\mathbb{Q} / \mathbb{Z}, T)$ has $\left(C_{21}\right)$ for any torsion abelian group T by [9, Lemma 55.4].
(ii) Let T be a reduced unbounded torsion abelian group and let $G=\operatorname{Ext}(\mathbb{Q} / \mathbb{Z}, T)$. By [10, p. 186 Example 1], G is an adjusted abelian group whose torsion part is $T(G)=T$. Moreover, T is not a direct summand of G. In particular, G is a mixed abelian group.
(iii) Let p be a prime number and consider the \mathbb{Z}-module $M=\prod_{n=1}^{\infty} \mathbb{Z} / p^{n} \mathbb{Z}$. Note that M is a reduced module. Indeed, M has no nonzero elements of infinite p-height. Let $T(M)$ denote the torsion submodule of M. Since $M / T(M)$ is not divisible, it follows that M is not adjusted by [12, Proposition 2.2]. On the other hand, by [9, Theorem 55.5], M has an adjusted direct summand N which contains $T(M)$.

Let M be an R-module. It is clear that if M is a C_{2}-module, then M is a C_{21}-module. Note that the converse holds when M is noncosingular but it is not true, in general, as illustrated in the following two examples.

Example 2.8. Consider the \mathbb{Z}-module $M=\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 8 \mathbb{Z}$. Clearly, M is a torsion module. So, by Example 2.6 (iii), M is a C_{21}-module. On the other hand, consider the element $x=(\overline{0}, \overline{4})$ of M. It is clear that $x \mathbb{Z} \cong \mathbb{Z} / 2 \mathbb{Z}$. So $x \mathbb{Z}$ is isomorphic to the direct summand $\mathbb{Z} / 2 \mathbb{Z} \oplus 0$ of M. However, $x \mathbb{Z}$ is not a direct summand of M. This implies that M is not a C_{2}-module.

In the next example, we present a (right) C_{21}-ring which is not a (right) C_{2}-ring.
Example 2.9. Let p be a prime number and consider the trivial extension $R=\mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)$. Since $\mathbb{Z}\left(p^{\infty}\right)$ is a faithful module, we have $Z(R)=p \mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)$ (see [11, p. 37 Exercise 16]). Note that the ideals of R are $0 \oplus N$ and $n \mathbb{Z} \oplus \mathbb{Z}\left(p^{\infty}\right)$, where N is a submodule of $\mathbb{Z}\left(p^{\infty}\right)$ and n is a positive integer. It is easily seen that every nonzero ideal of R is essential in R. So R is a uniform R-module. In particular, R is an indecomposable R-module. Also, since $Z(R)$ is essential in R, R is a Z_{2}-torsion R-module. Hence R is a (right) C_{21}-ring (see Example 2.6(i)). On the other hand, taking a prime number $q \neq p$ and any element $x \in M$, we can check that $\operatorname{ann}_{R}((q, x))=0$. Therefore $(q, x) R \cong R$. It is clear that (q, x) is not invertible in R. This forces $(q, x) R \neq R$. Consequently, R is not a (right) C_{2}-ring.

The next proposition provides more examples of C_{21}-modules.
Proposition 2.10. Let M be a module such that $M / Z_{2}(M)$ is a C_{21}-module (i.e., $M / Z_{2}(M)$ is a C_{2}-module). Then M is a C_{21}-module.
Proof. Let N be a nonsingular submodule of M and let K be a direct summand of M such that $N \cong K$. Then $Z_{2}(N)=N \cap Z_{2}(M)=0$ and $Z_{2}(K)=K \cap Z_{2}(M)=0$. Hence,

$$
\left(N+Z_{2}(M)\right) / Z_{2}(M) \cong N /\left(N \cap Z_{2}(M)\right) \cong K /\left(K \cap Z_{2}(M)\right) \cong\left(K+Z_{2}(M)\right) / Z_{2}(M) .
$$

Since $Z_{2}(M)$ is fully invariant in $M,\left(K+Z_{2}(M)\right) / Z_{2}(M)$ is a direct summand of $M / Z_{2}(M)$. As $M / Z_{2}(M)$ is a nonsingular C_{21}-module, it follows that $\left(N+Z_{2}(M)\right) / Z_{2}(M)$ is a direct summand of $M / Z_{2}(M)$. Let L be a submodule of M with $Z_{2}(M) \subseteq L$ and $M / Z_{2}(M)=\left(\left(N+Z_{2}(M)\right) / Z_{2}(M)\right) \oplus\left(L / Z_{2}(M)\right)$. Thus $M=N+L$. Moreover, $N \cap L \subseteq Z_{2}(M) \cap N=0$. Therefore $M=N \oplus L$. So M has $\left(C_{21}\right)$.
Corollary 2.11. Let $M=M_{1} \oplus M_{2}$ be a direct sum of submodules M_{1} and M_{2} such that $Z_{2}\left(M_{1}\right)=M_{1}$ and M_{2} is a nonsingular C_{21}-module. Then M is a C_{21}-module.
Proof. Since $Z\left(M_{2}\right)=0$, we have $Z_{2}\left(M_{2}\right)=0$. Therefore $Z_{2}(M)=Z_{2}\left(M_{1}\right)=M_{1}$. Thus $M / Z_{2}(M) \cong M_{2}$ has $\left(C_{21}\right)$. So M has $\left(C_{21}\right)$ by Proposition 2.10.

Remark 2.12. Consider the ring R given in Example 2.9. So $R / Z_{2}(R)=0$ is a C_{2}-module, but the R-module R does not have $\left(C_{2}\right)$. This shows that the analogue of Proposition 2.10 for C_{2}-modules does not hold true in general.

Note that all the modules presented in Example 2.6 are Z_{2}-torsion. So they are tcontinuous. As an application of Proposition 2.10, we get the following three examples. The first one exhibits a C_{21}-module that is not t-continuous.
Example 2.13. Consider the \mathbb{Z}-module $M=\prod_{p \in \mathbb{P}} \mathbb{Z} / p \mathbb{Z}$ where \mathbb{P} is the set of all prime
 (injective) \mathbb{Z}-module. In particular, $M / Z_{2}(M)$ is a C_{2}-module. So M is a C_{21}-module by Proposition 2.10. On the other hand, the \mathbb{Z}-module M is not t -continuous by [4, Example 2.16].

Example 2.14. Let R be a right nonsingular ring (i.e., $Z\left(R_{R}\right)=0$) and let E be an injective module. Let N be a proper submodule of E and set $M=E / N$. By [11, Proposition 1.23(a)], $Z(M / Z(M))=0$. This gives $Z_{2}(M)=Z(M)$. Using [23, Theorem 2.10], it follows that $M / Z_{2}(M)$ is an injective module. Therefore $M / Z_{2}(M)$ is a $C_{21}{ }^{-}$ module. From Proposition 2.10, we conclude that M is a C_{21}-module.
Example 2.15. Let R be a right semiartinian ring in which every maximal right ideal is essential (for example, R can be a local semiartinian ring which is not a division ring). Let M be an R-module. Then $\operatorname{Soc}(M)$ is essential in M. Moreover, we have $\operatorname{Soc}(M) \subseteq$ $Z(M) \subseteq Z_{2}(M)$. Thus $Z_{2}(M)$ is an essential submodule of M. This implies that $M / Z_{2}(M)$ is a singular module and hence $M / Z_{2}(M)$ is a C_{21}-module. Applying Proposition 2.10, it follows that every R-module is a C_{21}-module.

3. Some properties of C_{21}-modules

In this section we establish some properties of C_{21}-modules. We begin by showing that having (C_{21}) is preserved by direct summands but it is not preserved under direct sums.
Proposition 3.1. Any direct summand of a C_{21}-module is again a C_{21}-module.
Proof. Let M be a C_{21}-module and let N be a direct summand of M. Let K and L be two isomorphic nonsingular submodules of N such that K is a direct summand of N. Note that K is a direct summand of M. Then L is a direct summand of M. Hence $M=L \oplus L^{\prime}$ for some submodule L^{\prime} of M. By modularity, we have $N=N \cap\left(L \oplus L^{\prime}\right)=L \oplus\left(N \cap L^{\prime}\right)$. Hence L is a direct summand of N. Therefore N is a C_{21}-module.

A direct sum of C_{21}-modules (or even C_{2}-modules) need not be a C_{21}-module as the next two examples show. Note that the first one appeared in [21, Example 2.9] to show that a direct sum of quasi-continuous modules may not be quasi-continuous. Also, this example appeared in [22, p. 170] to show that a direct sum of C_{2}-modules need not be a C_{2}-module.
Example 3.2. Consider the ring $R=\left[\begin{array}{ll}F & F \\ 0 & F\end{array}\right]$ and its right ideals $A=\left[\begin{array}{cc}F & F \\ 0 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 0 \\ 0 & F\end{array}\right]$, where F is a field. Clearly, $R_{R}=A \oplus B$. Since B_{R} is simple, B_{R} has $\left(C_{2}\right)$. Moreover, A_{R} has exactly one proper nonzero submodule $J(R)=\left[\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right]$, and $J(R)$ is not isomorphic to A_{R}. Thus A_{R} has $\left(C_{2}\right)$. On the other hand, the R-module R_{R} is not a C_{2}-module (see [22, p. 168] or [21, Example 2.9]). In addition, it is well known that R is a right hereditary ring (see for example, [8, Example 13.6]). Therefore R_{R} is a nonsingular R-module by [11, Proposition $1.27(\mathrm{a})]$. Hence the R-module R_{R} could not be a C_{21}-module.

Example 3.3. Let T be a commutative local ring such that T is a unique factorization domain (UFD). Assume also that T has infinitely many nonassociate prime elements, but T is not a principal ideal domain (for example, T can be the ring of power series in two variables over an infinite field or the polynomial ring $\mathbb{Z}[X]$ in one indeterminate, over the domain \mathbb{Z} of integers). Then there exist two nonassociate prime p and q in T such that $T p+T q \neq T$. Let M be the direct sum of all $T / p T, p$ ranging over the primes of T. Consider the trivial extension $R=T \oplus M$ of T by M. From [15, p. 63 Exercise 7], it follows that no nonzero element of R annihilates $R(p, 0)+R(q, 0)$. Using [16, Corollary 2.4], we conclude that R has a finitely generated free R-module F which is not a C_{2}-module. On the other hand, R is a C_{2}-ring by [16, p. 285 Question]. Now we claim that $Y=0 \oplus M$ is an essential ideal in R. To show this, let \mathfrak{I} be an ideal of R such that $\mathfrak{I} \cap Y=0$. Then there exist an ideal I of T and a T-submodule N of M such that $\mathfrak{I}=I \oplus N, I M \subseteq N$ and $\mathfrak{I} \cap Y=0 \oplus N=0$. Thus $N=0$. Moreover, since $I M \subseteq N$, we have $I M=0$. As T is a UFD, we deduce that $I=0$ and hence $\mathfrak{I}=0$. In addition, since $Y^{2}=0$, we obtain $Y \subseteq Z(R)$. This implies that $Z(R)$ is an essential ideal in R. It follows that $R / Z(R)$ is a singular R-module. We thus get $Z_{2}(R)=R$. So $Z_{2}(F)=F$ and hence F is a C_{21}-module.
Proposition 3.4. Let M be a C_{21}-module. Then the following hold:
(i) For every direct summands A and B of M such that $A \cap B=0$ and B is nonsingular, $A \oplus B$ is a direct summand of M.
(ii) Assume that $M=A \oplus B$ such that at least one of the submodules A and B is nonsingular. Then for any homomorphism $f: A \longrightarrow B$ such that Kerf is a direct summand of A, Imf is a direct summand of B.
Proof. (i) Let A and B be two direct summands of M such that $Z(B)=0$ and $A \cap B=0$. Then $M=A \oplus L$ for some submodule L of M. Let $\pi: M \longrightarrow L$ be the natural projection map. It follows that $\pi_{/ B}: B \longrightarrow \pi(B)$ is an isomorphim. Since M has $\left(C_{21}\right), \pi(B)$ is a direct summand of M. Hence $\pi(B)$ is a direct summand of L. Thus $L=\pi(B) \oplus X$ for some $X \leq L$. It follows that $M=(A \oplus \pi(B)) \oplus X=(A \oplus B) \oplus X$. So $A \oplus B$ is a direct summand of M.
(ii) Let $f: A \longrightarrow B$ be a homomorphism such that $\operatorname{Ker} f$ is a direct summand of A. Then $A=\operatorname{Kerf} \oplus N$ for some submodule N of A. Hence $\operatorname{Imf} \cong A / \operatorname{Ker} f \cong N$. From the hypothesis, we infer that Imf is nonsingular. Since M has $\left(C_{21}\right)$, we conclude that Imf is a direct summand of M. Thus Imf is a direct summand of B.

The next corollary follows directly from Proposition 3.4(ii).
Corollary 3.5. Let A and B be submodules of a C_{21}-module M such that $Z(A)=0$ or $Z(B)=0$ and $M=A \oplus B$. If $f: A \longrightarrow B$ is a monomorphism, then Imf is a direct summand of B.

Corollary 3.6. Let M be a nonsingular R-module such that $M \oplus E(M)$ is a C_{21}-module. Then M is an injective module.
Proof. Consider the inclusion map $\mu: M \longrightarrow E(M)$. Then, by Corollary 3.5, $\mu(M)=M$ is a direct summand of $E(M)$. This implies that M is injective, as required.

Let R be a ring. Recall that an R-module M is said to be (semi)hereditary if every (finitely generated) submodule of M is a projective module. It is well known that projective right modules over a right hereditary ring are hereditary modules (see e.g., [29, 39.16]). Note that for any nonzero element x in a semihereditary R-module $M, a n n_{R}(x)$ is a direct summand of R_{R}. So every semihereditary module is nonsingular. Next, we will be concerned with the endomorphism ring of a (semi)hereditary C_{21}-module.
Proposition 3.7. Let M be a $C_{21-m o d u l e . ~ A s s u m e ~ t h a t ~ o n e ~ o f ~ t h e ~ f o l l o w i n g ~ c o n d i t i o n s ~}^{\text {- }}$ is satisfied:
(i) M is a hereditary module.
(ii) M is a semihereditary finitely generated module.

Then $\operatorname{End}_{R}(M)$ is a von Neumann regular ring.
Proof. (i) Suppose M is a hereditary module and let $f \in \operatorname{End}_{R}(M)$. Then Imf is a projective module. Since $M / \operatorname{Ker} f \cong \operatorname{Imf}$, it follows that Kerf is a direct summand of M. Thus $M=\operatorname{Kerf} \oplus L$ for some submodule L of M. Hence $\operatorname{Imf} \cong L$. Since M is a C_{21}-module and Imf is nonsingular, we deduce that Imf is a direct summand of M. Therefore $\operatorname{End}_{R}(M)$ is a von Neumann regular ring by [29, 37.7(2)].
(ii) This follows by the same method as in (i).

The following corollary is a direct consequence of Proposition 3.7.
Corollary 3.8. The following conditions are equivalent for a ring R :
(i) R is a right semihereditary right C_{21}-ring;
(ii) R is a von Neumann regular ring.

The next example shows that the condition " M is a semihereditary module" in the hypothesis of Proposition 3.7 is not superfluous.
Example 3.9. It is clear that the \mathbb{Z}-module $M=\mathbb{Z} / 4 \mathbb{Z}$ is not semihereditary. Moreover, since M is a torsion \mathbb{Z}-module, M is a singular module. Hence M is a C_{21}-module. On the other hand, $E n d_{\mathbb{Z}}(\mathbb{Z} / 4 \mathbb{Z}) \cong \mathbb{Z} / 4 \mathbb{Z}$ is not a von Neumann regular ring.

Recall that a module M is called regular if every cyclic submodule of M is a direct summand of M. Equivalently, every finitely generated submodule of M is a direct summand of M (see [26, p. 67]).

Corollary 3.10. Let M be a hereditary C_{21}-module over a ring R. Then the following implications hold:
(i) If M is indecomposable, then $\operatorname{End}_{R}(M)$ is a division ring.
(ii) If M has finite uniform dimension, then $\operatorname{End}_{R}(M)$ is a semilocal ring.
(iii) If R is a commutative ring and M is a noetherian R-module, then M is a semisimple module.

Proof. (i) This follows from Proposition 3.7.
(ii) Let $f: M \longrightarrow M$ be a monomorphism. Then $\operatorname{Imf} \cong M$. Since M has finite uniform dimension, Imf is an essential submodule of M by [8, 5.8(1)]. Moreover, Imf is a direct summand of M by Proposition 3.7. This yields $\operatorname{Imf}=M$. From [7, Proposition 19.5], it follows that $E n d_{R}(M)$ is a semilocal ring.
(iii) By Proposition 3.7, $E n d_{R}(M)$ is von Neumann regular. Using [28, Corollary 3.10], we see that M is a regular module. Since M is noetherian, it follows that M is a semisimple module.

The condition " M has $\left(C_{21}\right)$ " in the hypothesis of Corollary 3.10 is not superfluous. To see this, consider the following example.
Example 3.11. Consider the \mathbb{Z}-module $M=\mathbb{Z}$ which is not a C_{21}-module by Proposition 2.4. Since every nonzero submodule of M is isomorphic to M, M is a hereditary module. Also, M is an indecomposable noetherian module (hence M has finite uniform dimension). However, $E n d_{\mathbb{Z}}(M) \cong \mathbb{Z}$ is neither a division ring nor a semilocal ring and M is not semisimple.

4. Rings over which certain modules have $\left(C_{21}\right)$

In this section, we characterize some classes of rings in terms of C_{21}-modules. We begin with the following characterization of the class of rings R for which every C_{21}-module is a C_{2}-module. This result should be contrasted with Examples 2.8 and 2.9.

Recall that a ring R is said to be a right SI-ring if every singular right R-module is injective (see $[8, \mathrm{p} .160]$). A module M is called a C_{3}-module if whenever A and B are direct summands of M with $A \cap B=0$, then $A \oplus B$ is a direct summand of M (see, for example, [21]).
Theorem 4.1. The following conditions are equivalent for a ring R :
(i) R is a right SI-ring;
(ii) Every $C_{21}-R$-module is a C_{2}-module;
(iii) Every C_{21}-R-module is a C_{3}-module;
(iv) Every Z_{2}-torsion R-module is a C_{3}-module.

Proof. (i) \Rightarrow (ii) Suppose that R is a right $S I$-ring. Let A be an R-module. Since $Z(A)$ is singular, it follows that $Z(A)$ is an injective module. Thus $Z(A)$ is a direct summand of A. Now let M be a $C_{21}-R$-module. To prove that M is a C_{2}-module, let N and K be submodules of M such that $N \cong K$ and K is a direct summand of M. Therefore there exist submodules N^{\prime} and K^{\prime} of M such that $N=Z(N) \oplus N^{\prime}$ and $K=Z(K) \oplus K^{\prime}$. Since $N \cong K$, it follows easily that $Z(N) \cong Z(K)$ and $N^{\prime} \cong N / Z(N) \cong K / Z(K) \cong K^{\prime}$. Note that K^{\prime} is a direct summand of M and N^{\prime} is nonsingular. Since M has $\left(C_{21}\right)$, it follows that N^{\prime} is a direct summand of M. This implies that $M=N^{\prime} \oplus L$ for some submodule L of M. So $Z(M)=Z(L) \subseteq L$. As $Z(M)$ is injective, there exists a submodule L^{\prime} of L such that $L=Z(M) \oplus L^{\prime}$. Thus $M=N^{\prime} \oplus Z(M) \oplus L^{\prime}$. Moreover, since $Z(N)$ is injective, $Z(M)=Z(N) \oplus B$ for some submodule B of M. Consequently, $M=N^{\prime} \oplus Z(N) \oplus B \oplus L^{\prime}=$ $N \oplus B \oplus L^{\prime}$. It follows that M is a C_{21}-module.

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) are clear.
(iv) \Rightarrow (i) Let M be a singular R-module. Clearly, M is Z_{2}-torsion. It is well known that the class of Z_{2}-torsion modules is closed under essential extensions and direct sums (see [11, p. 37 Exercise 21]). Then $M \oplus E(M)$ is a Z_{2}-torsion module. By (iv), $M \oplus E(M)$ is a C_{3}-module. Consider the inclusion map $\mu: M \rightarrow E(M)$. Thus, according to [1, Corollary 2.4], we deduce that $\mu(M)=M$ is a direct summand of $E(M)$. Hence M is an injective module. It follows that R is a right SI-ring.
Remark 4.2. Let R be a ring which is not a right SI-ring. From Theorem 4.1, it follows that R has a C_{21}-module that is not a C_{2}-module.

It is shown in [5, Theorem 3.2] that for a ring $R, R / Z_{2}\left(R_{R}\right)$ is a semisimple ring if and only if every nonsingular R-module is injective. Moreover, the authors called a ring R which satisfies these equivalent conditions a right t-semisimple ring. In the next result, we determine the class of rings R for which every (nonsingular) R-module has (C_{21}).
Proposition 4.3. Let R be a ring with $\bar{R}=R / Z_{2}\left(R_{R}\right)$. Then the following conditions are equivalent:
(i) R is a right t-semisimple ring;
(ii) Every R-module is a C_{21}-module;
(iii) Every nonsingular R-module is a C_{21}-module;
(iv) Every R-submodule of $\bar{R} \oplus \bar{R}$ is a C_{21}-module.

Proof. (i) \Rightarrow (ii) This follows from the definition of C_{21}-modules and the fact that every nonsingular module over a right t-semisimple ring is injective.

The implications (ii) \Rightarrow (iii) \Rightarrow (iv) are obvious.
(iv) \Rightarrow (i) Let \bar{I} be a right ideal of \bar{R}. Thus $\bar{I} \oplus \bar{R}$ being an R-submodule of $\bar{R} \oplus \bar{R}$ is a $C_{21}-R$-module by (iv). Let $\mu: \bar{I} \rightarrow \bar{R}$ be the inclusion map. Note that \bar{R} is nonsingular. Then \bar{I} is a direct summand of \bar{R} by Corollary 3.5 . Therefore \bar{R} is a semisimple ring. This completes the proof.

It is shown in Example 2.6 that every Z_{2}-torsion module has $\left(C_{21}\right)$. Also, in Example 2.13, we provide a C_{21}-module which is not Z_{2}-torsion. Next, we characterize the class
of rings R for which each C_{21} - R-module is Z_{2}-torsion. It turns out that this class is a subclass of that of t-semisimple rings.

Proposition 4.4. The following conditions are equivalent for a ring R :
(i) R_{R} is a Z_{2}-torsion R-module;
(ii) Every $C_{21}-R$-module is Z_{2}-torsion.

In this case, every R-module is a C_{21}-module.
Proof. Let us first note that for any module R-homomorphism $f: M \rightarrow N$, we have $f\left(Z_{2}(M)\right) \subseteq Z_{2}(N)$. Let M be an R-module. Given $a \in Z_{2}\left(R_{R}\right)$, we consider the R homomorphism $\varphi: R \rightarrow a R$ defined by $\varphi(r)=a r$ for all $r \in R$. Then $\varphi\left(Z_{2}\left(R_{R}\right)\right)=$ $a Z_{2}\left(R_{R}\right) \subseteq Z_{2}(M)$. It follows that $M Z_{2}\left(R_{R}\right) \leq Z_{2}(M)$.
(i) \Rightarrow (ii) Suppose that $Z_{2}(R)=R$ and let M be an R-module. Then $M Z_{2}\left(R_{R}\right)=$ $M \subseteq Z_{2}(M)$. Hence M is a Z_{2}-torsion module. Therefore M has $\left(C_{21}\right)$.
(ii) \Rightarrow (i) Note that $E\left(R_{R}\right)$ is a C_{21}-module. Then $E\left(R_{R}\right)$ is Z_{2}-torsion. But the class of Z_{2}-torsion modules is closed under submodules. Thus R_{R} is Z_{2}-torsion.

For a ring R and an R-module M, the (Goldie) reduced rank of M (of R) is the uniform dimension of $M / Z_{2}(M)$ (of $R_{R} / Z_{2}\left(R_{R}\right)$) (see for example, [17, Definition 7.34]). The next result shows that the class of rings R for which every direct sum of injective R-modules has $\left(C_{21}\right)$ is exactly that of rings having finite reduced rank. Note that the proof of the implication (iii) \Rightarrow (i) of this result is similar to that of $[3$, Theorem $4.9((1) \Rightarrow(2))]$, but it is given for completeness.
Proposition 4.5. The following conditions are equivalent for a ring R :
(i) R is of finite reduced rank;
(ii) Every direct sum of injective R-modules is a C_{21}-module;
(iii) Every direct sum of nonsingular injective R-modules is a C_{21}-module.

Proof. (i) \Rightarrow (ii) Suppose that R is of finite reduced rank and let M be an R-module which is a direct sum of injective submodules. By [3, Proof of Theorem $4.9((2) \Rightarrow(1))]$, $M=Z_{2}(M) \oplus M^{\prime}$ for some injective submodule M^{\prime} of M. Clearly, $M / Z_{2}(M) \cong M^{\prime}$ is a continuous module. By Proposition 2.10, M is a C_{21}-module.
(ii) \Rightarrow (iii) This is clear.
(iii) \Rightarrow (i) Since $R / Z_{2}\left(R_{R}\right)$ is a right nonsingular ring, it suffices to show that every direct sum of nonsingular injective $R / Z_{2}\left(R_{R}\right)$-modules is an injective $R / Z_{2}\left(R_{R}\right)$-module by [11, Theorem 3.17]. Let $M=\oplus_{i \in I} M_{i}$ be a direct sum of nonsingular injective $R / Z_{2}\left(R_{R}\right)$ modules $M_{i}(i \in I)$. Then by [11, p. 48 Exercise 22], each $M_{i}(i \in I)$ is a nonsingular injective R-module. Since M is nonsingular, so is $E(M)$. Thus, by hypothesis, $M \oplus E(M)$ is a C_{21}-module. Now using Corollary 3.6, it follows that M is an injective R-module. Hence M is an injective $R / Z_{2}\left(R_{R}\right)$-module (see [11, p. 48 Exercise 22]).

It is easily seen that every right t-semisimple ring is of finite reduced rank. Using the C_{21} property, we provide in the next theorem a necessary and sufficient condition for a ring of finite reduced rank to be right t-semisimple. We first prove the following lemma.
Lemma 4.6. Let R be a ring such that every 2-generated R-module is a $C_{21 \text {-module or }}$ every direct sum of two uniform modules is a C_{21}-module. Then:
(i) Every nonsingular uniform R-module is simple and injective.
(ii) Every nonsingular R-module having finite uniform dimension is a semisimple injective module.
Proof. (i) Let U be a nonsingular uniform R-module. Then clearly $E(U)$ is a nonsingular uniform module. Let $0 \neq x \in E(U)$ and take $0 \neq y \in x R$. By hypothesis, $x R \oplus y R$ is a C_{21}-module. Clearly, $x R$ is a nonsingular R-module. So by Corollary 3.5, it follows that $y R$ is a direct summand of $x R$. Since $x R$ is a uniform module, $x R$ is indecomposable
and hence $x R=y R$. This implies that $x R$ is a simple module. Therefore $E(U)$ is a semisimple module. As $E(U)$ is indecomposable, we see that $E(U)$ is a simple module. Thus $U=E(U)$ is a simple injective R-module.
(ii) Let M be a nonsingular module having finite uniform dimension. So there exists a non-negative integer n such that M has an essential submodule $N=\oplus_{i=1}^{n} U_{i}$ which is a direct sum of uniform submodules $U_{i}(1 \leq i \leq n)$ of M. It is clear that each U_{i} $(1 \leq i \leq n)$ is a nonsingular R-module. From (i), it follows that each $U_{i}(1 \leq i \leq n)$ is a simple injective R-module. Therefore N is semisimple and injective. This implies that N is a direct summand of M and hence $M=N$. This completes the proof.
Theorem 4.7. The following conditions are equivalent for a ring R :
(i) R is of finite reduced rank and every 2 -generated R-module is a C_{21}-module;
(ii) R is of finite reduced rank and every direct sum of two uniform R-modules is a C_{21}-module;
(iii) R is a right t-semi-simple ring.

Proof. (i) \Rightarrow (iii) Since R is of finite reduced rank, the R-module $\bar{R}=R_{R} / Z_{2}\left(R_{R}\right)$ has finite uniform dimension. Moreover, \bar{R} is a nonsingular R-module. Then \bar{R} is a semisimple R-module by Lemma 4.6. Hence R is a right t-semi-simple ring.
(iii) \Rightarrow (i) This follows from Proposition 4.3.
(ii) \Leftrightarrow (iii) This follows by similar arguments as in the equivalence (i) \Leftrightarrow (iii).

Proposition 4.8. Let R be a ring and let \mathfrak{C} be a class of R-modules such that \mathfrak{C} contains every direct sum of nonsingular injective modules and every direct sum of two uniform modules. Then the following assertions are equivalent:
(i) Every module in \mathcal{C} has $\left(C_{21}\right)$;
(ii) R is a right t-semisimple ring.

Proof. (i) \Rightarrow (ii) Using Proposition 4.5, it follows that the ring R is of finite reduced rank. Now we infer from Theorem 4.7 that R is a right t-semisimple ring.
(ii) \Rightarrow (i) By Proposition 4.3.

Let N be a submodule of a module M. A complement of N in M is a submodule K of M maximal with respect to the property $N \cap K=0$. Recall that a module M is said to be a C_{11}-module if every submodule of M has a complement which is a direct summand. By [24, Theorem 2.4], every direct sum of injective modules is a C_{11}-module and every direct sum of two uniform modules is also a C_{11}-module. As an application of Proposition 4.8, one can take the class \mathcal{C} to be the class of C_{11}-modules. So the following corollary is a direct consequence of the preceding proposition.
Corollary 4.9. The following conditions are equivalent for a ring R :
(i) Every C_{11}-module has $\left(C_{21}\right)$;
(ii) R is a right t-semisimple ring.

Recall that a module M is called regular if every cyclic submodule of M is a direct summand. Following [18], a module M is said to be d-Rickart if $\operatorname{Im\varphi }$ is a direct summand of M for every endomorphism φ of M.

Next, we provide a characterization in terms of C_{21}-modules for a right semi-hereditary ring to be von Neumann regular.
Proposition 4.10. The following conditions are equivalent for a right semi-hereditary ring R :
(i) Every finitely generated projective R-module is a C_{2}-module;
(ii) Every finitely generated projective R-module is a C_{21}-module;
(iii) Every finitely generated projective R-module is a d-Rickart module;
(iv) Every finitely generated projective R-module is a regular module;
(v) R is a von Neumann regular ring.

Proof. (i) \Rightarrow (ii) This is immediate.
(ii) \Rightarrow (iii) Let M be a finitely generated projective R-module and let f be an endomorphism of M. It is clear that Imf is finitely generated. Then $\operatorname{Imf} \oplus M$ is a C_{21}-module. Since R is right semi-hereditary, R is right nonsingular. Hence M is nonsingular by [29, 39.13(2)] and [11, Proposition 1.22(a)]. Using Corollary 3.5, we deduce that Imf is a direct summand of M. Thus M is a d-Rickart module.
(iii) \Rightarrow (v) By (iii), R_{R} is a d-Rickart module. So R is a von Neumann regular ring by [18, Remark 2.2].
(v) \Rightarrow (iv) This follows from [26, Proposition 6.7(4)].
(iv) \Rightarrow (i) Let M be a finitely generated projective R-module. Let N and K be submodules of M such that $N \cong K$ and K is a direct summand of M. Since K is finitely generated, so is N. Therefore N is a direct summand of M as M is regular. Hence M is a C_{2}-module.

Proposition 4.11. The following assertions are equivalent for a ring R :
(i) R is right hereditary and every projective R-module is a C_{21}-module;
(ii) R is a semi-simple ring.

Proof. (i) \Rightarrow (ii) Let I be a right ideal of R. Since R is right hereditary, I is a projective nonsingular right R-module. By assumption, $I \oplus R_{R}$ is a C_{21}-module. We infer from Colloary 3.5 that I is a direct summand of R_{R}. Consequently, R is a semisimple ring.
(ii) \Rightarrow (i) This is obvious.

In 2014, Camillo, Ibrahim, Yousif and Zhou [6] introduced and studied the notion of simple-direct-injective modules which is another generalization of the notion of C_{2} modules. Recall that an R-module M is called simple-direct-injective if, whenever A and B are simple submodules of M with $A \cong B$ and B is a direct summand of M, then A is a direct summand of M. Moreover, a ring R is called a right generalized V-ring (or a right $G V$-ring) if every simple R-module is either injective or projective; equivalently, every singular simple R-module is injective.

In the next proposition, we characterize right GV-rings, but first we need the following lemma.

Lemma 4.12. Let R be a ring. Then every direct sum of a singular R-module and an injective R-module is a C_{21}-module.

Proof. Let an R-module $N=M \oplus E$ be a direct sum of submodules M and E such that M is singular and E is injective. Note that by [2, Theorem $2.4((1) \Leftrightarrow(3))]$, every direct sum of a Z_{2}-torsion module and a nonsingular continuous module is t-continuous. Now, since E is injective, $E=Z_{2}(E) \oplus E^{\prime}$ for some submodule E^{\prime} of E such that E^{\prime} is nonsingular and injective (see [8, 7.11]). Thus $N=\left(M \oplus Z_{2}(E)\right) \oplus E^{\prime}$. Moreover, it is clear that $M \oplus Z_{2}(E)$ is Z_{2}-torsion and E^{\prime} is continuous. Therefore N is a t-continuous module, and so N is a C_{21}-module by [2, Corollary 2.5].

Proposition 4.13. The following statements are equivalent for a ring R :
(i) R is a right $G V$-ring;
(ii) Every C_{21}-module is simple-direct-injective.

Proof. (i) \Rightarrow (ii) Let M be a C_{21}-module and let A and B be simple submodules of M with $A \cong B$ and B is a direct summand of M. If A is singular, then, by hypothesis, it is injective. Thus A is a direct summand of M. Now, suppose that A is nonsingular. Since M is a C_{21}-module, A is a direct summand of M. Hence M is simple-direct-injective.
(ii) \Rightarrow (i) Let M be a singular simple R-module and $E(M)$ be the injective hull of M. Then, by Lemma 4.12, $M \oplus E(M)$ is a C_{21}-module. Therefore, by hypothesis, $M \oplus E(M)$ is simple-direct-injective. Consequently, the inclusion map $i: M \rightarrow E(M)$ splits by
[6, Proposition 2.1]. It follows that M is a direct summand of $E(M)$. Hence M is injective and R is a right GV-ring, as required.

Acknowledgment. The authors would like to thank the referees for helpful comments that improved the paper and for providing them with Lemma 4.12 and Proposition 4.13.

References

[1] I. Amin, Y. Ibrahim and M. Yousif, C3-modules, Algebra Colloq. 22 (4), 655-670, 2015.
[2] Sh. Asgari, T-continuous modules, Comm. Algebra, 45 (5), 1941-1952, 2017.
[3] Sh. Asgari, T-quasi-continuous modules, Comm. Algebra, 47 (5), 1939-1953, 2019.
[4] Sh. Asgari and A. Haghany, t-Extending modules and t-Baer modules, Comm. Algebra, 39 (5), 1605-1623, 2011.
[5] Sh. Asgari, A. Haghany and Y. Tolooei, T-semisimple modules and T-semisimple rings, Comm. Algebra, 41 (5), 1882-1902, 2013.
[6] V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra, 420, 39-53, 2014.
[7] J. Clark, C. Lomp, N. Vanaja and R. Wisbauer, Lifting Modules. Supplements and Projectivity in Module Theory, Frontiers in Mathematics, Birkhäuser, Basel, 2006.
[8] N.V. Dung, D.V. Huynh, P.F. Smith and R. Wisbauer, Extending Modules, Pitman Research Notes in Mathematics series 313, Longman Scientific \& Technical, Harlow, 1994.
[9] L. Fuchs, Infinite Abelian Groups, Vol. I, Academic Press, New York, 1970.
[10] L. Fuchs, Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973.
[11] K.R. Goodearl, Ring Theory. Nonsigular Rings and Modules, Marcel Dekker, New York, 1976.
[12] D.K. Harrison, Infinite Abelian groups and homological methods, Ann. of Math. (2) 69 (2), 366-391, 1959.
[13] L. Jeremy, Sur les modules et anneaux quasi-continus, C. R. Acad. Sci. Paris (Série A) 273, 80-83, 1971.
[14] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans. Amer. Math. Soc. 72, 327-340, 1952.
[15] I. Kaplansky, Commutative Rings, The University of Chicago Press, Chicago, 1974.
[16] F. Kourki, When maximal linearly independant subsets of a free module have the same cardinality?, in: Modules and Comodules, Trends in Mathematics, 281-293, Birkhäuser, Verlag, Basel, Switzerland, 2008.
[17] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, vol. 189, Springer-Verlag, New York, 1999.
[18] G. Lee, S.T. Rizvi and C.S. Roman, Dual Rickart modules, Comm. Algebra, 39 (11), 4036-4058, 2011.
[19] G. Lee, C.S. Roman and X. Zhang, Modules whose endomorphism rings are division rings, Comm. Algebra, 42 (12), 5205-5223, 2014.
[20] S.H. Mohamed and T. Bouhy, Continuous modules, Arabian J. Sci. Eng. 2, 107-122, 1977.
[21] S.H. Mohamed and B.J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Series 147, Cambridge University Press, Cambridge, 1990.
[22] W.K. Nicholson and M.F. Yousif, Quasi-Frobenius Rings, Cambridge University Press, Cambridge, 2003.
[23] F.L. Sandomierski, Semisimple maximal quotient rings, Trans. Amer. Math. Soc. 128, 112-120, 1967.
[24] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (6), 1809-1847, 1993.
[25] T. Takeuchi, On direct modules, Hokkaido Math. J. 1 (2), 168-177, 1972.
[26] A. Tuganbaev, Rings Close to Regular, Mathematics and Its Applications, vol. 545, Kluwer Academic Publishers, Dordrecht, 2002.
[27] Y. Utumi, On continuous regular rings, Canad. Math. Bull. 4 (1), 63-69, 1961.
[28] R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155 (1), 233-256, 1971.
[29] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach Science Publishers, Philadelphia, 1991.

[^0]: *Corresponding Author.
 Email addresses: dialloabdoulaziz58@yahoo.fr (A.D. Diallo), cheikpapa@gmail.com (P.C. Diop), tribak12@yahoo.com (R. Tribak)
 Received: 08.09.2020; Accepted: 27.09.2021

