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Abstract

Charles[1]| proved the convergence of Picard-type iterative for generalized ®—accretive non-self mappings in
a real uniformly smooth Banach space. Based on the theorems of the zeros of strongly ®—quasi-accretive
and fixed points of strongly ®—hemi-contractions, we extend the results to Ishikawa iterative and Ishikawa
iteration process with errors for generalized ®—hemi-contractive mappings.

Keywords: strongly ®—quasi-accretive strongly ®—hemi-contractions Ishikawa iteration process with
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1. Introduction

In[2], we can see that the convergence theorems of Ishikawa iterative process with errors for
®—hemi-contractive mappings in uniformly smooth Banach spaces; In[3], we can see that strong convergence
of the modified Ishikawa iterative method for infinitely many nonexpansive mappings in Banach spaces; In[4],
we can see that Mann and Ishikawa-type iterative schemes for approximating fixed points of multi-valued
non-self mappings; In|5], we can see that convergence analysis of the Picard—Ishikawa hybrid iterative process
with applications.

In 2009, Charles|1]| proved the convergence of Picard-type iterative for generalized ®—accretive
non-self maps in a real uniformly smooth Banach space. In this paper, we consider that the Ishikawa iteration
process and Ishikawa iteration process with errors will be extended from the results of Charles [1].

In 1974, Ishikawa[6] introduced the Ishikawa iteration process as follows: For a convex subset C
of a Banach space E and a mapping T from C' into itself, for any given zo € C, the sequence {z,} in C is
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defined by

Tnt1 =1 — ap) xp + Ty,

where {a,,} and {f,} are two sequences in [0,1] satisfying the conditions 0 < ay,, 3, < 1 for all
o

n, lim 8, =0,and Y a8, = co.
n—o0 n—=0
In 1995, Liu|[7| introduced what he called the Ishikawa iteration process with errors.
In 1998, Xul8] introduced the following alternative definitions:
Let K be a nonempty convex subset of £ and T': K — K be a nonlinear mapping. For any given

o, ug, vg € K the Ishikawa iterative process with errors {:Un};f’:o defined by

Tn+1 = (1 - 5n - ’Yn) Tn + 5nTyn + Ynln,n > 0,
yn = (1 —apn — by) oy + anTxy + byoy (0.2)
=xp—an (I =T)xy — by (xn —vy) ,n>0,

where {u,} , {v,} are any bounded sequences in K; {3,} , {m},{an} .
{b,} are four real sequences in [0,1] and satisfy 5, +v, <1, an, +b, <1, for all n > 0.

2. Preliminaries
Definition 1. [1] Given a gauge function ¢, the mapping J, : E — 2F" defined by
Joz i =A{u* € E*: (z,u”) = [lz]| [lu*ll; [u*] = @ (=]}

1s called the duality map with gauge function ¢ where X is any normed space.
In the particular case ¢ (t) =t, the duality map J = J, is called the normalized duality map.

Proposition 2. [9] If a Banach space E has a uniformly Gateauz differentiable norm, then J : E — E* is
uniformly continuous on bounded subsets of E from the strong topology of E to the weak*topology of E*.

Definition 3. [10] Let E be an arbitrary real normed linear space. A mapping T : D (T) C E — E is called
strongly hemi-contractive if F'(T) # 0, and there exists t > 1 such that for all r > 0,

[z — ¥ <[[(1+7) (z —2%) —rt (T — ™) (0.1)

holds for all x € D(T), x* € F(T). Ift = 1, then T is called hemi-contractive. Finally, T is called
generalized ®—hemi-contractive, if for all x € D (T) , x* € F (T), there exists j (v — x*) € J (x — z*) such
that

(I-T)z—(I-T)z"j(x—2")) 2@ ([lz—27). (0.2)

It follows from inequality (2.2) that T is generalized ®—hemi-contractive if and only if
(Tx —a*,j (x — 2%)) < ||z — 2*|| = @ (||lz — 2*[|), ¥n>0. (0.3)

Definition 4. [1] Let N (T) ={x € E: Tx =0} #0. The mapping T : D (T) C E — E is called generalized
& —quasi-accretive if, for allx € E, x* € N (T), there ezists j (x — x*) € J (x — x*) such that

(Ta —Ta" j (x — 2%)) = ® (|l — 7). (0.4)

Proposition 5. [1] If F(T) ={x € E: Tz =z} # 0, the mapping T : E — E is strongly hemi-contractive
if and only if (I —T)is strongly quasi-accretive; it is strongly w—hemi-contractive if and only if (I —T) is
strongly p—quasi-accretive; and T is generalized ®—hemi-contractive if and only if (I —T) is generalized
®—quasi-accretive.
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Proposition 6. /1] Let E be a uniformly smooth real Banach space, and let J : E — 25" be a normalized
duality mapping. Then

lz +ylI* < ll=* + 2 (y, J (z +y))
forall z,y € E.

Proposition 7. [1] Let {\,} and {v,} be sequences of nonnegative numbers and {cy,} be a sequence of
o0

positive numbers satisfying the conditions Y a, = oo and Z—’; — 0, as n — oo. Let the recursive inequality
n=1

)\n+l <A — anq/] ()\n) +Yn,n=1,2,...

be given where 1 : [0,00) — [0, 00) is strictly increasing continuous function such that it is positive on (0, 00)
and ¥ (0) = 0. Then A\, — 0, as n — oc.

3. Main Results

In this section, we will consider to extend the result of Charles[1] to Ishikawa iterative and Ishikawa
iteration process with errors under the following assumptions. First, we extend the result of Charles|1] to
Ishikawa iterative.

Theorem 8. Suppose D is a nonempty closed convexr subset of a real uniformly smooth Banach space E.
Suppose T : D — D 1is a bounded generalized ®—hemi-contractive map with strictly increasing continuous
function ® : [0,00) — [0,00) such that ® (0) = 0 and =* € F(T) # 0. For arbitrary xy € D, {x,} be
an Ishikawa iterative sequence defined by (1.1), where {a,,} ,{Bn} C [0,1], nlg{.lo o, = nhﬁ\ngo By = 0 and

> ay, = 00. Then, there exists a constant dg > 0 such that if 0 < oy, By < do, {xn} converges strongly to
the unique fized point x* of T.

Proof. Let r be sufficiently large such that z; € B, (z*). Define G := B, (z*) N D. Then, since T" is bounded
we have that (I —T) (G) is bounded.
Let M = max {sup ||(I = T) zn|| , sup [|Tyn — z*| : zn, , yn € G} . As j is uniformly continuous

r

on bounded subsets of E, for ¢ := q;g/[) , there exists a 0 > 0 such that z,y € D (T) ,||x — y|| < J implies
17 (z) =7 Wl <eo -

—mi r r ) é @(%)
Set do = min | 1, AM > 2(M+r) » 2M 2(M+r) > 272 (°

Claim1: {x,} is bounded.

Suffices to show that x, is in G for all n > 1. The proof is by induction. By our assumption,
x1 € G. Suppose z, € G. We prove that z,11 € G. Assume for contradiction that x,1 ¢ G. Then, since
Tpt1 € D Vn > 1, we have that ||z,41 — 2*|| > r.

We have the following estimates:

lyn — 2% = [[(1 = Bn) xn + BTy — 7|
<oy — 2|+ Bu I(I = T) zn|
<r+doM

w

S 57

2
[(@n —2%) = (yn — 2)|| = B [[(I = T) |
<doM

o
<—-<9
S5 <0,
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now
|zn — 2| > |Tns1 — 2% — an [|[Tyn — 24|
> [|zp1 — 2% = an (| Ty — || + lzn — 27|]
>r—dy (M + T')
S ror
r—— ==,
- 2 2
yn — 2™ > [[2n — || = Bn [[(I = T) zy |
r
> - —doM
=9 0
r
> — )
— 4
and
[Znt1 — 2| < (1 —an) [|[2n — 2| + o | Tyn — 27|
<A —ap)r+anM
3
< -7,
-2

[(#n1 = 27) = (20 — 27)|| < an [|Tyn — @nl
< o [[ITyn — 2| + llan — 2]
<ap(M+r)

§
<,
_2<5,

therefore,
17 (20 — 2%) = j (yn — 2")|| < &0,
17 (g1 — 2%) = j (zn — 27| <0

Using Proposition 2.6 and the above formulas, we obtain

|zns1 — 2*1* = (1 = an) @n + anTyn — =*||°

< (L= om)?|on — 2| + 20 (Tyn — 27, j (yn — =*))
+ 20 <Tyn — ", ] (xn-i-l - x*) —J (xn - $*)>
+ 200, (Tyn — 2%, j (2 — &%) — j (yn — 27))

2 *112 *112 *

< (1= @t — " + 200 [ = 22 = @ (s — ") 01)
+ 20 [|[Tyn — || |7 (@n41 — %) — J (2 — 27)||
+ 20 [|Tyn — 2| |7 (20 — 2%) — 5 (yn — 27)]|

<(1- an)2T2 +4a, - M - g
+ 200 [y = =*17 = @ (lyn — 21|
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lyn = &* (1> = ll2n — % = Bn (I = T) @n?
< lwn — 2*(|* = 280 (I = T) @, j (w5 — %))
=280 (I = T) @, j (Y — %) — j (2 — 7))
<l — 2*|* = 28, ([l2n — 27))
+ 280 (L = T) a1 (yn — %) = j (20 — ")
<r24+2B, - M - «.

(0.2)

r & @(2)}’

Substitute (3.2) into (3.1), since 0 < o, , B, < dp and dy = min {1, o ST 20T ST 252

we have

|1 — 2*]1> < (1 — an)®r® + day, - M - g9 + 200, [7”2 +2Bp - M g9 — @ (|lyn — z*|)]

<r? 4 2a, [%72 + 2Megy + QBnMeo} — 20, ® (%)
® (%)

2 _(b(%)

<7+ 20,

<7“2

ie,||zpt1 — x*|| < r, a contradiction. Therefore z,41 € G. Thus by induction {z,} is bounded.

Then, {yn} , {Tyn} , {Tzn} , {({ —T)x,} are also bounded.

Claim2:x, — z*.

Let Ap = [lj (#n41 —2") —j(zn —2")| , Bn = [lj (#n —27) = j (yn — 2¥)||, Note that x4 —
Tp— 0,2, —yn — 0 as n — oo and hence by the uniform continuity of j on bounded subsets of E' we have
that

A, —0,B,—0 asn — oo.

Let M; = max {sup ||z, —x*|| , sup |lyn — 2| , sup || Tyn — z*| , sup [|({ = T) x|} , by (3.1), (3.2), we
obtain that

|21 —2** < (1 — an)’|lzn — 2| + 20, [Ilyn — 2" |* = @ (|lyn — ")

+ 200 [|Tyn — 2| | (xnt1 — 27) = j (20 — 27|
+ 200 | Tyn — 27| [l (20 — %) = J (yn — 27)| (0.3)
< (1= a)?||@n — ¥|* + 200, M1 Ay, + 200, M1 By,

+ 2an [llyn = 2*|* = @ (lyn — 2*1)]
and
[y — x*HQ < lzn — x*HQ —26,® (||zn — 27|

+ 280 [I[(I = T) a7 (yn — %) = j (a0 — ") (0.4)
< \@n — «*||* + 2M, B,,.

Taking (3.4) into (3.3),
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Tt — @ H (1-— an) |z — H +20, M1 Ay 200, M1 By,
+2ap [ln — @ |P+2M1 By — @ (lyn — 2*])]
< (1+an2) lxn — :U*H2 + 20, [M1 Ay + 3M1 By, — @ (||lyn, — 2¥))]
< llon = @*[* + 200 | S-ML 4+ My Ay + 3M1 By — @ ([lya — 7))
< Nlan — 2| + 200 [Zo — @ (Ilyn — 2" )] ,

where Z, = M2 + My A, +3M,B, — 0 as n — .

Set inf % =L >0 since @ is a strictly increasing continuous function, then L exists.
Thus
@ (llyn — 2*[]) = L ([Jon — 2*[]) + L = L ([lan — z*]])
Then

s — 2™ * < [lon —** + 200 [Zn — L (Jan — ™) ]

< |lwn — 2|7 — 200, L (|| zn, — 2¥|]) + 2002,

Let A\, := ||z, — 2*|| and p,, = 2y Z,, , then from inequality (3.5) we obtain that A1 < Ay—20, L® (\,)+pn,
where Z—Z — 0 as n — oo. Therefore, the conclusion of the theorem follows from Proposition 2.7. |

The following corollary follow trivially,since definition 2.3 and definition 2.4.

Corollary 9. Suppose E is a real uniformly smooth Banach space. Suppose T : E — FE is a bounded
generalized ®—accretive map with strictly increasing continuous function ® : [0,00) — [0,00) such that
® (0) = 0 and the solution x* of the equation Tx = 0 exists. For arbitrary xo € E, the sequence {x,} in E
1s defined by

{ Tnt+1 = (1 - an) Tn — anTyn
Yn = (1 - Bn) Tn + BpTxn, n >0

where {an} ,{Bn} C[0,1], lim a,, = lim B, =0 and ) a, = co. Then, there exists a constant
n—o0 n—oo
do > 0 such that if 0 < au,, Bn, < do, {xn} converges strongly to the unique solution of Tx = 0.

Now, we consider to generalize to a more general case, we extend the result of Charles|[1] to
Ishikawa iteration process with errors as follows.

Theorem 10. Suppose D is a nonempty closed convex subset of a real uniformly smooth Banach space E.
Suppose T : D — D s a bounded generalized ®—hemi-contractive map with strictly increasing continuous
function ® : [0,00) — [0,00) such that ®(0) = 0 and 2* € F(T) # 0. For arbitrary xo € D , {z,}
be an Ishikawa iteration process with errors defined by (1.2) ,where {Bn} , {wm} , {an} , {bn} C
[0,1] , hm Bn = hm b, = lim ap, = 0 ,v, = 0(Bn) and > By, = oo. Then, there exists a constant

—00 n—oo

do >0 such that sz < Bnys Yn, an, by <dy, {xn} converges strongly to the unique fized point z* of T.

Proof. Let r be sufficiently large such that 1 € B, (z*). Define G := B, (z*) N D. Then, since T is bounded
we have that (I — T') (GQ) is bounded.

Let M =sup{||({ = T)zn| : zn € G} +sup{ ||z, — v,| : x,, € G}

+sup{ | Tyn — 2"l +1: yn € G}+sup{ lun —z"[|}.

As j is uniformly continuous on bounded subsets of E, for gg := (251:4) , there exists a 6 > 0 such
that z,y € D(T) ||z — yl| <6 implies |[j () — 7 (y)]|

<e€p .
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T r 2(r
Set do =min {L ST 2(21\64+r)’ 2(21\2+r) ’ &7 q)4(1é)’ ;3(1\‘227 ;I>8J\(/14723 }
Claim1: {x,} is bounded.
Suffices to show that z, is in G for all n > 1. The proof is by induction. By our assumption,z; €
G. Suppose z, € G. We prove that z,41 € G. Assume for contradiction that x,+; ¢ G. Then, since
ZTpnt1 € D, Vn > 1, we have that [|z,+1 — x*|| > r.
We have the following estimates:

lyn — @[] = llan — 2" — an (I = T) 2n — by (0 — )|
< lan — 2™ 4+ an [[(I = T) zall + bn |20 — vall
<r+4do(M+ M)

ot

S T

4

[(zn = 2%) = (yn = 2°)|| < an |(I = T) 2|l + bn |20 — vall

<do (M + M)
1)
< =<6,
-2
now
|zn — 2| > |zng1 — 2] = Ba | Tyn — znll — v lltn — 20|
> [Zn+1 — 2% = B (I TYn — 2| + lzn — 2||] — 0 [[un — 24|
2r—dy(M+r+M)
r
> a )
-2
lyn — 2% = [|on — || — an |(I = T) znl| — by |20 — v
> ||z — 2*|| — do (M + M)
r o r r
> L=
-2 4 4
and

[Znt1 — ¥ < |lzn — 2| 4 B [ Tyn — znll + Y [lun — 22|
< lzn = 2% + B ([Tyn — 2| + lzn — 2"[1) + o Jun — 24|
<r+do(M+r+M)
3
< -—r,
-2

[(@nt1 —2%) = (2 — 2°)|| < Bu | Tyn — 2ol + 0 [tn — 0|
< Bn Ty — || + |27 — 2[]] + v ||t — 20|
S do (M+7"+M)

(=2

<-<9,

2
therefore,

15 (20 —2%) = j (yn — 2")|| < &0,
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17 (@ns1 — &%) = j (zn — 27| <eo .

Using Proposition2.6 and the above formulas, we obtain

Substitute (3.7) into (3.6), since 0 < By, Yn s an , bp < do , v, = 0(5y ) and dy =min {1

,we have

|Znt1 — x*||2 = [|(1 = Bn — ) Tn + BaTYn + Ynttn — x*HQ

< (1= Bp =) Nwn — &*|° + 280 (Tyn — &%, j (€nt1 — ¥))
+ 29 (un — 2%, j (Tn1 — 27))

< (1= Ba)?||wn — 2*[* + 28, (Tyn — 2%, j (4 — )
+ 2B (Tyn — 2%, (Tnt1 — %) — j (¥ — 7))
+2Bn (Tyn — 2%, j (zn — 27) = j (yn — 7))
+ 29 (un — 2%, (Tp41 — 27))

< (1= B)?llen — 2*1* + 280 | lyn — 2*[1> = @ (|lyn — 27])
+ 280 | Tyn — [ |7 (2nt1 — %) — j (w0 — 27)||
+ 280 [ Tyn — ™[ |7 (2n — 27) = J (yn — 27|

+ 29 [Jun — 2" #n1 — 27

3
< (1= B)*r? + 48, Meg + 2y, - M - 57

+ 260 |llyn — 21 = @ (llya — 2"}

lyn — x*HZ = |lvn — 2" —an (I =T) zp — by (2 — Un)H2

< — 21> = 200 (I = T) s j (yn — 2%) = j (w0 — 7))
— 20, (I = T) 0, (2 — 2°)) — 20 (0 — 0§ (g — )
< Jan — | = 200 (2 — 2*[)) + 20y 2 — | 1y — 27
+ 20, [1(1 = T) 2l 1 (g — 2) = j (2 — )]

5
<r?+42Mey+ 2b, M - T

)
s =2 (1= 81?28, | 4 Mz + S = (g — )|

+4BnM€O+3’YnMT

) 3 T
<12+ 28, [52%2 +4Meo + Sby M + 2;”Mr] —28,® <Z>

® (%) o (%)

<r?4+2
_T+Bn 9 A

<r2

(0.6)

[ T )

r_
) BM 2(2

[

M+r)’ 2(2M+r)? 4M > .

Le,||zp+1 — x*|| < r, a contradiction. Therefore x, 41 € G. Thus by induction {z,} is bounded. Then,

{yn} , {Tyn} , {Txn} , {(I =T)x,} are also bounded.
Claim2: x,, — z*.

Let An = |lj (@ny1 —27) —j (w0 —2")| , Bn = |lj (@0 —27) = j (yn — 27)||, Note that ) —
Tp— 0,2, —yn — 0 as n — oo and hence by the uniform continuity of j on bounded subsets of E we have

that
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A,—0,B, —0 asn — co.

Let

— — I-T
Ml:max{supnxn 2l sup g =] sup (1 =T }
$up [Ty — ||, sup [fu — 2|, sup | — v

by (3.6), (3.7), we obtain that

lns1 =277 < (1= Bu)?llwn — 21 + 280 [llgn — 2 = @ (lym — 271)]

+ 260 | Tyn — 2| lJ (n1 — 2%) = j (20 — 27)|
+ 260 | Tyn — 2| |7 (20 — 27) = j (yn — 27) |
+ 29 lun = 27| |#nt1 — 27

< (1 - /Bn)QHxn - .73*H2 + 2ﬁnM1An + 28, M1 By, + 2’)/an2
+ 280 |y — &[> = @ (|lyn — 27]))

and

lyn = 21* <l — 2*|1° + 205 (I = T) @ 5 (yn — %) = j (x0 — 2*)]|
= 2an® ([|n — 27||) + 2bp 20 — vall lyn — 27| (0.9)
< an — 2*||> 4+ 2M1 By, 4 2b, M1 % .
Taking (3.9) into (3.8),

Zng1 — )| < (1 = Bn)?||lzn — 2*||* + 28, M1 Ay + 28, M1 By, + 27, M2
+ 28, (e — @*|” + 2M1 By + 20 0My? = @ (g — 2*])
B
2
< lwn — 2| + 280 [Zn — @ (lyn — 2*|)]

< [l —a*|* + 26, [ My? + My Ay, + 3M By, + 2b, M + %"Mf — @ (lyn — 2"|))
n

where Z, = 5 M + My Ay, + 3My By, + 26, My + 22 My — 0 as n — oo,

Set inf M = L >0, since ® is a strictly increasing continuous function, then L exists.

Thus
® (lyn —2*[)) = L ([[xn — 2*|]) + L = L (|lzn, — 2™]) -
Then

|21 = 2| < Nz — 2| + 260 [Z = L& (|2 — 2*)) ]

< lzn — 2|7 = 280 L® (|77 — 27||) + 2802, -

Let A, := ||z, — 2*|| and p,, = 25,7, , then from inequality (3.10) we obtain thatA,+1 < A, —28,LP (A,) +
Pn, Where % — 0 as n — oo. Therefore, the conclusion of the theorem follows from Proposition 2.7. |

The following corollary follow trivially,since definition 2.3 and definition 2.4.

Corollary 11. Suppose E is a real uniformly smooth Banach space . Suppose T : E — FE is a bounded
generalized ®—accretive map with strictly increasing continuous function ® : [0,00) — [0,00) such that
® (0) = 0 and the solution x* of the equation Tx = 0 exists. For arbitrary xo € E , the sequence {x,} in E
is defined by
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Tn41 = (1 — Bn — 'Yn) Tn — BnTyn + TnUn
Yn = (]- — Qp — bn) Ty + anTmn + bnvna n > 07

where {fn} , {1} ,{an} ,{bn} C[0,1] , lim B, = lim b, = lim a, =0, v, =0(6n) and > B, = c©.
n—oo n—oo n—oo

Then, there exists a constant dy > 0 such that if 0 < By, Yn , an , by < do, {xn} converges strongly to the

unique solution of Tx = 0.

This work is supported by Applied Basic Research Foundation of Sichuan Province of China(Grant
No. 2018JY0169).
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