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Regularization of p-Adic Distributions Associated to
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Abstract
The p-adic distributions attached to ordinary functions defined on p-adic fields with moderate variation are
studied. We first give a sufficient growth condition on ordinary functions to construct p-adic distributions.
Then a moderate variation condition on functions for regularization of these p-adic distributions is
imposed which provides a general method to construct p-adic measures. The p-adic integrals against
these measures are also explicitly transformed to integrals against Bernoulli measures.
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1. Introduction
The theory p-adic integration has been an important tool in number theory for many years. The construction of

the p-adic zeta function by p-adic interpolation of the complex Riemann zeta function ζ(s) at negative integers was
achieved by Leopoldt and Kubota by using the (p-adic) limits

lim
M→∞

1

pM

pM−1∑
j=0

f(x+ j)

for a locally analytic function f on Zp [1]. This idea has been conceptualized by expressing ζ(−r) for r ∈ Z≥1 as the
p-adic integral of xr against the p-adic measure µα,1 called as Mazur’s Bernoulli measure [9]. Indeed more generally
one can define a p-adic L-function as the p-adic integral of a Dirichlet character against a p-adic measure. Today it is
well known that the special values of complex L-functions are also expressed in terms of p-adic integrals and this
relation is also reflected to the p-adic properties of modular forms and moduli spaces [7, 8].

In a simple setting, a p-adic distribution denoted by µ on a compact subset X of Qp can be defined as a finitely
additive map from the compact open subsets ofX to Cp. Explicitly if U ⊂ X is equal to the disjoint union of compact
open subsets U1, ..., Un then µ(U) = µ(U1) + ...+µ(U1). Indeed it is enough to check the additivity condition on the
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compact open subsets of the form a+ (pN ) contained in X , i.e. µ extends to a p-adic distribution on X if and only if

µ(a+ (pN )) =

p−1∑
b=0

µ(a+ bpN + (pN+1)) (1.1)

for any a + (pN ) contained in X . We will call (1.1) as the distribution property. If additionally µ is bounded then
we call µ as a p-adic measure on X . The reader is referred to [3, 6, 9] for the properties as well as equivalent
characterizations of p-adic distributions and measures. We will mainly take X to be Zp or Z∗p.

The p-adic integral of a continuous function f(x) on X against a p-adic measure µ denoted by
∫
X

f µ is defined as

∫
X

f µ = lim
N→∞

∑
U⊂X

f(ã)µ(U)

where U ranges over the compact open subsets of X of the form a+ (pN ) and ã ∈ U is arbitrary. Note that this limit
exists and is independent of the choice of ã ∈ U [9, Theorem 6 of §II].

The standard examples of p-adic measures are Bernoulli measures, p-adic Gamma measures and the measure µz
defined as

µz(a+ (pN ) = za/(1− zp
N

)

where z ∈ Cp with |z − 1|p ≥ 1 (See [9], [5] and [10] respectively). Bernoulli measures is core for construction of
p-adic zeta functions. The p-adic Gamma measures give a p-adic analogue of Euler constant [4]. Also the measure
µz has an important role in the theory of p-adic polylogarithms [2].

We briefly recall the Bernoulli measures referring to [9] for the details. The k-th Bernoulli distribution µB,k is
defined as

µB,k(a+ (pN )) = pN(k−1)Bk(a/p
N )

where Bk(x) is the k-the Bernoulli polynomial. Note that µB,k is unbounded, so is not a measure. The k-th Bernoulli
measure is obtained by regularization of µB,k as follows. Let α ∈ Z≥1 for which (p, α) = 1. Then it is clear that for
any distribution µ on Zp, the map U 7→ µ(αU) on the compact open subsets of Zp is also a distribution and so is

U 7→ µk,α(U) := µk,α(U)− α−kµk,α(αU).

It turns out that µk,α is bounded, indeed |µk,α(U)|p ≤ 1 and so is a p-adic measure on Zp. The p-adic Gamma
measures are also constructed in a similar way [4].

In this paper we will generalize this method of construction of p-adic distributions and measures on Z∗p and
show that we can associate p-adic measures to ordinary functions satisfying some growth and variation conditions.
In particular we will see that the Bernoulli measures and p-adic Gamma measures correspond to polynomials and
x logp(x)− x respectively where logp is Iwasawa’s p-adic logarithm, but the method provided here is also valid for
a larger class of functions. We will also give an expression for p-adic integrals against these measures in terms of
Mazur’s Bernoulli measure.

We fix the following notation for the rest of the paper. We will denote the ring of p-adic integers and its field of
fractions by Zp and Qp respectively. Also Cp denotes the completion of a fixed algebraic closure of Qp endowed with
the normalized p-adic norm as |p|p = 1/p. The group of units of Zp is denoted by Z∗p, i.e. Z∗p = {α ∈ Zp : |α| = 1}.

2. Admissible functions with moderate variation
We give a basic definition for the functions that we will work on. Let R ≥ 0 be a real number and DR := {x ∈

Qp | |x|p ≥ R, x /∈ Z≤0}.

Definition 2.1. We say that a function f defined on DR is admissible if there exists k ∈ Z≥1 for which the following
are satisfied;

i) The pointwise limit F (x) := lim
M→∞

pM(k−1)
pM−1∑
j=0

f

(
x+ j

pM

)
exists for any x ∈ Qp with x /∈ Z≤0

ii) For some α ∈ Z≥2 with (p, α) = 1 the pointwise limit Fα(x) := lim
M→∞

pM(k−1)
pM−1∑
j=0

f

(
x+ j

αpM

)
exists for any

x ∈ Qp with x /∈ Z≤0.
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For example f(x) = xk and f(x) = xk logp(x) for k ∈ Z≥0 are admissible functions, and α ≥ 2 can be any
integer with (p, α) = 1. In the sequel we always consider an admissible function together with a fixed α satisfying
condition ii) of Definition 2.1 without any further reference. Now we show that admissible functions induce p-adic
distributions.

Proposition 2.1. Let f be an admissible function on some DR. Then the maps µf and µf,α defined as

µf (a+ (pN )) = pN(k−1)F (a/pN )

µf,α(a+ (pN )) = pN(k−1)Fα(a/p
N )

on the compact open subsets of Z∗p extend to p-adic distributions on Z∗p.

Proof. We need to check the distribution property (1.1). Now we have that

p−1∑
b=0

µf,α(a+ bpN + (pN+1)) =

p−1∑
b=0

p(N+1)(k−1)Fα

(
a+ bpN

pN+1

)

= p(N+1)(k−1) lim
M→∞

pM(k−1)
p−1∑
b=0

pM−1∑
j=0

f

(
(a+ bpN )/pN+1 + j

αpM

)

= pN(k−1) lim
M→∞

p(M+1)(k−1)
p−1∑
b=0

pM−1∑
j=0

f

(
(a/pN ) + (b+ jp)

αpM+1

)

= pN(k−1) lim
M ′→∞

pM
′(k−1)

pM
′
−1∑

j′=0

f

(
(a/pN ) + j′

αpM ′

)
where M ′ =M + 1 and j′ = b+ jp. But by definition the last sum is equal to

pN(k−1)Fα(a/p
N ) = µf,α(a+ (pN ))

which completes the proof (Note that the above arguments are also valid for α = 1.)

Remark 2.1. The condition x /∈ Z≤0 is redundant in some cases. For example if f(x) is a polynomial then f is well
defined on Qp and so µf and µf,α extend to p-adic distributions also on Zp. But for example if f(x) = logp(x) which
is not defined at x = 0, then the condition x /∈ Z≤0 is necessary.

Now we conceptualize the notion of regularization of p-adic distributions obtained in Proposition 2.1. We adopt
the notation of Definition 2.1 and Proposition 2.1. Recall that since µf,α is a p-adic distribution, the map

U 7→ µf,α(αU)

also extends to a p-adic distribution. Explicitly we have that

µf,α(αU) = pN(k−1)Fα({αa /pN})

where {x} denotes the fractional part of x.

Definition 2.2. Let f be an admissible function and µ(α)
f be the p-adic distribution defined as

µ
(α)
f (U) = µf (U)− µf,α(αU) = pN(k−1)F (a/pN )− pN(k−1)Fα({αa /pN})

for any compact open subset U of Z∗p. If µ(α)
f is bounded, and so extends to a p-adic measure then we say that µ(α)

f

is a regularization of µf,1.

Now we will give two main results. The first theorem below presents a sufficient condition on f which
guarantees the boundedness of µ(α)

f . The importance of it is that a moderate variation for an admissible function f is

enough for the boundedness of µ(α)
f . The second theorem will be useful to express the p-adic integrals against µ(α)

f

in terms of p-adic integrals against Mazur’s Bernoulli measure.
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Theorem 2.1. Let f be an admissible function, and k ∈ Z≥1. Suppose that

sup
u∈Zp

{|f(y + u)− f(y)|p} = O(|yk−1|p) as |y|p →∞ (2.1)

Then |µ(α)
f |p is bounded, and so is a regularization of µf,1.

Proof. By definition we have

µ
(α)
f (a+ (pN )) = pN(k−1) lim

M→∞
pM(k−1)

pM−1∑
j=0

[
f

(
(a/pN ) + j

pM

)
− f

(
{αa/pN}+ j

αpM

)]
.

Put b = a/pN . So

{αb}+ j

αpM
=
αb− [αb] + j

αpM
=

b+

(
j − [αb]

α

)
pM

Since p - α, for a fixed M and any j ∈ {0, 1, ..., pM − 1}, there exists a unique j′ ∈ {0, 1, ..., pM − 1} such that
j′ ≡ αj + [αb] (mod pM ), so the mapping j 7→ j′ on the set {0, 1, 2, ..., pM − 1} is bijective. But then

b+ j

pM
− {αb}+ j′

αpM
=
b+ j

pM
−
b+

(
j′ − [αb]

α

)
pM

=

j −
(
j′ − [αb]

α

)
pM

∈ Zp.

So by hypothesis for large enough M we have∣∣∣∣f (b+ j

pM

)
− f

(
{αb}+ j′

αpM

)∣∣∣∣
p

≤ K
∣∣∣∣b+ j

pM

∣∣∣∣k−1
p

= K.pM(k−1)|b+ j|k−1p

for some K > 0. Now we distinguish two cases. First suppose that N = 0, so b = a ∈ Zp. But then since b+ j ∈ Zp
we have that

K.pM(k−1)|b+ j|k−1p ≤ K.pM(k−1) =⇒ |µ(Z∗p)|p ≤ lim
M→∞

|pM(k−1)|pK.pM(k−1) = K.

Now suppose that N ≥ 1. Since (a, p) = 1, we have |b|p > 1. But in this case |b+ j|p = |b|p and so∣∣∣∣f (b+ j

pM

)
− f

(
{αb}+ j′

αpM

)∣∣∣∣
p

≤ KpM(k−1)|b|k−1p = KpM(k−1)pN(k−1)

which implies that |µ(α)
f (a+ (pN ))|p ≤ K as desired.

Theorem 2.2. Let f be a function satisfying hypothesis of Theorem 2.1, and M ∈ Z≥1. Suppose that there exist k ∈ Z and
functions h(y) and T (y, u, v) depending on f such that for all y, u, v ∈ Qp with |y|p ≥ pM , |u− y|p < pM , |v − y|p < pM

and u− v ∈ Zp the following are satisfied;

i) f(y + u)− f(y + v) = (u− v)h(y) + T (y, u, v),

ii) The pointwise limit H(a) := lim
r→∞

pr(k−1)h(a/pr) exists and is bounded on Z∗p and

iii) |T (y, v, u)|p = O

(∣∣∣∣yk−2pM

∣∣∣∣
p

)
as |y|p →∞.

Then there exists K > 0 such that for all a and N ,

|µ(α)
f (a+ (pN ))−H(a)µα,1(a+ (pN ))|p ≤ K/pN

.
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Proof. We adopt the same notation of the proof of Theorem 2.1. We set y = (a/pN )/pM , u = j/pM and v =
(j′ − [αb])/(αpM ). So the hypothesis on y, u and v are clearly satisfied. Then

µ
(α)
f (a+ (pN )) = pN(k−1) lim

M→∞
pM(k−1)

pM−1∑
j=0

[
f

(
(a/pN ) + j

pM

)
− f

(
{αa/pN}+ j

αpM

)]

= lim
M→∞

p(M+N)(k−1)h(a/pM+N )

pM−1∑
j=0

j − (j′ − [αa/pN ])/α

pM
+ pN(k−1) lim

M→∞
pM(k−1)

pM−1∑
j=0

T (y, u, v)

= H(a)µα,1(a+ (pN )) + pN(k−1) lim
M→∞

pM(k−1)
pM−1∑
j=0

T (y, u, v).

Now we use the hypothesis iii) and have that

|µ(α)
f (a+ (pN ))−H(a)µα,1(a+ (pN ))|p =

∣∣∣∣∣∣pN(k−1) lim
M→∞

pM(k−1)
pM−1∑
j=0

T (y, u, v)

∣∣∣∣∣∣
p

≤ 1

pN(k−1) lim
M→∞

1

pM(k−1) p
MK|ak−2|pp(M+N)(k−2)

= K/pN

as desired.

An immediate consequence of Theorem 2.2 is the relation between integrals against µ(α)
f and Mazur’s measure

µα,1.

Corollary 2.1. Let f be given as in Theorem 2.2 and suppose that the corresponding function H(x) defined in Theorem 2.2 is
integrable against µα,1. Let g(x) be a continuous function on Z∗p. Then∫

Z∗p

g(x) dµ
(α)
f =

∫
Z∗p

g(x)H(x) dµα,1

.

Proof. By definition ∫
Z∗p

g(x) dµ
(α)
f = lim

N→∞
SN , where SN =

pN−1∑
a=0

g(a)µ
(α)
f (a+ (pN ))

∫
Z∗p

g(x)H(x) dµα,1 = TN , where TN =

pN−1∑
a=0

g(a)H(a)µα,1(a+ (pN ))

Now we see that

|SN − TN |p =

∣∣∣∣∣∣
pN−1∑
a=0

g(a)
[
µ
(α)
f (a+ (pN ))−H(a)µα,1(a+ (pN ))

]∣∣∣∣∣∣
p

≤ max
0≤a≤pN−1

∣∣∣g(a) [µ(α)
f (a+ (pN ))−H(a)µα,1(a+ (pN ))

]∣∣∣
p

But since g(x) is continuous on Zp it is also bounded, say g(x) ≤M . So by Theorem 2.2 there exists a constant K
such that

|SN − TN |p ≤
KM

pN
=⇒ |SN − TN |p → 0 as N →∞
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3. Examples

We devote this section to examples. We may omit some calculations for which many of them follow by
considering the power series expansion of logp(x).

Example 3.1. Let f(x) = xk (or any monic polynomial of degree k). Then

Fα(x) = lim
M→∞

pM(k−1)
pM−1∑
j=0

(
x+ j

αpM

)k
= α−k lim

M→∞

1

pM

pM−1∑
j=0

(x+ j)k

= α−k lim
M→∞

1

pM

pM−1∑
j=0

k∑
l=0

(
k

l

)
xk−ljl = α−k lim

M→∞

1

pM

k∑
l=0

(
k

l

)
xk−l

Bl+1(p
M )−Bl+1(0)

l + 1

= α−k
k∑
l=0

(
k

l

)
xk−l

1

l + 1
lim
M→∞

Bl+1(p
M )−Bl+1(0)

pM
= α−k

k∑
l=0

(
k

l

)
xk−l

1

l + 1

dBl+1(x)

dx

∣∣∣
x=0

= α−k
k∑
l=0

(
k

l

)
xk−lBl(0) = α−kBk(x)

So we have that
µ
(α)
f (a+ (pN )) = pN(k−1) [Bk(a/pN )− α−kBk({αa/pN})

]
.

Note that by Proposition 2.1, µ(α)
f is a p-adic distribution. We also see that

f(y + u)− f(y) = kuyk−1 +O(yk−2).

So for any u ∈ Zp and |y|p > 1, we obtain

|f(y + u)− f(y)|p ≤ |yk−1|p.

Hence f(x) satisfies the hypothesis of Theorem 2.1 and so µ(α)
f is a p-adic measure. Indeed µ(α)

f is the k-th Bernoulli
measure. We may go further and use Theorem 2.2. We compute that

h(y) = kyk−1, T (y, u, k) = yk−2 + (terms with lower degree in y)

so that f(x) satisfies the hypothesis of Theorem 2.2. Also H(x) = kxk−1, so by Corollary 2.1 we have that∫
Z∗p

g(x) dµα,k =

∫
Z∗p

kg(x)xk−1 dµα,1.

Example 3.2. Let f(x) = logp(x). Recall that logp(p) = 0. It is again easy to check that f(x) = logp(x) satisfies the
hypothesis of Theorem 2.1 with k = 0;

f(y + u)− f(y) = logp(y + u)− logp(y) = logp

(
1 +

u

y

)
=⇒ |f(y + u)− f(y)|p = |u/y|p ≤ |y−1|p

Now for the corresponding p-adic distribution µf,α we have that

µf,α(αU) =
1

pN
lim
M→∞

1

pM

pM−1∑
j=0

logp

(
{αa/pN}+ j

αpM

)

=
1

pN
lim
M→∞

pM−1∑
j=0

1

pM

(
logp

(
{αa/pN}+ j

pM

)
− logp(α)

)

= µf,1(αU)−
logp(α)

pN
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So we obtain that

µ
(α)
f (U) = µf,1(U)− µf,α(αU)

= µf,1(U)− µf,1(αU) +
logp(α)

pN
.

But this is exactly the same measure denoted by ν1,α which is the regularization of νG,1 in the notation of [4]. Also
we have that |µ(α)

f (U)|p ≤ 1 which follows as K = 1 in the notation of Theorem 2.1. Also in the notation of Theorem
2.2 we see that H(x) = 1/x.

Example 3.3. Now let f(x) = x logp x− x. Then

f(y + u)− f(y) = (y + u) logp(y + u)− (y + u)− y logp(y) + y

= y logp(1 + u/y) + u(logp(y + u)− 1)

The first term is bounded by 1. Now let y = 1/(vpr) where |v|p = 1 and r ∈ Z≥1. Then logp(y + u) = logp(1 + uvpr),
and so the second term is also bounded by 1. Hence we have k = 1 and K = 1 in Theorem 2.1. Then it follows that

µ
(α)
f (U) = µf,1(U)− µf,α(αU)

= µf,1(U)− 1

α
µf,1(αU) +

logp(α)

α

({
αa

pN

}
− 1

2

)
.

In this case we obtain the p-adic Gamma measure v0,α of J. Diamond [4]. Also if we carry on the calculations of
Theorem 2.2 with k = 1 we see that h(x) = H(x) = logp(x).
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