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Abstract. Let us show the boundary value problem L (q) with the −y
′′

+ q(x)y = λy differential equation in

the [0, 1] interval, and the y(0) = 0, y(1) = 0 boundary conditions in σ (x) ≡
x∫

0
q(t)dt. It is important to examine

this operator as the solution to many problems of quantum physics is closely linked to the learning of the spectral
properties of the operator L (q). Singular Shrödinger operators are characterized by the assumption that, in classical
theory, the function q(x) is not summable in the interval [a, b] for example it has singularity that cannot be integrated
in at least one of the end points of the interval or at one of its internal points, or that the interval (a, b) is infinite
interval.
In the present study, firstly, the operator of L (q) will be proved to be well-defined in the class of distribution
functions with first-order singularity, which is the larger class of functions. In the following step, the concepts
of eigenvalue and eigenfunctions are defined for the well-defined L (q) operator and the representations for their
behaviour are obtained.
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1. Introduction

In the classical Sturm-Liouville operators theory produced by the differential expression ` (y) = −y
′′

+ q(x)y on
(a, b) ∈ R it is generally assumed that the condition q(x) ∈ L1,`oc(a, b), that is, on (a, b) of the q(x) function, is
summable in each compact subrange. Singular Sturm-Liouville operators are characterized by the assumption that q(x)
is not summable on [a, b] or that on (a, b) is infinite.

Spectral theory of differential operators has an important place in applied sciences and is widely used in various
fields of mathematics, physics and mechanics. Particularly in quantum theory, the singular Shrödinger operator has
many applications. For example, the energy levels of structures having hydrogen atoms and similar atoms are re-
duced to the problem of finding wave functions corresponding to these levels to learn the eigenvalues of the singular
Shrödinger operator with the potential of Coulomb and the like and the behavior of the eigenfunctions corresponding
to these eigenvalues. Therefore, in this study, we will learn the properties of singular Shrödinger operator with special
type potential.
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Let us show with σ
′

(x) = q(x), σ(x) ∈ BV[0, 1] the operator L(q) produced by the

`(y) = −y
′′

+ q(x)y = λy, λ = k2 (1.1)

differential equation and the y(0) = 0, y(1) = 0 boundary conditions on [0, 1]. As it is known, q(x) function has real
value on [0, 1] and the spectra of this operatör is learned it can be integrated in Lebesque sense, and inverse problems
are investigated according to different data.

Similar problems have been addressed in [1] and [7]. The q ∈ W−1
2 (0, 1)-type potential of the differential expression

produced by the differential expression of the operators `(y) = −y
′′

+ q(x)y, |x|−α = q(x), (0 < α <
3
2

) case in the [7]
study, in the case of α ∈ (1, 2) is obtained in the [1] study. In addition [1, 2] and [3–5] provide important information
about the location of boundary value problems for singular differential equations. In particular in the work [1], (0 <
α < 2), the problem of regularization was investigated for singular differential equations of type (1.1) and the problem
of how to give boundary value conditions was examined.

2. Property Of The Spectrum

Let L = L(u(x), h,H) boundary value problem produced by

`y := −y
′′

+ u
′

(x)y = λy, 0 < x < π, λ = k2 (2.1)

differential equation and
U (y) := (Γy) (0) − hy(0) = 0,V (y) := (Γy) (π) + Hy(π) = 0 (2.2)

boundary conditions. Here, h,H real numbers u(x) ∈ BV[0, π] real value and continuous function in the points x =

0, x = π, λ spectral parameter,(Γy)(x) = y
′

(x) − u(x)y is.
Let’s define the functions y1(x) = y(x), y2(x) = (Γy)(x) = y

′

(x) − u(x)y and if we write the expression

` (y) := − ((Γy)(x))
′

+ u (x) (Γy)(x) − u2(x)y(x)

on the left side of equation (2.1), we can write the differential equation{
y
′

1(x) − u(x)y1 = y2

y
′

2(x) + u(x)y2 + u2(x)y1 = −k2y1
(2.3)

as a system of differential equations. Similarly (2.2) boundary conditions are

y2 (0) − hy1(0) = 0, y
′

2 (π) + Hy1(π) = 0.

Definition 2.1. (2.3) system of differential equations y1(ξ) = α1, y2(ξ) = α2, ξ ∈ [0, π], α1, α2 ∈ C, providing the initial
conditions y(x) = (y1, y2)t solution y1(x) component (2.1) is called the solution of the equation.

Definition 2.2. The number of λ that realizes the existence of the solution of the non-zero y(x) equation of Ly = λy
is called the eigenvalues of the L problem, and the y(x) function is called the eigenfunction corresponding to these
eigenvalues.

In the [1] study, it is shown that the spectrum of the L problem is discrete in case of u(x) ∈ BV[0, 1].
Let us show the solutions of the equation (2.1) with C(x, λ), S (x, λ), ϕ(x, λ) and ψ(x, λ), which implement the initial

conditions

C(0, λ) = (ΓS )(0, λ) = 1, S (0, λ) = (ΓC)(0, λ) = 0
ϕ(0, λ) = 1, (Γϕ)(0, λ) = h, ψ(π, λ) = 1, (Γψ)(π, λ) = −H.

In this case, it is clear that C(x, λ), S (x, λ), ϕ(x, λ) and ψ(x, λ) are entaire functions for each fixed x relative to λ and

U (ϕ) = 0,V (ψ) = 0 (2.4)

conditions holds.
Let

〈y(x), z(x)〉 := y(x)(Γz)(x) − (Γy)(x)z(x)
define

∆(λ) = 〈ψ(x, λ), ϕ(x, λ)〉 (2.5)
function.
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It is clear that the expression 〈ψ(x, λ), ϕ(x, λ)〉 does not depend on the variable x by the Liouville formula.
The function ∆(λ) is called the characteristic function of the boundary value problem L = L(u(x), h,H).
If we write x = 0 and x = π in the expression (2.5),

∆(λ) = V(ϕ) = −U(ψ) = (Γϕ)(π, λ) + Hϕ(π, λ) = −(Γψ)(0, λ) + hψ(0, λ) (2.6)

is obtained. On the other hand, since ∆(λ) is a entire function of λ, it has a countable number of zero, so the L problem
has a countable number of eigenvalues.

Lemma 2.3. The sequence {λn}n≥1, which is the zeros of the characteristic function ∆(λ), is ordered and is the eigen-
values of the L problem. The functions ϕ(x, λn) and ψ(x, λn) are suitable eigenfunctions. There are (βn)n≥1 sequences
so that

ψ(x, λn) = βnϕ(x, λn), βn , 0 (2.7)
equality is achieved.

Proof. Let λo be a zero of the function ∆(λ). In this case, we take the existence of βo , 0 such that ϕ(x, λo) = βoψ(x, λo)
from the equations (2.4) and (2.6). On the other hand, the functions ϕ(x, λo) and ψ(x, λo) provide boundary conditions
(2.2). Here, it is obtained that λo has eigenvalue, eigenfunctions corresponding to ϕ(x, λo) and ψ(x, λo) functions.

Conversely, let λo be the eigenvalues of the L problem, and yo(x) is the corresponding eigenfunction. In this case,
U(yo) = V(yo) = 0 is. Also, since yo(x) , 0 is yo(0) = 1, (Γyo)(0) = h, so yo(x) ≡ ϕ(x, λo) is obtained. Here, (2.6) is
used, ∆(λo) = V(ϕ(x, λo)) = V(yo(x)) = 0 is obtained. �

Definition 2.4. The sequence of (αn)n≥1 defined as

αn :=

π∫
0

ϕ2(x, λn)dx (2.8)

is called normalized numbers of L problem, and {λn, αn} is called spectral data.

Lemma 2.5.
βnαn = −

.

∆(λ) (λn) , (n = 1, 2, ...) (2.9)

are correct. Here,
.

∆(λ) =
d

dλ
∆(λ) is.

Proof. Since
d

dλ
〈ψ(x, λ), ϕ(x, λn)〉 = (λ − λn)ψ(x, λ)ϕ(x, λn),

(2.6) using the equation,

(λ − λn)

π∫
0

ψ(x, λ)ϕ(x, λn)dx = (Γϕ)(π, λn) + Hϕ(π, λ) + (Γψ)(0, λ) − hψ(0, λ)

= ∆(λn) − ∆(λ)

is obtained. From here, while λ→ λn
π∫

0

ψ(x, λn)ϕ(x, λn)dx =
.

∆(λn)

is. If we use (2.7) and (2.8), we get (2.9). �

Lemma 2.6. The eigenvalues λn (n = 1, 2, . . .) of the L problem are real and simple.

The proof of the Lemma is similar to the proof of Lemma 4 in [2].

Theorem 2.7. While |ρ| → ∞ , for the solution of ϕ(x, λ) = (ϕ1(x, λ), ϕ2(x, λ))t and ψ(x, λ) = (ψ1(x, λ), ψ2(x, λ))t

equation (2.1) on [0, π] with respect to x uniformly

ϕ1(x, λ) = cos ρx + O(
1
|ρ|

exp(|τ|x)) = O(exp(|τ|x)) (2.10)
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(Γϕ1)(x, λ) = ϕ2(x, λ) = −ρ sin ρx + O(exp(|τ|x)) = O(exp(|τ|x)) (2.11)
ψ1(x, λ) = cos ρ(π − x) + O(exp(|τ|(π − x))) = O(exp(|τ|(π − x))) (2.12)

ψ2(x, λ) = (Γψ1)(x, λ) = ρ sin ρ(π − x) + O(exp(|τ|(π − x))) = O(|ρ| exp(|τ|(π − x))) (2.13)
behavior is valid. Here is λ = ρ2, τ = Im λ.

Proof. Since the function u(x) has a boundadly variation on [0, π], it is summable in this interval.
Therefore, if we use the appropriate theorem in the [6] study, (2.3) the system of differential equations has a one

solution (ϕ1(x, λ), ϕ2(x, λ))t which realizes the initial conditions ϕ1(0, λ) = 1, ϕ2(0, λ) = h. In this case, the system of

ϕ1(x, λ) = cos ρx +
h
ρ

sin ρx (2.14)

+

x∫
0

{
u(t)ϕ1(t, λ) cos ρ(x − t) − [u2(t)ϕ1(t, λ) + u(t)ϕ2(t, λ)]

sin ρ (x − t)
ρ

}
dt

ϕ2(x, λ) = −ρ sin ρx + h cos ρx

+

x∫
0

{
−ρu(t)ϕ1(t, λ) sin ρ (x − t) − [u2(t)ϕ1(t, λ) + u(t)ϕ2(t, λ)] cos ρ (x − t)

}
dt

integral equations has only one solution.
Let’s define

ϕ∗1(x, λ) = |ϕ1 (x, λ)| exp (− |τ| x) , ϕ∗2(x, λ) = |ϕ2 (x, λ)| exp (− |τ| x)
functions. Considering that

|sin ρx| ≤ exp (|τ| x) , |cos ρx| ≤ exp (|τ| x) , u(x), u2(x) ∈ L1 [0, π] ,

and Gronwal’s theorem given in the study [1],

ϕ∗1(x, λ) ≤ K
(
1 +
|h|
|ρ|

)
exp

 1
|ρ|

x∫
0

|u(t)|2 dt


1
|ρ|
ϕ∗2(x, λ) ≤ K

(
1 +
|h|
|ρ|

)
exp

 1
|ρ|

x∫
0

|u(t)|2 dt


inequality for each x ∈ [0, π] is obtained. Here is K = exp

2 x∫
0
|u(t)| dt

 . From here, the behavior of |ρ| for sufficiently

large values (2.10) and (2.11) is obtained. Similarly (2.12) and (2.13) behavior is shown to be valid. �

Remark 2.8. Similarly, while |ρ| → ∞,

ϕ1(x, λ) = cos ρx + u(x)
sin ρx

2ρ
−

1
2ρ

x∫
0

sin ρ (x − 2t) du (t) + O
(

1
|ρ|

exp(|τ|x)
)

(Γϕ1)(x, λ) = ϕ2(x, λ) = −ρ sin ρx − u(x) cos ρx −
1
2

x∫
0

cos ρ (x − 2t) du (t) + O
(
exp(|τ|x)

)
asymptotic behaviors are valid for each x ∈ [0, π].

Theorem 2.9. The {λn}n≥0 set of eigenvalues of the problem L can be counted and

ρn =
√
λn = n +

ω

πn
+

Kn

n
, {Kn} ∈ `2.

ϕ1(x, λn) = cos nx +
ξ1,n(x)

n

π∫
0

u (t) sin 2ntdt +
ξ2,n(x)

n
,
∣∣∣ξ1,n(x)

∣∣∣ , ∣∣∣ξ2,n(x)
∣∣∣ ≤ c
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asymptotic behavior is valid when n→ ∞. Here is

ω = H + h −
1
2

u(π) −
1
2

π∫
0

u2 (t) dt.

Proof. ϕ1(x, λ) and ϕ2(x, λ) functions (2.10) and (2.11) by taking advantage of the behavior given (2.14) can write the
equation as

ϕ1(x, λ) = cos ρx +

x∫
0

u (t) cos ρ (x − 2t) dt − h

x∫
0

u(t)
sin ρ (x − 2t)

ρ
dt (2.15)

−

x∫
0

u2(t)
sin ρ (x − 2t)

2ρ
dt +

h − 1
2

x∫
0

u2 (t) dt

 sin ρx
ρ

+ O
(

e|τ|x

|ρ|

)

(Γϕ1)(x, λ) = ϕ2(x, λ) = −ρ sin ρx − ρ

x∫
0

u(t) sin ρ (x − 2t) dt

− h

x∫
0

u(t) cos ρ (x − 2t) dt −
1
2

x∫
0

u2(t) cos ρ (x − 2t) dt

+

h − 1
2

x∫
0

u2(t)dt

 cos ρx + O
(
e|τ|x

)
.

Since u(x), u2(x) ∈ BV[0, π],
∆ (λ) = −ρ sin ρπ + ω cos ρπ + K(ρ) (2.16)

for the ∆(λ) = (Γϕ1)(π, λ) + Hϕ1(π, λ) characteristic function is used if∣∣∣∣∣∣∣∣
x∫

0

u(t) sin ρ (x − 2t) dt

∣∣∣∣∣∣∣∣ = O
(

1
|ρ|

)
,

∣∣∣∣∣∣∣∣
x∫

0

u(t) cos ρ (x − 2t) dt

∣∣∣∣∣∣∣∣ = O
(

1
|ρ|

)
∣∣∣∣∣∣∣∣

x∫
0

u2(t) sin ρ (x − 2t) dt

∣∣∣∣∣∣∣∣ = O
(

1
|ρ|

)
,

∣∣∣∣∣∣∣∣
x∫

0

u2(t) cos ρ (x − 2t) dt

∣∣∣∣∣∣∣∣ = O
(

1
|ρ|

)
evaluations are used due to the property of the Stiltijes integral is obtained. Here, let’s get

ω = H + h −
1
2

u(π) −
1
2

π∫
0

u2(t)dt,

K(ρ) = −
1
2

π∫
0

cos ρ(x − 2t)du(t) + O
(

1
|ρ|

)
Gδ = {ρ : |ρ − K| ≥ δ, δ > 0, K = 0,±1,±2, ...} .

In this case, if we use Lemma3.2 in [8], we obtain the existence of the number ρ∗ > 0 such that

|∆ (λ)| ≥ cδ |ρ| exp (|τ| π) , ρ ∈ Gδ, |ρ| ≥ ρ
∗

is.

Let Γn =

{
λ : |λ| = (n +

1
2

)2
}

. So if we apply the Rouche theorem, take that Γn has exactly (n + 1) zeroes in the

function ∆(λ) and each circle γn(δ) = {ρ : |ρ − n| ≤ δ} has a single zero in the sufficiently large values of n. Since δ > 0
is arbitrary, we take the equation

ρn = n + εn, εn = o (1) , n→ ∞ (2.17)
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If (2.17) is substituted in the (2.16) function,

0 = ∆
(
ρ2

n

)
= − (n + εn) sin (n + εn) π + ω cos (n + εn) π + Kn

is. From here,

εn =

H + h −
1
2

u(π) −
1
2

π∫
0

u2(t)dt

 1
πn
−

1
2πn

π∫
0

cos n(π − 2t)du(t) + O
(

1
n2

)

is obtained. Therefore, ρn = n +
ω

πn
+

Kn

n
asymptotic expression is obtained. Here,

Kn = −
1
2

π∫
0

cos n (π − 2t) du(t) + O
(

1
n

)
and ∑

n

Kn cos nx = K(x) ∈ BV [0, π]

are.
If the expression of ρn is written in its place (2.15),

ϕ1(x, ρn) = cos nx +
sin nx

n
[h + ho(x)] − εnx sin nx +

1
n

x∫
0

u(t) sin n (x − 2t) dt + O
(

1
n2

)
(2.18)

asymptotic behavior is obtained for the eigenfunctions of the given problem. Here is

ho(x) = h

x∫
0

u(t) cos n(x − 2t)dt −
1
2

x∫
0

u2(t) cos n(x − 2t)dt −
1
2

x∫
0

u2(t)dt.

(2.18) by squaring the equation is integrated on [0, π] of the given problem (αn)n≥0 for the normalized numbers,

αn =

π∫
0

ϕ2
1(x, ρn)dx =

π

2
+ an

asymptotic expression is obtained. Here the sequence (an)n≥0 satisfies the condition∑
n

an cos nx = a(x) ∈ BV [0, π] �.
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