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Highlights 
• This paper focus on review of mobile robot path planning algorithms.  

• Quantitative performance approach is proposed for evaluation of these algorithms in the study.  

• Objective conclusions are made on the performance of the path planning algorithms.   
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Abstract 

Path planning evaluates and identifies an obstacle free path for a wheeled mobile robot (WMR) 

to traverse within its workspace. It emphasizes metric like, start and goal coordinate, static or 

dynamic workspace, static or dynamic obstacles, computational time and local minimum 

problem. Path planning play a significant role toward WMR effective traverse within it workspace 

like industrial, military, hospital, school and office. In this workspace, path planning is an optimal 

method to increase the productivity of WMR to achieve it specific task. Hence, in this paper, we 

present a review of path planning algorithms (classical algorithms, heuristics and intelligent 

algorithms, and machine learning algorithm) for mobile robot using statistical method. Regarding 

our objective, we use this statistical method to evaluate the success of these algorithms base on 

the following metrics: architecture (hybrid or standalone), algorithm sub-category (global or local 

or combine), workspace (static or dynamic), obstacle type (static or dynamic), number of obstacle 

(≤ 2, ≤ 5, > 5) and test workspace (virtual or real-world). Research materials are sourced from 

recognized databases where relevant research articles are obtained and analyzed. Result shows 

hybrid of machine learning approach with heuristic and intelligent algorithm has superior 

performance where they are applied compare to other hybrid. Also, in complex workspace Q-

learning algorithm outperforms other algorithms. To conclude future research is discussed to 

provide reference for hybrid of Q-learning algorithm with Cuckoo Search, Shuffled Frog Leaping 

and Artificial Bee Colony algorithm to improve its performance in complex workspace.  
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1. INTRODUCTION 

 

Wheel Mobile Robots (WMRs) are identified with industrial workspace designed for them to collaborate 

in manufacturing task. However, in recent time technology has made it possible to apply this class of robots 

in other workspaces such as military, hospital, school, office among other examples [1-3]. These 

workspaces are largely complicated for the WMR to traverse due to uncertainty and obstacle presence 

without laid track for the WMR to traverse.  Hence, it has become one of the most researched area of 

engineering recently. The WMR is required to undertake a specific task within it workspace while moving 

from the start coordinate to the goal coordinate evading static and dynamic obstacle [4]. The WMR 

workspace or obstacle type can be static or dynamic [5, 6]. Researchers have developed and applied path 

planning algorithms to assist WMR traverse from it start coordinate to the goal coordinate, evade static and 

dynamic obstacles [6]. To achieve this the WMR must possess some level of intelligence to perceive it 

workspace through sensors and take appropriate action [4].  

 

Path planning algorithms determines an obstacle free path for a WMR to traverse within its workspace [7]. 

It emphasizes metric like, start and goal coordinate, static or dynamic workspace, static or dynamic 
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obstacles, computational time and local minimum problem. In [7, 8], path planning algorithms are sub-

categorized as global and local. Global path planning algorithms are frequently applied to static workspace 

having static obstacles and robot has comprehensive knowledge of this workspace. This algorithm generates 

the traverse path off-line before the movement of the robot within the workspace [8, 9]. However, these 

algorithms are very ineffective in real-world workspace, where the workspace is unpredictable and 

clustered with static and dynamic obstacles. Local path planning algorithms such as discussed in [10-12] 

generate path in real-time for the WMR in response to onboard sensor data [13]. This enable the robot 

traverse safely in unpredictable and clustered workspace [4]. Researchers have proposed and reported 

several path planning algorithms in literature in this category; classical algorithms, heuristics and intelligent 

algorithms, and machine learning algorithm. The classical algorithms are effective as global algorithms 

because they lack the intelligence to succeed in unpredictable and clustered workspace. The heuristics and 

intelligent algorithms, and machine learning algorithm have the requisite intelligence to succeed in 

unpredictable and clustered workspace where an exact mathematical model may not be available.  

 

Although review paper on path planning algorithms for mobile robot have been done [4, 14], these reviews 

do not present how these path planning algorithm has been applied; neither is machine learning algorithm 

compared with other approach. In this paper, we present a review of path planning algorithms (classical 

algorithms, heuristics and intelligent algorithms, and machine learning algorithm) for mobile robot using 

statistical method. This is one of the contributions of this work. Regarding our objective, this statistical 

method evaluates the success of these algorithms base on the following metrics: architecture (hybrid or 

standalone), algorithm sub-category (global or local or combine), workspace (static or dynamic), obstacle 

type (static or dynamic), number of obstacle (≤ 2, ≤ 5, > 5) and test workspace (virtual or real-world). These 

metrics are selected base on how researchers have used their proposed algorithms to solve path planning 

problem for mobile robot. For us to use the statistical method, different weights are assigned to these 

metrics. Also we review the performance of Q-learning a machine learning algorithm for path planning for 

mobile robot using these metrics and compare it success with other approach. This is another contribution 

of our work since many previous works do not present this information. Hence, the path planning algorithms 

are discussed in section 2 under three category (classical, heuristics and intelligent, and machine learning). 

Section 3 describe the method used, then result and discussion in section 4 and finally conclusion in section 

5.  

 

2. PATH PLANNING ALGORITHMS 

 

2.1. Classical Algorithms  

 

The classical algorithms such as cell decomposition, roadmap approach and potential field are the foremost 

path planning algorithms. This classical algorithm lack intelligence hence they require a comprehensive 

model of the workspace and also surfer some drawbacks like local minimum problem and excessive 

computational time [15]. 

 

Cell Decomposition 

 

The principle for this algorithm is to partition the workspace map into number of cells. These cells form a 

connected graph and free path is searched from the start coordinate to the goal coordinate, but it approach 

does not find the shortest path in most cases [16]. This approach is of the exact cell decomposition and 

approximate cell decomposition type. Cell can be occupied with obstacle or free of obstacle. The free cells 

are considered for path planning from start coordinate to goal coordinate. Cell with obstacle is further split 

into new cells to get free cell. Then this free cell is added to the existing free cell and is considered to 

determine the optimal path from start coordinate to goal coordinate [17]. 

 

Roadmap Approach 

 

In this approach traverse from one coordinate to another is through free cell represented by a set of one-

dimensional curves [18]. Voronoi graph and Visibility graph are methods used to build up the roadmap. 
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The cell nodes are crucial to get desired path for robot. The roadmap can search to find the shortest path 

from the robot's successive nodes [19].  

  

Potential Field 

 

The idea of the potential field approach is to apply attractive force to the goal coordinate and repulsive force 

about the obstacles within the mobile robot workspace. This creates imaginary force on the mobile robot 

that guide it robot toward the goal and repel it from obstacles [20-21]. The summation of these imaginary 

forces is the total potential field called Artificial Potential Field [22]. However, this approach suffer a 

problem where the goal is non-reachable due to obstacles in close proximity, here the repulsive force from 

obstacle close to the goal is negate the attractive force, hence, the goal non-reachable [23].  

 

2.2. Heuristics and Intelligent Algorithms 

 

The workspace of mobile robot has substantial level of uncertainty such as sudden obstacle which the 

classical algorithms has not been able to handle effectively. Also, they require comprehensive model of the 

workspace [15] that increase with the size of the workspace. Hence, researchers develop heuristics and 

intelligent algorithms to handle this uncertainty.  

  

Artificial Bee Colony 

 

This algorithm model the procedure for food search behavior of honey bee colony. This algorithm is a 

stochastic search approach that consist of a population of food sources and artificial bees (50 % employed 

bees and 50 % onlooker bees). The ratio of the colony size to food sources is 2:1. Employed bees modify 

these food sources over time. Where a food source cannot be improved by an employed bee after a number 

of specified trials it become a scout bee. This scout bee find another random food source. The employed 

bees exploit food sources and give information about it nectar quality to the onlooker bees. Onlooker bees 

select food sources base on the nectar quality information from the employed bees and exploit these food 

sources. Some of the merit of this algorithm is simplicity, fast processing [24-25].  

 

Cuckoo Search Algorithm 

 

Cuckoo are a specie of bird with parasitic behavior. Cuckoo search algorithm is a meta-heuristic algorithm 

able to solve optimization problems. The algorithm model the reproductive behavior of female cuckoo’s. 

This bird lay their fertilized eggs in the nests of other host bird to hatch and brood the young cuckoo chicks. 

If the host bird identifies these unfamiliar eggs it either destroy it or abandon the nest to nest elsewhere. 

However, for simplicity of this algorithm Yang and Deb in 2009 establish three rule which states: Each 

cuckoo lay at most one egg at a time in a random chosen nest; The best nest with high-quality eggs will be 

carried over to the next generation; The number of available host nests is fixed, and the egg laid by a cuckoo 

may be discovered by the host bird with a probability ( )1,0p  [26-27].  

 

Genetic Algorithm 

 

This is a search-based optimization algorithm which simulate the principle of natural selection and natural 

genetics. It is based on the principle of Darwinian evolution that consist an initialization method, fitness 

function to evaluate each chromosome, natural selection, crossover, and mutation operators. It optimize 

difficult problems where an objective function must be maximized or minimized under given constraints. 

The procedure is as follows: Population of individuals is generated randomly to represent feasible solutions 

(chromosomes) to the problem. Every solution is then evaluated by a fitness value depending on the 

objective function to determine the quality of every potential solution. Individuals are selected based on 

their fitness value and allowed to pass their genes to a new progeny by crossover. Mutation guarantee 

diversity in the population and prevent premature convergence. Finally, the algorithm is stopped if the 

population has converged [28-29]. 

 



768  Oluwaseun Opeyemi MARTINS et al/ GU J Sci, 34(3): 765-784 (2021) 

 

 

Dijkstra’s Algorithm  

 

The Dijkstra algorithm is a long-familiar shortest path algorithm use to search the shortest path in a directed 

graph [5]. Hence it is use to solve mobile robot path planning problem. It principle is to expand outward 

from the start coordinate s  to the goal coordinate g , calculate the optimal path costs from s  to g  through 

all the free states, and store optimal path from s  to g  until all states between s  to g have been traversed 

[8]. 

 

Theta* Algorithm 
 

Unlike A* algorithm, that finds grid paths and constraints the mobile robot headling to multiples of 45 degrees and 

result in non-shortest paths, the Theta* algorithm is a any-angle path-planning algorithm that find paths without 

constraints on the mobile robot headings on the paths [30]. The only difference in the procedure of A* and Theta* 

is the update vertex function. Compared to A*, the parent of a node in Theta* is an unexpected node as 

long as there is a line-of-sight between the two nodes. 

 

Shuffled Frog Leaping Algorithm 

 

The shuffled frog leaping algorithm is a bioinspired intelligent optimization algorithm based on frogs' 

behavior in nature in search of food [31]. It principle consist of initialization, partition, update and shuffle. 

The procedure is as follows: Generate a random initial frog population within the feasible solution space 

(frog) and sort the frogs in a descending order according to their fitness. Partition frogs into m  memeplexes 

and each memeplex contains n  number of frogs. Update the position of the worst frog with the worst fitness 

in each memeplex. Re-shuffle all frogs in the population and repeat the partition and update process until 

the convergence condition is attained [32].  

 

A* Algorithm 

 

The A* algorithm is developed on the basis of the Dijkstra algorithm. But unlike the Dijkstra algorithm the 

A* algorithm include heuristic information into the path cost function to define a new function; the 

estimated path cost function. This focus the expansion on the direction of the start coordinate and ring down 

the total number of state expansions. The estimated path cost function of A* is )()()( uhuguf += [33]. 

Where )(uf estimated path cost from start coordinate through free cells to goal coordinate, )(uh is the 

heuristic function which denotes the estimated path cost from start coordinate to a free cell and )(ug

denotes the actual path cost from a free cell to goal coordinate. The heuristic function is expressed as 

Manhattan, diagonal, or Euclidean distances [5].  

 

Neural Network 

 

Neural network is an intelligent system which compose of a number of interconnected neurons. These 

neurons receive inputs parameters (signals) from the environment and transfer the signal by their capability 

of dynamic state response. After the signal is transferred, calculations are performed using an activation 

function to obtain the output. The neural network architecture consist of the input layer, hidden layers and 

the output layer of interconnected nodes. The input layer recognize the input signal and communicate to 

hidden layers for actual processing and the required response is given to the output layer [34-35]. This 

approach is very useful for mobile robot real-time navigation [36-37]. 

 

Firefly Algorithm  

 

It is a nature base swarm intelligence metaheuristics algorithm motivated by the flashing behavior of 

fireflies [38]. The firefly is a winged beetle; by nature, it has the ability to produce light so it is sometimes 

called a lightning bug [39]. This process of producing light is known as bioluminescence and the bug use 

this light to select a mate, communicate a message and sometimes to scare off predator. The principle of 

firefly comprise of random states and general identification as trial and error of fireflies exist randomly in 
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nature. Firefly concept is based on attraction between fireflies as a result of difference in light intensity. 

Hence, fireflies with higher intensity attract the one with lower intensity in a probabilistic manner [40-41]. 

The movement and light intensity of this bugs are updated and the algorithm can converge to a solution.  

 

Bacterial Foraging Optimization 

 

This is a nature-inspire optimization algorithm which mimics the foraging behavior of E. coli bacteria and 

M. Xanthus bacteria. Based on the forage strategy it is applied for mobile robot path planning [42]. It 

principle consist of chemotaxis, reproduction, elimination and dispersal [43]. Chemotaxis is the movement 

(tumble or runs) of these bacterium in reaction to a chemical stimulus and the new position is updated. 

Reproduction step is taken on the bacteria population for every chemotactic step. Bacteria are sorted in 

descending order by their nutrient obtained in the previous chemotactic processes. Eliminate-dispersal 

event happens after reproduction step base on change in temperature or concentration of nutrient [44].  

 

Fuzzy Logic 

 

Fuzzy logic is an intelligent based algorithm with ability to deal with uncertain, complex, and nonlinear 

data. It principle is based on human ability to process perception-based information. It uses the human-

supplied rules (If-Then) and convert these rules to it mathematical equivalent. Hence, the person who design 

and the computer get more correct information on how the system perform in the real-world. Fuzzification, 

Inference engine and Defuzzification are the three step involve to design a fuzzy system [45]. Fuzzification; 

a real-valued variable x is map to a fuzzy set form by membership function. All input and output values 

variables of the system are fuzzified. Inference engine is used to design the rule-base constituted with IF-

THEN rules to convert the inputs into output membership functions. Defuzzification; here the fuzzy output 

variables are converted into a real valued variable, the actual output for the process [45-46]. 

 

Ant Colony Optimization 

 

This is a swarm intelligence algorithm inspired by ants’ behavior to find shortest path from their colony to 

a food source [47]. The principle of the approach is that each ant release pheromone on the path it walked 

as a reference and also perceive pheromone released by other ants while it search for food. This enable the 

ants to communicate with each other and choose paths. The ant colony will spontaneously move to the path 

with more pheromone and release more pheromone hence, increase the concentration of pheromone on the 

shorter path. With increase in pheromone concentrate on the shorter path, more ant choose this shorter path 

and the pheromone on the other path disappear over time because it abandoned [47-48].  

 

Particle Swarm Optimization 

 

This is a stochastic population based, bio-inspired evolutionary optimization algorithm, based on intelligent 

social behavior of fish school or bird flocks but does not require a leader within the group to reach the goal 

[49]. The algorithm consists of a group of particles in a D -dimensional search where each particle 

represents’ a potential solution to an optimization problem. This particle is associated with a velocity that 

adjust dynamically according to its own flight experience, as well as those of its companions. Each particle 

has memory that allow it keep track of it previous best positions and global best position [50-51].  

 

Machine Learning  

 

Machine learning become a necessity when a machine need to learn and improve it behavior base on it 

experience within its workspace. Reinforcement learning is an important machine learning method and Q- 

learning algorithm is the most basic learning algorithm in reinforcement learning [52]. It combines dynamic 

programming with the knowledge of animal psychology [53]. Q-learning principle is a reward and 

punishment technique, and also the interaction of the robot with the environment. The robot performs an 

action in an environment and receives an immediate reward or punishment for the action taken. The Q-

value is updated continuously based on the received reward or punishment, hence the states with the highest 

Q-value are considered as the optimal path for the mobile robot [54-55]. 



770  Oluwaseun Opeyemi MARTINS et al/ GU J Sci, 34(3): 765-784 (2021) 

 

 

 

3. MATERIAL METHOD 

 

Research materials on the path planning algorithms discussed in section 2 are sourced from recognize 

databases beginning from year 2010 on this subject. To retrieve relevant materials from these databases 

some key words such as: wheel mobile robot, path planning algorithms, mobile robotics, optimization 

algorithm approach to path planning in WMR and Machine Learning approach to mobile robot path 

planning are used with Boolean operators in advance search fields. Results are refined to include only 

research materials that present information on how the proposed algorithm relate to the metrics of interest 

in this work; these are: architecture (hybrid or standalone), algorithm sub-category (global or local or 

combine), workspace (static or dynamic), obstacle type (static or dynamic or combine), number of obstacle 

(≤ 2, ≤ 5, > 5) and test workspace (virtual or real-world). In order to do a fair comparison with our statistical 

method we assigned weight to this metric to create a generic basis for quantitative performance comparison 

for these algorithms and for further statistical analysis. Table 1 present the weight assigned to these 

performance metrics.  

 

Table 1. Metrics assigned performance weight 

S/N Metrics Assigned weight 

1 Architecture 
hybrid 1 

standalone 0 

2 Algorithm sub-category 
global 3 

local 5 

3 Workspace 
static 3 

dynamic 5 

4 Obstacle type 

static 3 

dynamic 5 

combine 7 

5 Number of obstacle 

≤ 2 1 

≤ 5 2 

> 5 5 

6 Test workspace 
virtual 3 

real-world 7 

 

These metrics are selected base on how researchers have used their proposed algorithms to solve path 

planning problem for mobile robot and how they present it performance in literature. The materials selected 

based on the aforementioned metrics from search databases for the path planning algorithms under the three 

category discussed in section 2 is 114 articles where researchers have applied these algorithms to solve path 

planning problems for WMR. 

 

4. RESULT AND DISCUSSION 

 

4.1.   Result 

 

Table 2 present a categorical data to show quantitative performance of the proposed algorithms based on: 

architecture, algorithm sub-category, workspace, obstacle type, number of obstacle and test workspace.  

 

Table 2. Performance of proposed path planning algorithms  

Author Algorithm class Architecture Algorithm 

sub-

category 

Work

space 

Obstacle 

Type 

No. of 

obstacles 

Test 

workspace 

[16] 

Cell  

Decomposition 

1 3 3 3 2 3 

[17] 0 5 3 3 5 3 

[56] 0 5 3 3 1 7 

[57] 1 5 5 5 1 3 
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[18] 

Roadmap  

Approach 

0 5 3 3 1 3 

[19] 1 5 3 3 5 3 

[58] 0 3 3 3 1 3 

[59] 0 5 3 3 2 3 

[20] 

Potential Field 

0 3 3 3 1 3 

[21] 0 3 5 3 1 7 

[22] 1 5 5 7 2 3 

[23] 1 3 3 3 5 3 

[60] 0 3 5 3 2 3 

[61] 1 5 5 7 5 3 

[62] 0 3 3 3 1 3 

[63] 0 3 5 7 5 3 

[64] 0 3 3 3 5 3 

[24] Artificial Bee  

Colony 

1 5 3 3 1 7 

[25] 0 5 3 5 2 3 

[26] Cuckoo Search 

Algorithm 

0 3 3 3 5 3 

[27] 1 3 3 3 5 3 

[9] 

Genetic  

Algorithm 

0 5 3 3 5 3 

[28] 0 3 3 3 5 3 

[29] 0 3 3 3 1 3 

[65] 1 3 3 7 5 7 

[66] 0 3 3 3 1 3 

[67] 0 5 5 7 5 3 

[68] 0 3 3 3 5 7 

[69] 0 3 5 7 5 7 

[70] 0 3 5 3 2 7 

[71] 0 3 5 3 5 3 

[72] 0 3 5 3 5 3 

[73] 1 5 3 3 5 3 

[5] 
Dijkstra’s  

Algorithm 

0 3 3 3 1 3 

[8] 1 5 5 7 5 3 

[74] 1 5 5 7 5 3 

[30] Theta*  

Algorithm 

0 3 3 3 1 3 

[75] 0 3 3 3 1 3 

[31] Shuffled Frog  

Leaping Algorithm 

0 5 3 3 2 3 

[32] 0 5 5 3 5 3 

[33] A* Algorithm  0 3 3 3 1 3 

[34] 

Neural  

Network 

1 3 3 3 1 3 

[35] 0 5 3 3 1 7 

[36] 0 3 3 3 1 7 

[37] 1 3 3 3 5 7 

[76] 0 3 3 3 2 3 

[77] 0 3 3 3 2 3 

[38] 

Firefly  

Algorithm 

0 3 5 3 5 3 

[39] 0 3 3 3 5 7 

[40] 0 3 5 3 1 3 

[41] 0 5 5 7 5 7 

[78] 0 3 5 3 2 7 

[42] 
Bacterial  

Foraging 

Optimization 

0 3 3 3 5 3 

[43] 0 3 3 3 5 3 

[44] 0 5 5 7 5 3 

[79] 0 5 5 7 5 3 

[45] 

Fuzzy Logic  

0 5 3 7 2 7 

[46] 1 3 3 3 1 3 

[80] 0 3 3 3 5 3 

[81] 0 3 3 3 1 3 

[82] 1 3 5 7 5 3 



772  Oluwaseun Opeyemi MARTINS et al/ GU J Sci, 34(3): 765-784 (2021) 

 

 

[83] 1 3 5 3 5 3 

[84] 1 3 3 3 2 7 

[85] 0 3 3 7 5 7 

[86] 0 3 5 3 2 7 

[87] 0 3 5 3 5 3 

[88] 0 5 5 7 2 3 

[89] 1 3 3 3 2 7 

[47] 

Ant Colony  

Optimization 

0 3 3 3 1 3 

[48] 0 5 3 3 5 3 

[90] 0 3 3 3 5 7 

[91] 0 3 3 3 5 3 

[92] 0 3 3 3 1 3 

[93] 0 3 3 3 5 3 

[94] 0 3 3 3 5 3 

[95] 0 3 3 3 5 7 

[96] 1 5 5 3 5 3 

[97] 0 5 5 3 1 3 

[98] 1 3 3 3 2 3 

[15] 

Particle  

Swarm 

Optimization 

0 3 3 3 2 7 

[19] 1 5 3 3 5 3 

[49] 0 3 3 3 5 3 

[50] 0 3 3 3 5 7 

[51] 1 3 3 3 5 7 

[99] 0 3 3 3 5 3 

[100] 1 5 5 5 5 3 

[101] 1 3 5 3 2 3 

[102] 0 3 3 3 5 3 

[103] 0 5 5 7 2 3 

[104] 0 3 3 3 5 3 

[105] 0 3 3 3 2 3 

[106] 1 5 3 3 5 7 

[107] 1 5 3 3 5 7 

[108] 1 3 3 3 5 3 

[109] 0 3 5 3 5 3 

[52] 

Q-Learning  

Algorithm 

1 5 3 3 5 3 

[53] 0 3 3 3 1 3 

[54] 1 5 3 3 5 3 

[55] 1 5 3 3 5 3 

[110] 0 5 5 3 1 3 

[111] 0 5 5 7 5 7 

[112] 0 5 3 3 1 7 

[113] 1 5 3 3 5 3 

[114] 0 5 3 3 1 3 

[115] 0 5 5 7 5 7 

[116] 1 5 5 7 5 3 

[117] 0 5 5 3 5 7 

[118] 0 3 3 3 5 3 

[119] 1 3 3 3 2 3 

[120] 0 5 5 7 5 3 

[121] 1 5 5 3 5 3 

[122] 1 5 5 7 2 3 

[123] 1 5 5 7 5 7 

[124] 1 5 5 7 5 7 

Architecture: Hybrid (with heuristics or intelligent algorithm) =1, Standalone = 0; Algorithm sub-category: Global 

= 3, Local = 5; Workspace: Static =3, Dynamic = 5; Obstacle type: Static = 3, Dynamic = 5, combine = 7; Number 

of obstacle: ≤ 2 = 1, ≤ 5 = 2, > 5 = 5; Test workspace: Virtual = 3, real-world =7. 
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4.2. Discussion 

 

The real-world workspace is unpredictable, dynamic with many obstacles; static and dynamic. This is the 

characteristic of workspaces where WMR are deployed and often proposed to be deployed. Hence, a robust 

path planning algorithm should guide the WMR through such workspaces. Based on the evidence found in 

the research articles cited, presented in Table 2. Tables 3 and 4 present number of paper in the reviewed 

category for path planning algorithms as standalone architecture or hybrid architecture.  

 

Table 3. Number of paper in the reviewed category for path planning algorithms as standalone  

Category  
Architecture: 

Standalone 

Compare metric 

 Algorithm 

sub-category 
Workspace Obstacle type No. of Obstacles 

Global Local Static Dynamic Static Dynamic Combine ≤ 2 ≤ 5 > 5 

Classical 

Algorithm 
11 4 7 8 3 10 0 1 6 2 3 

Heuristics 

and 

Intelligent 

Algorithms 

56 42 14 38 18 46 1 9 13 12 31 

Machine 

Learning 
9 2 7 4 5 6 0 3 4 0 5 

 

Table 4. Number of paper in the reviewed category for path planning algorithms as hybrid  

Category  
Architecture: 

Hybrid 

Compare metric 

 Algorithm 

sub-category 
Workspace Obstacle type No. of Obstacles 

Global Local Static Dynamic Static Dynamic Combine ≤ 2 ≤ 5 > 5 

Classical 

Algorithm 
6 2 4 3 3 3 1 2 1 2 3 

Heuristics 

and 

Intelligent 

Algorithms 

22 13 9 15 7 17 1 4 3 4 15 

Machine 

Learning 
10 1 9 5 5 6 0 4 0 2 8 

 

Equation (1) is used to determine the percentage success of paper in the reviewed category: 

 

 

o
o








=

papers ofNumber  reArchitectucategory  Algorithm

papers ofNumber  metrics Compare
  Success Percentage  .             (1) 

 

The result of Equation (1) with data from Tables 2 and 3 is presented in Figures 1 and 2 and Table 5. From 

Figures 1 and 2 Q-learning algorithm has found more success as standalone or hybrid; for local algorithm, 

in dynamic workspace, for combine obstacle type, and number of obstacles > 5 than classical algorithms or 

heuristics and intelligent algorithms.  
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Figure 1. Algorithm percentage success on four performance metric as standalone 

 
Figure 2. Algorithm percentage success on four performance metric as hybrid 

 

Q-learning algorithm possess this advantage over other algorithms because it does not require the model of 

the workspace and the WMR can learn as it interacts with the workspace [55, 117]. But classical algorithms 

require a comprehensive model of it proposed workspace; and as reported in Table 5, as standalone in cited 

literature; 63.64 % paper record it success as global path planning algorithm with 72.73 % of this research 

successful in static workspace. This class of algorithms also surfer some drawbacks like local minimum 

problem and excessive computational time [15]. Although researchers had attempt to solve these problems 

through it hybrid architecture and this improve it record percentage success as local algorithm in dynamic 

workspace (see Table 5).  
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Table 5. Percentage success comparison of the reviewed category for path planning algorithms as hybrid 

and standalone 

Heuristics and intelligent algorithms possess some level of intelligence. However, from Table 5 as 

standalone only 25 % paper record it success as local algorithm with 32.14 % success in dynamic workspace 

and 55.36 % paper record it success in workspace with obstacle number > 5.  Although they are applied to 

unpredictable workspace because they can handle uncertainty of such workspace. However, with large 

workspace they are faced with challenges such as: computational time, complex design, learning phase and 

large memory space.  

 

Path planning algorithm seems to improve as hybrid architecture. Hence, using Equation (2), Table 5 

present percentage success difference for heuristics and intelligent and Q-learning algorithm from 

standalone architecture to hybrid architecture 
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where dP  is percentage difference, 
1V  and 

2V  is standalone value and hybrid value (values from Table 5). 

 

Table 6. Percentage success difference for heuristics and intelligent and Q-learning algorithm from 

standalone architecture to hybrid architecture 

Metric Heuristics and Intelligent Algorithms Q-learning algorithm 

Algorithm 

sub-category 

Global 33.34 75.85 

Local -60.00 -14.57 

Workspace Static 5.41 -11.76 

Dynamic -10.53 10.53 

Obstacle 

type 

Static 13.95 10.53 

Dynamic -120.00 0.00 

Combine -28.57 -18.18 

No. of 

obstacles 

≤ 2 47.62 200.00 

≤ 5 0.00 -200.00 

> 5 -14.93 -36.07 

Metric Hybrid  Standalone 

Classical 

Algorithm 

Heuristics 

and 

Intelligent 

Algorithms 

Machine 

Learning 

Classical 

Algorithm 

Heuristics 

and 

Intelligent 

Algorithms 

Machine 

Learning 

Algorithm 

sub-

category 

Global 33.33 53.57 10.00 63.64 75.00 22.22 

Local 66.67 46.43 90.00 36.36 25.00 77.78 

Workspace Static 50.00 64.29 50.00 72.73 67.86 44.44 

Dynami

c 

50.00 35.71 50.00 27.27 32.14 55.56 

Obstacle 

type 

Static 50.00 71.43 60.00 90.91 82.14 66.67 

Dynami

c 

16.67 7.14 0.00 0.00 1.79 0.00 

Combin

e 

33.33 21.43 40.00 9.09 16.07 33.33 

No. of 

obstacles 

≤ 2 16.67 14.29 0.00 54.55 23.21 44.44 

≤ 5 33.33 21.43 20.00 18.18 21.43 0.00 

> 5 50.00 64.29 80.00 27.27 55.36 55.56 
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Table 6 show that Q-learning improved more on most compare metric from standalone architecture to 

hybrid architecture except for number of obstacle metric (≤ 5 and > 5) where hybrid heuristics and intelligent 

algorithms performed better. Although, the Q-learning algorithm perform better as shown, it exhibits slow 

convergence to the optimal solution in dynamic workspace because it is a more complex problem with 

several number of states. Thus with more state, to train an intelligent WMR become a challenge in real-

world workspace. Therefore, at least 70 % of researcher present their test in virtual workspace as depicted 

in Figure 3.  

 

To address this problem, the predominate heuristics and intelligent algorithm combined with Q-learning is 

PSO [54, 124], fuzzy logic [119], neural network [55, 122], artificial neural network [116] and firefly 

algorithm [55] to speed up it convergence rate.  

 

 
Figure 3. Comparison of Test workspace for algorithms 

 

5. CONCLUSION  

 

This paper present’s a quantitative performance review on classical, heuristics and intelligent and machine 

learning category of path planning algorithms for WMR. We applied statistical method and evaluate these 

algorithm categories based on these metrics: architecture, algorithm sub-category, workspace, obstacle 

type, number of obstacle and test workspace. The following outcome are presented:  

• Classical algorithms are suited as global path planning in small static workspace.  

• Papers that present test on virtual workspace for the algorithm categories review within the last 

decade are predominant.  

• The particle swarm optimization, fuzzy logic and genetic algorithm are the common applied heuristic 

and intelligent algorithm within the last decade. 

• Algorithm performance is enhanced as hybrid compared to standalone  

• Hybrid of Q-learning approach has superior performance where they are applied compare to 

heuristics and intelligent algorithm hybrid.  

• Q-learning algorithm found more success as standalone or hybrid; for local algorithm, in dynamic 

workspace, for combine obstacle type, and number of obstacles > 5 than classical algorithms, 

heuristics and intelligent algorithms.  

• PSO, fuzzy logic, neural network, artificial neural network, and firefly algorithm, are commonly used 

in literature as hybrid to improve the convergence to the optimal solution in dynamic workspace for 

Q-learning in the last decade.   



777  Oluwaseun Opeyemi MARTINS et al/ GU J Sci, 34(3): 765-784 (2021) 

 

 

• Improve heuristic and intelligent algorithms such as Artificial Bee Colony algorithm [125, 126], 

Cuckoo Search [127,128], Shuffled Frog Leaping [129,130] reported to have achieved good results 

in 3D workspace should be researched on how to develop it hybrid with Q-learning to solve WMR 

path planning problem in complex 2D workspace.  
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