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Abstract 

In this paper, we are investigated the equilibrium points of difference equation 

n 1 n 1 n 2x x x A,    where A is a positive real number and the initial conditions are positive. We 

are also studied the local asymptotic stability of related difference equation. Particularly, we are 

examined the convergence of solutions of related equation.  
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ÜÇÜNCÜ DERECEDEN BİR FARK DENKLEMİNİN KARARLILIĞI 

ÜZERİNE 
 

Öz 

Bu çalışmada n 1 n 1 n 2x x x A     fark denkleminin A pozitif bir reel sayı ve başlangıç koşulları 

pozitif iken denge noktaları incelendi. Ayrıca ilgili fark denkleminin lokal asimptotik kararlılığı 

çalışıldı. Özellikle ilgili denklemin çözümlerinin yakınsaklığı incelendi.    
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1. Introduction and Preliminaries 

    On account of the fact that many mathematical models need to discrete variables, the difference 

equations known to be composed of discrete variables have been studied frequently by many 

mathematicians in recent years. Particularly, stability analysis and convergence of solutions of 

difference equations has been huge interest between researchers. 

   In [6], Kent et al investigated the boundedness of solutions, periodicity of solutions, and existence 

of unbounded solutions of following difference equation 

n 1 n n 1x x x 1.            (1) 

Additionally, in [10] Liu et al and in [19] Wang et al studied some properties of solutions of related 

difference equation. 

   In [2], Amleh et al handled the stability of solutions and existence of bounded solutions of 

difference equations  

 n 1 n n 1x x x .            (2) 

Moreover, in [15], Taşdemir et al studied existence of periodic solutions of Eq.(2). 

   In [7], Kent et al investigated the periodicity of solutions, existence of bounded or unbounded of 

solutions and stability of solutions of difference equation  

n 1 n 1 n 2x x x 1.     

   In this paper we investigate the convergence of solutions of following difference equations 

 n 1 n 1 n 2x x x A,             (3) 

where A is a positive real number and the initial conditions are positive. We also investigate the 

local asymptotic stability of difference equation (3). Particularly, we examine the convergence of 

solutions of related equation.  

Definition 1 A difference equation of order third is an equation of the form 

  n 1 n n 1 n 2x f x , x , x , n 0,1,...           (4) 

where f is a function that maps some set I3 into I. The set I is usually an interval of real numbers, 

or a union of intervals, or a discrete set such as the set of integers  ..., 1,0,1,... .   

   A solution of Eq.(4) is a sequence  n n 2
x




 that satisfies Eq.(4) for all n 0.   

   A solution of Eq.(4) that is constant for all n 2   is called an equilibrium solution of Eq.(4). If  
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nx x, for all n 2    

is an equilibrium solution of Eq.(4), then x  is called an equilibrium point, or simply an equilibrium 

of Eq.(4). 

Definition 2 (Linearized Equation) Suppose that the function f is continuously differentiable in 

some open neighborhood of an equilibrium point x.  Let 

 i

i

f
q x,x,..., x , for i 0,1,...,k

u


 


 

denote the partial derivative of  0 1 kf u ,u ,...,u  with respect to iu  evaluated at the equilibrium 

point x  of Eq.(4). 

   The equation  

n 1 0 n 1 n 1 k n kz q z q z ... q z , k 0,1,...,             (5) 

is called the linearized equation of Eq.(4) about the equilibrium point x.  

Definition 3 (Characteristic Equation) The equation  

k 1 k k 1
0 1 k 1 kq q ... q q 0 

               (6) 

is called the characteristic equation of Eq.(5) about x.  

Definition 4 (Stability) Let x  an equilibrium point of Eq.(4). 

   An equilibrium point x  of Eq.(4) is called locally stable if, for every 0  ; there exists 0   

such that if  n n 2
x




  is a solution of Eq.(4) with  

2 1 0x x x x x x ,          

then  

nx x , for all n 2.      

   An equilibrium point x  of Eq.(4) is called locally asymptotically stable if, it is locally stable, and 

if in addition there exists 0   such that if  n n 2
x




 is a solution of Eq.(4) with  

2 1 0x x x x x x ,          

then we have  



 

Araştırma                Taşdemir&Taşdemir/Kırklareli University Journal of Engineering and Science 6-2(2020) 132-141   

                      DOI: 10.34186/klujes.795061                                                        Geliş Tarihi:14.09.2020               Kabul Tarihi:31.12.2020 

 

On The Stability of A Third Order Difference Equation                                                                                          135 

n
n
lim x x.


   

   An equilibrium point x  of Eq.(4) is called a global attractor if, for every solution  n n 2
x




 of 

Eq.( 4), we have  

n
n
lim x x.


   

   An equilibrium point x  of Eq.(4) is called globally asymptotically stable if it is locally stable, 

and a global attractor. 

   An equilibrium point x  of Eq.(4) is called unstable if it is not locally stable.  

Theorem 5 (Clark Theorem see ([3], p.6)) Assume that 0 1 kq ,q ,...,q  are real numbers such that  

0 1 kq q ... q 1.     

Then all roots of Eq.(6) lie inside the unit disk.  

2. Main Results  

   Firstly, we find out the equilibrium points of Eq.(3). The next lemma gives the equilibrium points 

of related difference equation. 

Lemma 6 Eq.(3) has two equilibrium points such that  

 1
1 1 4A

x ,
2

 
          (7) 

 2
1 1 4A

x .
2

 
          (8) 

Lemma 7 The equilibrium points of Eq.(3) have three conditions as follows:  

i. If 
1

A
4

  then the equilibrium points 1x  and 2x  are both different and real numbers. 

ii. If 
1

A
4

  then the equilibrium points 1x  and 2x are equal and 1,2
1

x .
2

   

iii. If 
1

A
4

  then the equilibrium points 1x  and 2x  are complex numbers.  

Now, we investigate the local stability analysis of real equilbrium points of Eq.(3). Firstly, 

we examine the linearized equation of Eq.(3) about equilibrium point x.  
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Theorem 8 The linearized equation of Eq.(3) about equilibrium point x  is 

n 1 n 1 n 2z xz xz 0.             (9) 

 Proof. We consider Eq.(4). Thus we have the following partial derivatives at the equilibrium point 

x  of Eq.(4):  

  0

n

f
q x, x, x 0,

x


 


 

  1

n 1

f
q x, x, x x,

x 


 


 

 2

n 2

f
q x,x,x x.

x 


 


 

Therefore we obtain the linearized equation of Eq.(3) about equilibrium point x  is 

n 1 n 1 n 2z xz xz 0      as desired.    

Lemma 9 The characteristic equation of Eq.(9) about equilibrium point x  is  
3 x x 0.             (10) 

 

   Note that the next theorem shows that the equilibrium point 1x  of Eq.(3) is unstable. 

Theorem 10 If 
1

A
4

  then the equilibrium point 1
1 1 4A

x
2

 
  of Eq.(3) is unstable.  

Proof. The characteristic equation of Eq.(9) about equilibrium point 1
1 1 4A

x
2

 
  is  

 
3 1 1 4A 1 1 4A

0.
2 2

   
     

Hence we have  

   32 1 1 4A 1 1 4A 0.         

We consider a polynomial such that  

    3P( ) 2 1 1 4A 1 1 4A .          

Thus we obtain the followings: 

 P(1) 2 1 4A 0,     

P(1 1 4A) 0.    

Therefore P(1) 0 P(1 1 4A)     and we have P( ) 0   such that 1 1 1 4A.      So, 

absolute value of at least one root of characteristic equation is greater than 1. Hence, equilibrium 

point 1
1 1 4A

x
2

 
  of Eq.(3) are unstable.    

   The following theorem shows that the equilibrium point 2x  of Eq.(3) is locally asymptotically 

stable. 
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Theorem 11 Assume that 
1

A
4

 , then the equilibrium point 2
1 1 4A

x
2

 
  of Eq.(3) is locally 

asymptotically stable.  

Proof. The characteristic equation of Eq.(9) about equilibrium point 2
1 1 4A

x
2

 
  is  

 
3 1 1 4A 1 1 4A

0.
2 2

   
     

Now we consider the Clark Theorem (see Theorem 5). According to this Theorem, if 

0 1 kq q ... q 1     then absolute values of all roots of the characteristic equation of Eq.(9) about 

equilibrium point x  is less than 1. Let 
1

A .
4

  Hence  

0 1 2

1 1 4A 1 1 4A
q q q 0 1 1 4A .

2 2

   
         

If 
1

A ,
4

  then we obtain 0 1 1 4A 1.     So  

 0 1 2q q q 1 1 4A 1.       

According to Clark Theorem, the equilibrium point  of Eq.(3) is locally 

asymptotically stable.   

  

Lemma 12 Let A is a positive real number and the initial conditions are positive. Then 

 nx 0,   for all n 2.   

Lemma 13 Let     2
f C 0, 0,     is a function such that  f x, y xy A.   If 2 1x x x   

then  f x, x x.   

   The following theorem shows that every solutions of Eq.(11) with  2 12 1 0x ,x ,x x ,x    

converges to equilibrium point 2x .  

Theorem 14 Assume that 
1

A
4

  and     2
f C 0, 0,     increases in both variables and 

that the difference equation  

 n 1 n 1 n 2x f x , x , n 0,1,...           (11) 

has two consecutive equilibrium points 1x  and 2x  with 2 1x x .  If the initial conditions in  2 1x ,x  

then every solutions  n n 2
x




 of Eq.(11) with  2 12 1 0x ,x ,x x ,x    converges to equilibrium 

point 2x .  

2
1 1 4A

x
2

 

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Proof. Firstly we know from Lemma 13,  f x, x x,  for 2 1x x x .   Then we choose a number 

0t  such that  0 2 1 0t max x ,x , x   and let  n n 0
t




 be the unique solution of the difference 

equation  

  2
n 1 n n nt f t , t t A, n 0,1,...            (12) 

with initial condition 𝑡0. Hence, we have from Eq.(11) and (12),  

   1 1 2 0 0 1 0x f x ,x f t , t t t ,      

   2 0 1 0 0 1 0x f x ,x f t , t t t ,     

   3 1 0 0 0 1 0x f x , x f t , t t t ,     

   4 2 1 1 1 2 1 0x f x , x f t , t t t t ,      

 
Therefore we obtain that  

 n n
n n
lim x lim t .
 

  

Now we assume that n
n
lim t t,


  then we have from (12), 1 2t x or t x .   Additionally we know 

that 2 1x x  and  n n 0
t




 is a decreasing sequence. So, nt  converges to 2x  as desired.    

Theorem 15 If 
1

A
4

  then the equilibrium point 
1

x
2

  of Eq.(3) is unstable.  

Proof. Now we consider the characteristic equation of Eq.(9) about equilibrium point 
1

x .
2

  Thus 

we have  

3 1 1
0.

2 2
              (13) 

Therefore we obtain the three roots of characteristic equation (13) as follows:  

 1 2,3

1 i
1, .

2


     

Hence, we get 2,3 11 .     So, equilibrium point 
1

x
2

  of Eq.(3) is unstable.    

Example 16 Let A 0.2  and the initial values 2 1x 0.71, x 0.65    and 0x 0.68.  Then, every 

solutions of Eq.(3) converges to equilibrium point 2x 0.27639.  The following figure shows the 

first 100 terms of Eq.(3) and verifies to results of Theorem 14. 
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Figure 1 Plot of Eq.(3). 

3. Conclusion 

   In this paper, we examine the equilibrium points of Eq.(3). We also find out that if 
1

A ,
4

  then 

the equilibrium point 1x  of Eq.(3) is unstable. Moreover, we reveal that if 
1

A
4

 , then the 

equilibrium point 2x  of Eq.(3) is locally asymptotically stable and every solutions of Eq.(11) with 

 2 12 1 0x ,x ,x x ,x    converges to equilibrium point 2x .  Additionally, we obtain that if 
1

A
4

  

then the equilibrium point 
1

x
2

  of Eq.(3) is unstable. Finally we give an example for verifies to 

our results.  
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