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Abstract. In the present paper, we introduce the notion of generalized F<-
contraction and establish some �xed point results for such mappings, which
extend and generalize the result of Alam and Imdad [1], Sawangsup et al. [23]
and many others. Our results reveal that the assumption of M -closedness of
underlying binary relation is not a necessary condition for the existence of
�xed points in relational metric spaces. We also derive some N -order �xed
point theorems from our main results. As an application of our main result,
we �nd a solution to a certain class of nonlinear matrix equations.

1. Introduction

It is widely known that the Banach contraction principle (BCP) [7] is the �rst
metric �xed point theorem and one of the most powerful and versatile result in
the �eld of nonlinear analysis. It asserts that every contraction mapping on a
complete metric space possesses a unique �xed point. Several extensions of this
principle were considered by many authors to various generalized contractions and
di¤erent type of spaces (see [1], [3], [4], [5], [6], [8], [10], [12], [18], [20], [21], [26]).
Wardowski [26] generalized the Banach contraction principle by introducing the
notion of F-contraction on metric spaces. The result of Wardowski was further
extended and generalized by several authors (see [10], [11], [12], [17], [19], [27] and
references therein) by improving the condition of F-contraction .
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Another important generalization of the BCP was obtained by Alam and Imdad
[1] in 2015. They generalized the BCP to complete metric spaces endowed with
an arbitrary binary relation. Subsequently, Sawangsup et al. [23] introduced the
notion of F<-contraction in relational metric space by modifying the condition of
F-contraction. They also introduced the notion of F<N - contraction and established
some multidimensional �xed point results of N -order.
In the present paper, we improve the idea of Sawangsup et al. [23] by introduc-

ing the notion of generalized F<-contraction mappings and prove some �xed point
results for such mappings. Our results generalize the result of Alam and Imdad [1],
Wardowski [26], Sawangsup et al. [23] and many others in the existing literature.
We also introduce the notions of multidimensional generalized F<N -contraction and
F<N -graph contraction and prove some multidimensional results for the existence of
�xed points of N -order. Our results do not force the underlying binary relation to
be M -closed for the existence of �xed points in relational metric spaces. Moreover,
we furnish some examples to demonstrate the usefulness of our main results. As an
application, we apply our result to �nd a solution of a class of non-linear matrix
equations.

2. Preliminaries

Throughout this paper, we assume that N, N0, R and R+ stand for the set of
positive integers, the set of non-negative integers, the set of real numbers and the
set of positive real numbers, respectively.

De�nition 1. [26] Let F denotes the family of all functions F : R+ ! R satisfying
the following properties:

(F1) F is strictly increasing, i.e., for all %; � 2 R+ such that % < �; F(%) < F(�);
(F2) for each sequence f%ngn2N of positive numbers we have limn!1 %n = 0 i¤

limn!1 F(%n) = �1;
(F3) there exists k 2 (0; 1) such that lim%!0+ %

kF(%) = 0.

Example 2. [26] Let Fi : R+ ! R, i = 1; 2; 3; 4 by:

(i) F1(%) = log(%) for all % > 0;
(ii) F2(%) = %+ log(%) for all % > 0;
(iii) F3(%) = � 1p

% for all % > 0;

(iv) F4(%) = log(%2 + %) for all % > 0:

De�nition 3. [26] Let (X; d) be a metric space and M : X ! X be a mapping.
The mapping M is said to be a F-contraction if there exists � > 0 and F 2 F such
that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)); �; � 2 X:

We accept the following relation-theoretic notations and de�nitions in our sub-
sequent discussions.
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De�nition 4. [1] Let X be a non-empty set. A binary relation < on X is a subset
of X �X. We say that � relates to � under < if and only if (�; �) 2 <:

De�nition 5. [1] Let < be a binary relation on X. If either (�; �) 2 < or (�; �) 2 <
then we say � and � are <-comparable and we denote it by [�; �] 2 <.

De�nition 6. [1] A binary relation < de�ned on a non-empty set X is called

(a) re�exive if (�; �) 2 < for all � 2 X;
(b) irre�exive if (�; �) 62 < for all � 2 X;
(c) symmetric if (�; �) 2 < implies (�; �) 2 <;
(d) antisymmetric if (�; �) 2 < and (�; �) 2 < implies � = �;
(e) transitive if (�; �) 2 < and (�; z) 2 < implies (�; z) 2 <;
(f) complete, connected or dichotomous if [�; �] 2 < for all �; � 2 X;
(g) weakly complete, weakly connected or trichotomous if [�; �] 2 < or � = �

for all �; � 2 X.

De�nition 7. [1] Let X be a non-empty set and < be a binary relation on X. A
sequence f�ng 2 X is called <-preserving if

(�n; �n+1) 2 <; for all n 2 N0:

De�nition 8. [1] Let (X; d) be a metric space and < be a binary relation on X: If
for any <-preserving sequence f�ng on X such that

f�ng
d�! �;

there exists a subsequence f�nkg of f�ng with [�nk ; �] 2 <, for all k 2 N0, then the
binary relation < is called d-self-closed on X:

De�nition 9. [1,22] Let X be a non-empty set and M be a self-mapping on X. A
binary relation < is called M -closed, if for �; � 2 X with

(�; �) 2 < =) (M�;M�) 2 <

and the mapping M is also called comparative mapping on X, under binary relation
<.

De�nition 10. [14] Let < be a binary relation on X andM : X ! X be a mapping.
We denote the relational graph of mapping M under the binary relation < on X,
by G(M ;<) and de�ned as:

G(M ;<) = f(�;M�) 2 < : � 2 Xg:

De�nition 11. [14] Let < be a binary relation on X and M : X ! X be a self-
mapping. By X(M ;<), we denotes the set of all those � 2 X for which (�;M�) 2
G(M ;<), that is,

X(M ;<) = f� 2 X : (�;M�) 2 G(M ;<)g:
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The above De�nition 11 is equivalent to the De�nition 2.12 of Shukla and
Rodríguez-López [25] which states that X(M ;<) is a set of all those points � in X
for which (�;M�) 2 <, that is,

X(M ;<) = f� 2 X : (�;M�) 2 <g:

De�nition 12. [14] Let (X; d) be a metric space, < be a binary relation on X
and M : X ! X be a mapping. A binary relation < is called MG-d-closed if the
following condition holds:

(�; �) 2 G(M ;<); d(M�;M�) � d(�; �) =) (M�;M�) 2 G(M ;<):

Remark 13. We notice that the condition of MG-d-closedness is weaker than the
condition of M -closedness. The following example illustrates this fact.

Example 14. Let X = [0; 1] equipped with usual metric d(�; �) = j�� �j. Let a bi-
nary relation < and a self-mapM on X be de�ned as < = f(0; 0); (1; 0); (1; 1); (1=3; 1)g
and

M(�) =

�
�=4; if � 2 [0; 1=3];
1; if � 2 (1=3; 1]:

Then G(M ;<) = f(0; 0); (1; 1)g and for each (�; �) 2 G(M ;<), we have d(M�;
M�) = d(�; �) and (M�;M�) 2 G(M ;<). Hence the binary relation < is MG-
d-closed. But < is not M -closed in X because (1=3; 1) 2 < and (M1=3;M1) =
(1=12; 1) =2 <.

De�nition 15. [2] Let (X; d) be a metric space and < be a binary relation on X.
A self-mapping M on X is called <-continuous mapping at point � 2 X if for

any <-preserving sequence f�ng such that f�ng
d�! �, we have fM(�n)g

d�! M(�).
Moreover, M is called <-continuous if it is <-continuous at each point of X.

By above de�nition, it is clear that every continuous mapping is <-continuous
and under universal relation the de�nition of <-continuity coincides with the de�-
nition of continuity.

De�nition 16. [16] A self-mapping M of a metric space (X; d) is called k- con-
tinuous, k = 1; 2; 3 : : : ; at a point � 2 X if fMk�ng ! M�, whenever f�ng is a
sequence in X such that fMk�1�ng ! � in X. Moreover, M is called k-continuous
if it is k-continuous at each point of X.

It is obvious by the de�nition of k-continuity that every continuous mapping M
of a metric space (X; d) is k-continuous and the notion of continuity coincides with
the notion of 1-continuity. However, k-continuity of a function (for k � 2) does not
imply the continuity of the function (see Example 1.2 in [16]).

De�nition 17. [13] Let (X; d) be a metric space endowed with a binary rela-
tion <. A mapping M : X ! X is called (<; k)-continuous at a point � 2 X

if whenever f�ng is <-preserving sequence in X such that fMk�1�ng
d�! �, we have
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fMk(�n)g
d�!M� . Moreover, if M is a (<; k)-continuous at each point of X then

M is called (<; k)-continuous.

By the de�nition of (<; k)-continuity, it is clear that every <-continuous mapping
is a (<; k)-continuous mapping and both the de�nitions coincide for k = 1. Also
every k-continuous mapping is (<; k)-continuous and for universal relation the def-
inition of (<; k)-continuity is equivalent to the de�nition of k-continuity introduced
by Pant and Pant in [16].

Remark 18. Every continuous, k-continuous and <-continuous mapping is a (<; k)-
continuous mapping but converse may not be true. The following example illustrates
that (<; k)-continuity does not imply <-continuity and k-continuity as well.

Example 19. Let X = [�1; 2] be a metric space equipped with a usual metric
d(�; �) = j� � �j. Let < = f( 12n ;

1
2n+1 ) : n 2 Ng be a binary relation on X and M

be a self-mapping on X, de�ned as

M(�) =

8<: 1=3; if � 2 [�1; 0];
1=2; if � 2 (0; 1];
�; if � 2 (1; 2]:

Clearly, M is not a continuous mapping in X and the sequence f�ng = f 1
2n g; n 2 N

is <-preserving in X as (�n; �n+1) 2 <; for all n 2 N. Since f�ng ! 0 as n!1
then fM�ng ! 1=2 6=M0. Hence, M is not a <-continuous mapping in X. Now,
for each k = 2; 3; 4; : : :,

Mk(�) =

�
1=2; if � 2 [�1; 1];
�; if � 2 (1; 2]:

Since Mk(�) is continuous everywhere in X, except at � = 1. Also, there does not
exist any <-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n!1. So
M is obviously a (<; k)-continuous mapping in X. However, for f�ng = f1+ 1

ng; n 2
N, fMk�1�ng ! 1 and fMk�ng ! 1 6=M1 yieldsM is not a k-continuous mapping
in X.
Hence, the mapping M is a (<; k)-continuous mapping in X, but M is neither

a continuous nor a k-continuous and also not a <-continuous mapping in X.

De�nition 20. [2] Let (X; d) be a metric space and < be a binary relation on X.
If every <-preserving Cauchy sequence converges in X, then we say that (X; d) is
<-complete .

Every complete metric space is <-complete under an arbitrary binary relation <
and both the de�nitions coincide under the universal relation.

De�nition 21. [15] Let < be a binary relation on a non-empty set X and �; � 2 X.
A path of length k 2 N in < from � to � is a �nite sequence fz0; z1; : : : ; zkg � X
satisfying the following conditions:
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(1) z0 = � and zk = �;
(2) (zi; zi+1) 2 < for all i 2 f0; 1; 2; : : : ; k � 1g.
We denote by 
(�; �;<), the family of all paths in < from � to �.

3. Main Results

Firstly, we introduce the notion of generalized F<-contraction mapping and F<-
graph contraction mapping. Then, we will state our main results.

De�nition 22. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and A is any non-empty subset of X(M ;<).
Then, the mapping M is called a generalized F<-contraction with respect to A, if
for each �; � 2 A with (�; �) 2 <, there exist F 2 F and � > 0 such that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)): (1)

If we take A = X(M ;<) in the above de�nition then we get the following de�n-
ition, which is a special case of the De�nition 22.

De�nition 23. Let (X; d) be a metric space and < be a binary relation on X. A
self-mappingM on X is called a generalized F<-contraction with respect to X(M ;<)
or F<-graph contraction, if for each �; � 2 X(M ;<) with (�; �) 2 <, there exist
F 2 F and � > 0 such that

d(M�;M�) > 0 =) � + F(d(M�;M�)) � F(d(�; �)): (2)

Clearly condition (1) and condition (2) is weaker than the condition of F<-
contraction due to Sawangsup et al. [23].
Now, we state our �rst result for a generalized F<-contraction mapping in a

relational metric space.

Theorem 24. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M : X ! X be a mapping and there exists a non-empty subset A of
X(M ;<) such that the following conditions hold:

(a) M(A) � A;
(b) M is (<; k)-continuous mapping or < is d-self closed,
(c) M is a generalized F<-contraction with respect to A,
(d) there exists Y � A such that M(A) � Y � A and (Y; d) is <-complete.
Then, for each �0 2 A, there exists a Picard sequence f�ng of M , starting from

�1 = �0 which converges to the �xed point of M .

Proof. Let A be a non-empty subset of X(M ;<) and �0 2 A. Then by virtue of
subset A, we have (�0;M�0) 2 <. If �0 = M�0 then the proof is complete. So in
view of condition (a), there exists a point say �1 in A such that �1 =M�0. Again,
since �1 2 A so (�1;M�1) 2 <. If �1 =M�1 then �1 is a �xed point of M and the
proof is complete. Therefore �1 6=M�1 and by assumption (a), there exists a point
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say �2 2 A such that �2 = M�1. Continuing this process again and again, we get
a <-preserving Cauchy sequence of points f�ng in A such that

�n+1 =M�n and (�n; �n+1) 2 <; for all n 2 N0:
We denote �n = d(�n+1; �n), n 2 N0 and assume that �n+1 6= �n for n 2 N. Then
�n > 0, for n 2 N and

F(�n) � F(�n�1)� � � F(�n�2)� 2� � � � � � F(�0)� n�: (3)

From (3), we get lim
n!1

F(�n) = �1 and together with (F2), we have

lim
n!1

�n = 0: (4)

From (F3), there exists k 2 (0; 1) such that

lim
n!1

�knF(�n) = 0: (5)

By (3), the following inequality holds

�knF(�n)� �knF(�0) � �kn(F(�0)� n�)� �knF(�0) = ��knn� � 0; (6)

for all n 2 N. Making n!1 in (6) and using (5), we obtain

lim
n!1

n�kn = 0: (7)

From (7), we observe that there exists n1 2 N such that n�kn � 1 for all n � n1.
Consequently, we have

�n �
1

n1=k
; (8)

for n � n1. In order to prove that the sequence f�ngn2N is a Cauchy, consider
m;n 2 N with m > n > n1: From (8) and triangle inequality, we get

d(�m; �n) � �m�1 + �m�2 + � � �+ �n <
1X
i=n

�i �
1X
i=n

1

i1=k
:

Now it follows, from the above inequality and by the convergence of
1P
i=n

1

i1=k
, that

the sequence f�ngn2N is a Cauchy in A. Since f�ngn2N � M(A) � Y therefore
f�ngn2N is a <-preserving Cauchy sequence in Y. Since (Y; d) is a <-complete
metric space so there exists a point say �� 2 Y � A such that lim

n!1
�n = �

�.

We now assume that M is a (<; k)-continuous mapping. Since the sequence
f�ng = fMk�1(�n�k+1)g converges to �� then (<; k)-continuity of M implies that
fMk(�n�k+1)g converges to M(��). Hence, from the above we conclude that
M(��) = ��, that is, �� is a �xed point of the function M .
Alternately, we assume that < is d-self-closed. Since f�ng is a <-preserving

sequence in A such that

f�ng
d�! ��
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and �� 2 A, therefore by assumption of d-self-closedness, there exists a subsequence
f�nkg of f�ng with [�nk ; ��] 2 < for all k 2 N0. From contraction condition (22),
we obtain

F
�
d(�nk+1;M�

�)
�
= F
�
d(M�nk ;M�

�)
�
� F
�
d(�nk ; �

�)
�
� �

=) d(�nk+1;M�
�) < d(�nk ; �

�)! 0 as k !1;
which yields �nk+1

d�!M(��), that is, M has a �xed point at �� in X. �

The following example illustrates our Theorem 24.

Example 25. Let X = (�1; 2] be a metric space equipped with a usual metric
d(�; �) = j� � �j. Let L =

�
( 14n ;

1
4n+1 ) : n 2 N

	
and < = f(0; 0); (0; 1); (1; 1); (0; 32 );

(0; 14 ); (1;
1
6 ); (

1
4 ;

1
6 ); (

1
6 ;

1
6 )g[L be a binary relation on X. We de�ne a self-mapping

M on X as

M(�) =

8><>:
1
4 ; if � 2 (�1; 0];
1
6 ; if � 2 (0; 1];
�; if � 2 (1; 2];

then it is easy to see that X(M ;<) = f0; 14 ;
1
6 ; 1g. Suppose that A = f0; 14 ;

1
6g �

X(M ;<) and Y = f1=4; 1=6g. Then clearly Y =M(A) � A and Y is <-complete.
Since f�ng = f 1

4n : n 2 Ng is a <-preserving sequence in X and f�ng ! 0 but
fM�ng ! 1

6 6= M0. Therefore, M is neither a continuous nor a <-continuous
mapping in X. Now, for each k = 2; 3; 4; : : : ;

Mk(�) =

(
1
6 ; if � 2 (�1; 1];
�; if � 2 (1; 2]:

As Mk(�) is continuous everywhere in X; except � = 1 and there does not exist any
<-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n ! 1. Then, it
is obvious by De�nition 17 that M is a (<; k)-continuous mapping in X. However,
for f�ng = f1 + 1

n : n 2 Ng, we have fM
k�1�ng ! 1 and fMk�ng ! 1 6= M1

which implies M is not a k-continuous mapping in X. Now, we will prove that
M is a generalized F<-contraction mapping with respect to A. For this, we take
� = 1; F 2 F given by F(%) = % + ln(%); % > 0 and �; � 2 A with (�; �) 2 <
such that d(M�;M�) > 0, we have only one choice for such (�; �) in <, that is,
(�; �) = (0; 1=4). Then from (1), we obtain

d(M�;M�)

d(�; �)
e[d(M�;M�)�d(�;�)] =

d(M0;M 1
4 )

d(0; 14 )
e[d(M0;M 1

4 )�d(0;
1
4 )] =

1

3
e�

1
6 < e�1:

Hence, all the assumptions of Theorem 24 are hold and M has in�nite �xed points
in X.

Remark 26. It is noticeable that the binary relation used in the Example 25 is
not M -closed even though M has in�nite �xed points in X, which reveals that the
assumption of M -closedness of the underlying binary relation is not a necessary
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condition for the existence of �xed points in relational metric spaces. Thus in
Example 25, the �xed point results of Sawangsup et al. [23], Alam and Imdad [1],
Samet and Turinici [22] and many others does not work but our result is still valid
therein.

Remark 27. We also notice that, the binary relation < used in Example 25 is not
one of the earlier known standard binary relation such as re�exive , symmetric,
transitive, anti-symmetric, complete or weakly complete. Therefore, theorems con-
tained in [1, 2, 7, 10, 11] can not be apply in the above example. Thus, Theorem 24
extends all the classical results to an arbitrary binary relation.

We get the following corollary as a direct consequence of Theorem 24 by taking
� = log 1% and F = log � in Theorem 24.

Corollary 28. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M : X ! X be a mapping and there exists a non-empty subset A of
X(M ;<) such that the following conditions hold:

(a) M(A) � A;
(b) M is (<; k)-continuous mapping or < is d-self closed,
(c) there exists % 2 [0; 1) such that

d(M�;M�) � % d(�; �); for all �; � 2 A such that (�; �) 2 <:
(d) there exists Y � A such that M(A) � Y � A and (Y; d) is <-complete.
Then M has a �xed point in X.
Now we prove �xed point theorem for F<-graph contraction mappings in rela-

tional metric spaces.

Theorem 29. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and X(M ;<) be a non-empty set such that the
following conditions are satis�ed:

(a) < is MG-d-closed;
(b) M is (<; k)-continuous or < is d-self closed;
(c) M is F<-graph contraction on X,
(d) there exists Y � X(M ;<) such that M(X(M ;<)) � Y � X(M ;<) and

(Y; d) is <-complete.
Then, for each �0 2 X(M ;<), there exists a Picard sequence f�ng ofM , starting

from �1 = �0 which converges to the �xed point of M .

Proof. Suppose X(M ;<) be a non-empty and �0 be any point in X(M ;<). Then
by virtue of X(M ;<), we have (�0;M�0) 2 < . If �0 = M�0 then �0 is a �xed
point of M and the proof is completed. Therefore, we assume that �0 6=M�0 and
M�0 = �1 (say). Now as (�0; �1) = (�0;M�0) 2 G(M ;<) and M is a F<-graph
contraction, we have

d(M�0;M�1) � d(�0; �1): (9)
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In view of assumption (a) and from condition (9), we get (M�0;M�1) = (�1;M�1) 2
<. Again, if �1 = M�1 then the proof is complete, otherwise there exists a point
say �2 in X, such that �2 = M�1 and �1 6= �2. Continuing this process again and
again, we get a <-preserving Cauchy sequence of points f�ng in X such that

�n+1 =M�n and (�n; �n+1) 2 R; for all n 2 N0:

If we take �n = �n+1 for some n 2 N, then �n is called �xed point ofM . Therefore,
we assume that �n 6= �n+1 for n 2 N, that is, d(�n; �n+1) 6= 0 for n 2 N. Now
proceeding the proof of Theorem 24, we get the conclusion. �

The following example illustrates the utility of Theorem 29.

Example 30. Let X = (�1; 3] be a metric space equipped with a usual metric
d(�; �) = j� � �j and P =

�
( 1n ;

1
n+1 ) : n 2 N

	
. Let a binary relation < and a

self-map M on X is de�ned as < =
�
(0; 0); (0; 16 ); (

1
6 ;

1
8 ); (

1
8 ;

1
8 ); (1;

1
8 ); (1; 2)

	
[ P

and

M(�) =

8><>:
1
6 ; if � 2 (�1; 0];
1
8 ; if � 2 (0; 1];
2; if � 2 (1; 3]:

Then, clearly X(M ;<) = f0; 16 ;
1
8 ; 1g and G(M ;<) = f(0;

1
6 ); (

1
6 ;

1
8 ); (

1
8 ;

1
8 ); (1;

1
8 )g.

For each (�; �) 2 G(M ;<), we have d(M�;M�) � d(�; �) and (M�; M�) 2
G(M ;<) which yields the binary relation < on X is MG-d-closed. However, <
is not M -closed in X as (0; 0) 2 < but (M0;M0) = ( 16 ;

1
6 ) =2 <. Since f�ng =

f 1ng; n 2 N is a <-preserving sequence in X as (�n; �n+1) 2 < and f�ng ! 0 then
fM�ng ! 1

8 6=M0. Thus, M is neither a continuous nor a <-continuous mapping
in X. Now, for each k = 2; 3; 4; :::;

Mk(�) =

(
1
8 ; if � 2 (�1; 1];
2; if � 2 (1; 3]:

As Mk(�) is continuous everywhere in X; except � = 1 and there does not exist
any <-preserving sequence f�ng in X such that fMk�1�ng ! 1 as n!1. So M
is obviously a (<; k)-continuous mapping in X. However, for f�ng = f1+ 1

ng; n 2
N, fMk�1�ng ! 1 and fMk�ng ! 1 6= M1, yields M is not a k-continuous
mapping in X: Hence, the mapping M is a (<; k)-continuous mapping in X, but M
is neither a continuous nor a k-continuous and also not a <-continuous mapping in
X: Now, we will show that M is a generalized F<-graph contraction mapping with
� = 1 and F 2 F de�ned by

F(%) = %+ ln(%); for all % > 0:
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For any �; � 2 X(M ;<) with (�; �) 2 < and d(M�;M�) > 0, we have only one
choice for (�; �) = (0; 16 ) in <. Then from (23),

d(M�;M�)

d(�; �)
efd(M�;M�)�d(�;�)g =

d(M0;M 1
6 )

d(0; 16 )
efd(M0;M 1

6 )�d(0;
1
6 )g =

1

4
e�

1
8 < e�1:

This yields M is a F<-graph contraction with � = 1: Hence, all the conditions of
Theorem 29 are hold and M has two �xed points at points � = 1

8 and � = 2.

A generalized version of relation-theoretic contraction principle due to Alam and
Imdad [1] is derived from Theorem 29 by taking � = log 1k and F = log � in Theorem
29.

Corollary 31. Let (X; d) be a metric space and < be a binary relation on X.
Suppose M be a self-mapping on X and X(M ;<) be a non-empty set such that the
following conditions are satis�ed:

(a) < is MG-d-closed,
(b) M is (<; k)-continuous or < is d-self-closed,
(c) there exists k 2 [0; 1) such that

d(M�;M�) � k d(�; �); for all �; � 2 X(M ;<) with (�; �) 2 <:
(d) there exists Y � X(M ;<) such that M(X(M ;<)) � Y � X(M ;<) and

(Y; d) is <-complete.
Then M has a �xed point.

Remark 32. We notice that Theorem 24 and Theorem 29 remain valid if we replace
the assumption of (<; k)-continuity of M either by continuity of M , k-continuity of
M or <-continuity of M (without altering the rest of the hypothesis).

The following theorem guarantees the uniqueness of �xed points of Theorem 29
in a relational metric space.

Theorem 33. In addition to the hypothesis of Theorem 29, suppose that < is a
transitive relation on X and 
(�; �;<) is non-empty, for all �; � 2 X(M ;<). Then,
M has a unique �xed point in X(M ;<).
Proof. Let �� and �� be two distinct �xed points of M in X(M ;<) then �� =
M��; �� =M��. Since 
(��; ��;<) is non-empty, there is a path (say fz0; z1; : : : ; zkg)
of some �nite length k in < from � to �, so that

z0 = �
�; zk = �

�; (zi; zi+1) 2 <; for each i = 0; 1; 2; : : : ; k � 1:
By transitivity of <, we get

(��; z1) 2 <; (z1; z2) 2 <; : : : ; (zk�1; ��) 2 < =) (��; ��) 2 <:
The condition (23) implies that

� + F(d(��; ��)) = � + F(d(M��;M��)) � F(d(��; ��))
which is not possible. Thus, M has a unique �xed point in X(M ;<). �
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4. Multidimensional results for the existence of fixed points of
N-order

In this section, we drive some multidimensional results or N -order �xed point
theorems from our main results by using very simple tools. Let < be a binary
relation on X and we denote by <N the binary relation on the product space XN

de�ned by:�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N () (�1; �1) 2 <; (�2; �2) 2 <;

(�3; �3) 2 <; : : : ; (�N ; �N ) 2 <:

Suppose M : XN ! X is a mapping and by XN (M ;<N ), we denote the set of all
points (�1; �2; : : : ; �N ) 2 XN such that�

(�1; �2; : : : ; �N );
�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �N ; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)
� �

2 <N ;

that is,�
�i;M(�i; �i+1; : : : ; �N ; �1; �2; : : : ; �i�1)

�
2 <; for each i 2 f1; 2; : : : ; Ng:

In addition, we denote by SNM : XN ! XN the mapping

SNM (�1; �2; : : : ; �N ) =
�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �N ; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)

�
;

for all (�1; �2; : : : ; �N ) 2 XN :

De�nition 34. [24] Let < be a binary relation de�ned on a non-empty set X and
(�1; �2; :::; �N ); (�1; �2; :::; �N ) 2 XN . Then (�1; �2; :::; �N ) and (�1; �2; :::; �N ) are
<N -comparative if either

�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 <N or

�
(�1; �2; :::; �N );

(�1; �2; :::; �N )
�
2 <N : We denote it by

�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N .

De�nition 35. [24] Let X be a non-empty set and < be a binary relation on X.
A sequence

�
(�1n; �

2
n; : : : ; �

N
n )g � XN is called <N -preserving if�

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N for all n 2 N:

De�nition 36. [23] Let M : XN ! X be a mapping. A binary relation < on X
is called MN -closed, if for any (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2 XN ,8>>>>>><>>>>>>:

(�1; �1) 2 <
(�2; �2) 2 <

:
:
:

(�N ; �N ) 2 <

9>>>>>>=>>>>>>;
)

8>>>>>><>>>>>>:

�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
2 <�

M(�2; �3; : : : ; �1);M(�2; �3; : : : ; �1)
�
2 <

:
:
:�

M(�N ; �1; : : : ; �N�1);M(�N ; �1; : : : ; �N�1)
�
2 <

9>>>>>>=>>>>>>;
:
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De�nition 37. If M : XN ! X is a mapping. Then, we denote the relational
graph of the mapping M under the binary relation <N on XN ; by GN (M ;<N ) and
de�ned as:

GN (M ;<N ) =
��
(�1; �2; : : : ; �N );

�
M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �1);

: : : ;M(�N ; �1; : : : ; �N�1)
��
2 <N : (�1; �2; : : : ; �N ) 2 XN

	
:

De�nition 38. Let (X; d) be a metric space, < be a binary relation on X and
M : XN ! X be a mapping. By XN (M ;<N ), we denote the set of all those
(�1; �2; : : : ; �N ) 2 XN , for which�

(�1; �2; : : : ; �N );
�
M(�1; �2; : : : ; �N );M(�2; �3; :::; �1)

; : : : ;M(�N ; �1; : : : ; �N�1)
� �

2 GN (M ;<N );

that is,

XN (M ;<N ) = f(�1; �2; : : : ; �N ) 2 XN :
�
(�1; �2; : : : ; �N );

�
M(�1; �2; : : : ; �N );

M(�2; �3; : : : ; �1); : : : ;M(�N ; �1; : : : ; �N�1)
��
2 GN (M ;<N )g:

De�nition 39. Let (X; d) be a metric space, < be a binary relation on X and
M : XN ! X be a mapping. A binary relation < is called MN

G -d-closed if for every�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 GN (M ;<N ) with8>>>>><>>>>>:

d
�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
� d((�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ))

d
�
M(�2; �3 : : : ; �1);M(�2; �3; : : : ; �1)

�
� d((�2; �3; : : : ; �1); (�2; �3; : : : ; �1))
...

d

�
M(�N ; �1; :::; �N�1);
M(�N ; �1; :::; �N�1)

�
� d

�
(�N ; �1; : : : ; �N�1);
(�N ; �1; : : : ; �N�1)

�
9>>>>>=>>>>>;

=)

8>>>>>><>>>>>>:

�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
2 GN (M ;<N )�

M(�2; �3; : : : ; �1);M(�2; �3; : : : ; �1)
�
2 GN (M ;<N )

:
:
:�

M(�N ; �1; : : : ; �N�1);M(�N ; �1; : : : ; �N�1)
�
2 GN (M ;<N )

9>>>>>>=>>>>>>;
:

Remark 40. It is obvious from the above de�nition that the condition of MN
G -d-

closedness is weaker than the condition of MN -closedness of underlying relation in
relational metric spaces.

De�nition 41. Let X be a non-empty set and < be a binary relation on X. A
mapping M : XN ! X is said to be a (<N ; k)-continuous at (�1; �2; : : : ; �N ) 2 XN

if for any <N -preserving sequence
�
(�1n; �

2
n; : : : ; �

N
n )g in XN such that�

Mk�1(�1n; �
2
n; :::; �

N
n );M

k�1(�2n; �
3
n; :::; �

1
n); :::;M

k�1(�Nn ; �
1
n; :::; �

N�1
n )g

d�! (�1; �2; : : : ; �N );
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we have�
Mk(�1n; �

2
n; : : : ; �

N
n );M

k(�2n; �
3
n; : : : ; �

1
n); : : : ;M

k(�Nn ; �
1
n; : : : ; �

N�1
n )g d�!�

M(�1; �2; : : : ; �N );M(�2; �3; : : : ; �1); : : : ;M(�N ; �1; : : : ; �N�1)
	
:

Then mapping M is called (<N ; k)-continuous if it is (<N ; k)-continuous at each
point of XN .

Lemma 42. [23] Given N � 2 and M : XN ! X be a given mapping. A point
(�1; �2; : : : ; �N ) 2 XN is an N -order �xed point of M if and only if it is a �xed
point of SNM .

Lemma 43. [23] Given N � 2 and M : XN ! X, a point (�1; �2; : : : ; �N ) 2
XN (M ;<N ) if and only if (�1; �2; : : : ; �N ) 2 XN (SNM ;<N ).

Lemma 44. [23] Let (X; d) be a metric space and DN : XN �XN ! R be de�ned
by

DN (U; V ) =

NX
i=1

d(ui; vi)

for all U = (u1; u2; : : : ; uN ), V = (v1; v2; : : : ; vN ) 2 XN : Then the following prop-
erties hold:

(1) (XN ; DN ) is also a metric space.
(2) Let fUn = (u1n; u2n; : : : ; uNn )g be a sequence inXN and U = (u1; u2; : : : ; uN ) 2

XN . Then UN
DN��! U if and only if fuing

d�! ui for all i 2 f1; 2; 3; : : : ; Ng.
(3) If fUn = (u1n; u2n; : : : ; uNn )g is a sequence on XN , then fUng is a DN -Cauchy

sequence if and only if fuing is a Cauchy sequence for all i 2 f1; 2; 3; : : : ; Ng:
(4) (X; d) is complete if and only if (XN ; DN ) is complete.

De�nition 45. Let (XN ; DN ) be a metric space and < be a binary relation on
X. If every <N -preserving Cauchy sequence converges in XN then we say that
(XN ; DN ) is <N -complete.

Every complete metric space is <N -complete under any binary relation <N on
XN and both the de�nitions coincide under the universal relation.

De�nition 46. [23] Let X be a non-empty set and < be a binary relation on X. A
path of length k 2 N in <N from (�1; �2; : : : ; �N ) 2 XN to (�1; �2; : : : ; �N ) 2 XN

is a �nite sequence
�
(z10 ; z

2
0 ; : : : ; z

N
0 ); (z

1
1 ; z

2
1 ; : : : ; z

N
1 ); : : : ; (z

1
k; z

2
k; : : : ; z

N
k )
	
� XN

satisfying the following conditions:

(i) (z10 ; z
2
0 ; : : : ; z

N
0 ) = (�1; �2; : : : ; �N ) and (z

1
k; z

2
k; : : : ; z

N
k ) = (�1; �2; : : : ; �N );

(ii)
�
(z1i ; z

2
i ; : : : ; z

N
i ); (z

1
i+1; z

2
i+1; : : : ; z

N
i+1)

�
2 <N for all i = 0; 1; 2; :::; k � 1.

Clearly, a path of length k involves k + 1 elements of XN , although they are
not necessarily distinct. Moreover, let 


�
(�1; �2; :::; �N ); (�1; �2; :::; �N );<N

�
be the

class of all paths in <N from (�1; �2; : : : ; �N ) to (�1; �2; : : : ; �N ).
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Now, we introduce the notion of generalized F<N -contraction mapping and F<N -
graph contraction mapping for N � 2.

De�nition 47. Let (X; d) be a metric space endowed with a binary relation < and
AN is a non-empty subset of XN (M ;<N ). A mappingM : XN ! X is called a gen-
eralized F<N -contraction with respect to AN , if for each (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2
AN with

�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 <N , there exist F 2 F and � > 0 such

that

d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
> 0 =)

� + F

0BBBBBB@
d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
+

d
�
M(�2; �3; :::; �1);M(�2; �3; :::; �1)

�
+

:
:
:

d
�
M(�N ; �1; :::; �N�1);M(�N ; �1; :::; �N�1)

�

1CCCCCCA � F
� NX
i=1

d(�i; �i)
�
:

De�nition 48. Let (X; d) be a metric space endowed with a binary relation < and
XN (M ;<N ) be a non-empty subset of X. A mapping M : XN ! X is called a
F<N -graph contraction, if for each (�1; �2; : : : ; �N ); (�1; �2; : : : ; �N ) 2 XN (M ;<N )
with

�
(�1; �2; : : : ; �N ); (�1; �2; : : : ; �N )

�
2 <N , there exist F 2 F and � > 0 such

that d
�
M(�1; �2; : : : ; �N );M(�1; �2; : : : ; �N )

�
> 0 =)

� + F

0BBBBBB@
d
�
M(�1; �2; :::; �N );M(�1; �2; :::; �N )

�
+

d
�
M(�2; �3; :::; �1);M(�2; �3; :::; �1)

�
+

:
:
:

d
�
M(�N ; �1; :::; �N�1);M(�N ; �1; :::; �N�1)

�

1CCCCCCA � F
� NX
i=1

d(�i; �i)
�
: (10)

Now using Theorem 24, we will prove a multidimensional result which conforms
the existence of �xed points of N -order.

Theorem 49. Let (X; d) be a metric space and < be a binary relation on X.
Suppose that M : XN ! X be a mapping and there exists a non-empty subset AN

of XN (M ;<N ) such that the following conditions hold:

(a) M(AN ) � AN ;
(b) M is (<N ; k)-continuous mapping;
(c) M is a generalized F<N -contraction with respect to AN ;
(d) there exists YN � AN such that M(AN ) � YN � AN and (YN ; DN ) is

<N -complete.
Then M has a �xed point of N -order.
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Proof. Let AN be a non-empty subset of XN (M;<N ) and (�10; �20; : : : ; �N0 ) 2 AN .
Then by the virtue of subset AN , we have�

(�10; �
2
0; : : : ; �

N
0 ); (M(�

1
0; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 ))

�
2 <N :

If (�10; �
2
0; : : : ; �

N
0 ) =

�
M(�10; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 )

�
, then proof

is complete. So in view of assumption (a), there exists (�11; �
2
1; : : : ; �

N
1 ) in A

N such
that

(�11; �
2
1; : : : ; �

N
1 ) =

�
M(�10; �

2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0);

: : : ;M(�N0 ; �
1
0; : : : ; �

N�1
0 )

�
:

Again, since (�11; �
2
1; : : : ; �

N
1 ) 2 AN so�

(�11; �
2
1; : : : ; �

N
1 ); (M(�

1
1; �

2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1);

: : : ;M(�N1 ; �
1
1; : : : ; �

N�1
1 ))

�
2 <N :

If (�11; �
2
1; : : : ; �

N
1 ) =

�
M(�11; �

2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1);

: : : ;M(�N1 ; �
1
1; : : : ; �

N�1
1 )

�
, then the

proof is complete. Otherwise we will continue this process again and again and
obtain a <N -preserving sequence of points f(�1n; �2n; : : : ; �Nn )g in AN such that

(�1n+1; �
2
n+1; : : : ; �

N
n+1) =

�
M(�1n; �

2
n; : : : ; �

N
n );M(�

2
n; �

3
n; : : : ; �

N
n ; �

1
n);

: : : ;M(�Nn ; �
1
n; : : : ; �

N�1
n )

�
and �

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N ; for all n 2 N:

Since M is (<N ; k)-continuous, we get SNM is also (<N ; k)-continuous. From the
generalized F<N -contractive condition ofM , we deduce that SNM is also a generalized
F<N -contraction. Applying Theorem 24, there exists �Z = (��1; �

�
2; : : : ; �

�
N ) 2 XN

such that SNM (�Z) = �Z, i.e., (��1; �
�
2; : : : ; �

�
N ) is a �xed point of SNM . Using Lemma

42, we have (��1; �
�
2; : : : ; �

�
N ) is a �xed point of N -order of M . This completes the

proof. �

If we take � = log 1% and F = log � in Theorem 49 then we get the following
corollary as a direct consequence of Theorem 49.

Corollary 50. Let (X; d) be a metric space and < be a binary relation on X.
Suppose that M : XN ! X be a mapping and there exists a non-empty subset AN

of XN (M ;<N ) such that the following conditions hold:

(a) M(AN ) � AN ,
(b) M is (<N ; k)-continuous mapping,
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(c) there exists % 2 [0; 1) such that
NX
i=1

d

�
M(�i; �i+1; :::; �N ; �1; :::; �i�1);
M(�i; �i+1; :::; �N ; �1; :::; �i�1)

�
� %

NX
i=1

d(�i; �i);

for each (�1; �2; :::; �N ); (�1; �2; :::; �N ) 2 AN such that
�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2

<N , then M has a �xed point of N -order.

(d) there exists YN � AN and M(AN ) � YN � AN , so that (YN ; DN ) is
<N -complete.

Using similar technique as in the proof of Theorem 49, we obtain the following
multidimensional result for the existence of �xed points of N -order.

Theorem 51. Let (X; d) be a metric space and < be a binary relation on X.
Suppose XN (M ;<N ) be a non-empty and M : XN ! X be a mapping such that
the following conditions hold:

(a) < is MN
G -d-closed;

(b) M is (<N ; k)-continuous;
(c) M is F<N -graph contraction on XN ;
(d) there existsYN � XN (M ;<N ) such thatM(XN (M ;<N )) � YN � XN (M ;<N )

and (YN ; DN ) is <N -complete,
then M has a �xed point of N -order.

Proof. Suppose XN (M ;<N ) be a non-empty set and (�10; �20; : : : ; �N0 ) 2 XN (M ;
<N ). Then, we have�

(�10; �
2
0; : : : ; �

N
0 ); (M(�

1
0; �

2
0; : : : ; �

N
0 ); : : : ;M(�

N
0 ; �

1
0; : : : ; �

N�1
0 ))

�
2 <N :

Now in view of assumption (a) and from F<N -graph contraction condition (10), we
have�
(�11; �

2
1; : : : ; �

N
1 ); (�

1
2; �

2
2; : : : ; �

N
2 )
�
=� �

M(�10; �
2
0; : : : ; �

N
0 );M(�

2
0; �

3
0; : : : ; �

N
0 ; �

1
0); : : : ;M(�

N
0 ; �

1
0; : : : ; �

N�1
0 )

�
;�

M(�11; �
2
1; : : : ; �

N
1 );M(�

2
1; �

3
1; : : : ; �

N
1 ; �

1
1); : : : ;M(�

N
1 ; �

1
1; : : : ; �

N�1
1

� �
:

Continuing this process again and again, we get a <N -preserving Cauchy sequence
of points (�1n; �

2
n; : : : ; �

N
n ) in X

N such that

(�1n+1; �
2
n+1; : : : ; �

N
n+1) =

�
M(�1n; �

2
n; : : : ; �

N
n );M(�

2
n; �

3
n; : : : ; �

N
n ; �

1
n);

: : : ;M(�Nn ; �
1
n; : : : ; �

N�1
n )

�
and �

(�1n; �
2
n; : : : ; �

N
n ); (�

1
n+1; �

2
n+1; : : : ; �

N
n+1)

�
2 <N ; for all n 2 N:

If we take (�1n; �
2
n; : : : ; �

N
n ) = (�

1
n+1; �

2
n+1; : : : ; �

N
n+1) for some n 2 N, then f(�1n; �2n; : : : ; �Nn )g

is called a �xed point ofM . Therefore we assume (�1n; �
2
n; : : : ; �

N
n ) 6= (�1n+1; �2n+1; : : : ; �Nn+1)

for all n 2 N. Now proceeding the proof of Theorem 49 we get the conclusion. �
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Corollary 52. Let (X; d) be a metric space and < be a binary relation on X.
Suppose XN (M ;<N ) be a non-empty set and M : XN ! X be a mapping such
that the following conditions hold:

(a) < is MN
G -d-closed,

(b) M is (<N ; k)-continuous,
(c) there exists % 2 [0; 1) such that

NX
i=1

d

�
M(�i; �i+1; :::; �N ; �1; :::; �i�1);
M(�i; �i+1; :::; �N ; �1; :::; �i�1)

�
� %

NX
i=1

d(�i; �i);

for all
�
(�1; �2; :::; �N ); (�1; �2; :::; �N )

�
2 GN (M ;<N ),

(d) there existsYN � XN (M ;<N ) such thatM(XN (M ;<N )) � YN � XN (M ;<N )
and (YN ; DN ) is <N -complete.

Then M has a �xed point of N -th order.

5. Application to nonlinear matrix equations

In this section, we follow the following notations:

� Xn denotes the set of all n� n Complex matrices;
� Hn � Xn is the set of all n� n Hermitian matrices;
� Pn � Hn is the set of all n� n positive de�nite matrices;
� H+

n � Hn is the set of all n� n positive semide�nite matrices.
and for U; V 2 Xn, we denote the following notations:
� U � 0() U 2 Pn;
� U � 0() U 2 H+

n ;
� U � V � 0() U � V ;
� U � V � 0() U � V:

Let B� is the conjugate transpose of B and �+(B�B) is the largest eigenvalue
of B�B. We use the symbol k:k for the spectral norm of B and de�ned by kBk =q
�+(B�B).
The symbol k:ktr is used for the metric induced by trace norm and it is de�ned

by kBktr =
Pn

j=1 sj(B), where sj(B); j = 1; 2; :::; n; are the singular values of
B 2 Xn. Hence, (Hn; k:ktr) forms a complete metric space. See ( [8], [9], [18]) for
more details. Moreover, the binary relation � on Hn de�ned by:

U � V () V � U
for all U; V 2 Hn.
In this section, we apply Theorem 24 to establish a solution of the nonlinear

matrix equation.

U = Q+
nX
i=1

A�iG(U)Ai (11)
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where Ai is an any n � n matrices, Q is a Hermitian positive de�nite matrix and
G is continuous order preserving mapping (i.e., if U; V 2 Hn with U � V implies
that G(U) � G(V )) with G(0) = 0.
Now we state the following lemmas which are very useful in this sequel:

Lemma 53. If U; V 2 H+
n such that U � 0 and V � 0, Then
0 � tr(UV ) � kUktr(V ):

Lemma 54. If U 2 Hn and U � I, then kUk < 1:

Theorem 55. Consider the matrix equation (11) and suppose that there is a pos-
itive numbers k and � such that

(i) For every U; V 2 H+
n with U � V and

Pn
i=1A

�
iG(U)Ai 6=

Pn
i=1A

�
iG(V )Ai,

we have

jtr(G(V )� G(U))j � jtr(V � U)j
k(1 + �

p
tr(V � U))2

; (12)

(ii)
Pm

i=1AiA
�
i � kIn and

Pm
i=1A

�
iG(U)Ai � 0:

Then the matrix equation (11) has a solution. Moreover, the iteration

Un = Q+

nX
i=1

A�iG(Un�1)Ai (13)

where U0 2 Hn such that U0 � Q +
Pn

i=1A
�
iG(U0)Ai, converges in the sense of

trace norm k:ktr, to the solution of the nonlinear matrix equation (11).

Proof. We de�ne a mapping M : Hn ! Hn by

M(U) = Q+

nX
i=1

A�iG(U)Ai

for all U 2 Hn and a set by

H+
n (M;�) = fA 2 H+ : A �M(A) or M(A)�A � 0g:

Then M is well de�ned mapping, H+
n (M;�) is a non-empty set as Q 2 H+ and

M(Q) � Q =
Pn

i=1A
�
iG(Q)Ai � 0. It is easy to verify that for every positive

semide�nite matrix B, M(B) is also positive semide�nite matrix and H+
n (M;�)

is �-complete. Now, we will prove that the set H+
n (M;�) is invariant under the

mapping M , that is M(H+
n (M;�)) � H+

n (M;�). For this, it is su¢ cient to prove
that M(B) 2 H+

n (M;�) for every B 2 H+
n (M;�). Let B 2 H+

n (M;�) then
M(B)�B � 0 and

M(M(B))�M(B) =
nX
i=1

A�i
�
G(M(B))� G(B)

�
Ai � 0; (14)

that is M(B) �M(M(B)), which implies M(B) 2 H+
n (M;�).
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Next, we will show thatM is a generalized F�-contraction mapping with respect
to H+

n (M;�). For this, let � > 0 be any real number and F : R+ ! R be mapping
de�ned as

F(%) = � 1
p
%
for all % 2 R+:

Then from (12), for each U; V 2 H+
n (M;�) with U � V and G(U) � G(V ), we have

kM(V )�M(U)ktr = tr(M(V )�M(U))

= tr
� mX
i=1

A�i (G(V )� G(U))Ai
�

=
mX
i=1

tr(A�i (G(V )� G(U)Ai)

=
mX
i=1

tr(AiA
�
i (G(V )� G(U)))

= tr
�� mX

i=1

AiA
�
i

�
(G(V )� G(U))

�
�

�
k
mX
i=1

AiA
�
i k
�
kG(V )� G(U)ktr

� k
Pm

i=1AiA
�
i k

k

 
kV � Uktr�

1 + �
p
kV � Uktr

�2
!

<

 
kV � Uktr�

1 + �
p
kV � Uktr

�2
!

and so �
1 + �

p
kV � Uktr

�2
kV � Uktr

� 1

kM(V )�M(U)ktr
:

This implies that  
� +

1p
kV � Uktr

!2
� 1

kM(V )�M(U)ktr
or

� +
1p

kV � Uktr
� 1p

kM(V )�M(U)ktr
:

This yields that

� � 1p
kM(V )�M(U)ktr

� � 1p
kV � Uktr

:
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Hence

� + F(kM(V )�M(U)ktr) � F(kV � Uktr);

which shows that M is a generalized F�-contraction with respect to H+
n (M;�).

Since all the assumptions of Theorem 24 are satis�ed therefore there exists Z 2 Hn

such that M(Z) = Z, i.e., the matrix equation (11) has a solution. �
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