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Abstract
Let f, g be positive integers such that f > g, gcd(f, g) = 1 and f ̸≡ g (mod 2). In 1993,
N. Terai conjectured that the equation x2 + (f2 − g2)y = (f2 + g2)z has only one positive
integer solution (x, y, z) = (2fg, 2, 2). This is a problem that has not been solved yet. In
this paper, using elementary number theory methods with some known results on higher
Diophantine equations, we prove that if f = 2rs and g = 1, where r, s are positive integers
satisfying 2 - s, r ≥ 2 and s < 2r−1, then Terai’s conjecture is true.
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1. Introduction
Let Z,N be the sets of integers and positive integers, respectively. Let (a, b, c) be a

primitive Pythagorean triple with 2 | a. Then we have
a = 2fg, b = f2 − g2, c = f2 + g2 f, g ∈ N,

f > g, gcd(f, g) = 1, f ̸≡ g (mod 2).
(1.1)

Many of the unsolved problems in number theory are related to the properties of such
triples. In 1993, N. Terai [11] proposed the following conjecture about the generalized
Ramanujan-Nagell equation with primitive Pythagorean triples.

Conjecture 1.1. Let (a, b, c) be a primitive Pythagorean triple with 2 | a. Then the
equation

x2 + by = cz (1.2)
has only one solution (x, y, z) = (a, 2, 2).

This is a problem that is far from resolved. So far it has only been proved for a few
special cases, mainly where b or c is an odd prime power (see Section 2.3 of [7]). In
practical terms, Conjecture 1.1 has been verified in the following cases:

(i) (N. Terai [11]) b ≡ 1 (mod 4), b2 + 1 = 2c, b and c are odd primes satisfying some
conditions.
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(ii) (X.-G. Chen and M.-H. Le [2]) b ̸≡ 1 (mod 16), b2+1 = 2c, b and c are odd primes.
(iii) (M.-H. Le [5]) b ≡ ±3 (mod 8), b > 8 · 106, c is an odd prime power.
(iv) (P.-Z. Yuan [12]; P.-Z. Yuan and J.-B. Wang [13]) b ≡ ±3 (mod 8), c is an odd

prime power.
(v) (M.-H. Le [6]; J.-Y. Hu and H. Zhang [4]) b ≡ 7 (mod 8), b or c is an odd prime

power.
Recently, a survey paper on the conjecture of Terai has been published by G. Soydan, M.
Demirci, I.N. Cangül and A. Togbé (see [10] for the details about this conjecture).

By (1.1), (1.2) can be expressed as
x2 + (f2 − g2)y = (f2 + g2)z, x, y, z ∈ N. (1.3)

In this paper, using elemantary number theory methods with some known results on higher
Diophantine equations, we deal with (1.3) in a case where neither b or c is a prime power.
We prove the following result:
Theorem 1.2. If f, g satisfy

f = 2rs, g = 1, r, s ∈ N, 2 - s, r ≥ 2, s < 2r−1, (1.4)
then (1.3) has only one solution (x, y, z) = (2r+1s, 2, 2).

Thus it can be seen that if f, g satisfy (1.4), then Conjecture 1.1 is true.

2. Preliminaries
Let n be a positive integer.

Lemma 2.1 (Theorems 1.75 and 1.76 of [8]). For any complex numbers α and β, we have

αn + βn =
[n/2]∑
i=0

(−1)i
[
n
i

]
(α + β)n−2i(αβ)i.

where [
n
i

]
= (n − i − 1)!n

(n − 2i)!i!
∈ N, i = 0, 1 · · · , [n/2], (2.1)

[n/2] is the integer part of n/2.
Lemma 2.2 (The equality (2.35) of [3]). If 2 - n, then

(n−1)/2∑
i=0

(−1)i

(
n

2i

)
= (−1)(n2−1)/82(n−1)/2.

Lemma 2.3 ([9]). Every solution (X, Y, Z) of the equation
X2 + Y 2 = Zn, X, Y, Z ∈ N, gcd(X, Y ) = 1, 2 | Y (2.2)

can be expressed as
Z = u2 + v2, u, v ∈ N gcd(u, v) = 1, 2 | v,

X + Y
√

−1 = λ1(u + λ2v
√

−1)n λ1, λ2 ∈ {1, −1}.

Lemma 2.4 ([1]). If n ≥ 4, then the equation
X4 + Y 2 = Zn, X, Y, Z ∈ N, gcd(X, Y ) = 1 (2.3)

has no solutions.
Lemma 2.5. Let r, s be positive integers satisfying 2 - s and s < 2r−1. Then the equation

22rs2 + 1 = u2 + v2, u, v ∈ N, gcd(u, v) = 1, 2r | v (2.4)
has only the solution

(u, v) = (1, 2rs). (2.5)
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Proof. We now assume that (u, v) is a solution of (2.4). Since 2r | v, we have 2 - u and
v = 2rt, t ∈ N. (2.6)

Substitute (2.6) into (2.4), we get

22r(s2 − t2) = u2 − 1. (2.7)
When u = 1, by (2.7), we have t = s. Hence, by (2.6), we get (2.5).
When u > 1, let ζ = (−1)(u−1)/2. Then u − ζ and u + ζ are positive integers satisfying

u − ζ ≡ 0 (mod 4), u + ζ ≡ 2 (mod 4). (2.8)
Since u2 − 1 = (u − ζ)(u + ζ), by (2.7) and (2.8), we get u − ζ ≡ 0 (mod 22r−1). So we
have

u = 22r−1ℓ + ζ, ℓ ∈ N. (2.9)
Substitute (2.9) into (2.7), we get

s2 − t2 = ℓ(22r−2ℓ + ζ). (2.10)
Therefore, by (2.10), we have

s2 − 1 ≥ s2 − t2 ≥ 22r−2 + ζ ≥ 22r−2 − 1,

whence we get s ≥ 2r−1, a contradiction. Thus, (2.4) has only the solution (2.5). The
lemma is proved. �

3. Proof of Theorem 1.2
We now assume that (x, y, z) is a solution of (1.3), and f, g satisfy (1.4). Then we have

x2 + (22rs2 − 1)y = (22rs2 + 1)z, x, y, z ∈ N. (3.1)
Since 22rs2 − 1 and 22rs2 + 1 are both odd, by (3.1), we get

2 | x. (3.2)
Further, since 22rs2 − 1 ≡ −1 (mod 4), 22rs2 + 1 ≡ 1 (mod 4) and x2 ≡ 0 (mod 4) by
(3.2), we get from (3.1) that

2 | y. (3.3)
Also, by (3.1) and (3.3), we have (22rs2 + 1)z > (22rs2 − 1)y ≥ (22rs2 − 1)2 > (22rs2 + 1),
whence we get

z ≥ 2. (3.4)
By (3.1), (3.3) and (3.4), we have

x2 = (22rs2 + 1)z − (22rs2 − 1)y

= 22rs2

(z + y) + 22rs2

 z∑
i=2

(
z

i

)
(22rs2)i−2 −

y∑
j=2

(−1)j

(
y

j

)
(22rs2)j−2

 .
(3.5)

We see from (3.5) that 2rs | x and(
x

2rs

)2
≡ z + y (mod 22rs2).

So we have
x = 2rsx1, x1 ∈ N (3.6)

and
x2

1 ≡ z + y (mod 4). (3.7)
On the other hand, we see from (3.1), (3.2) and (3.3) that (2.2) has a solution

(X, Y, Z) = ((22rs2 − 1)y/2, x, 22rs2 + 1) (3.8)
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for n = z. Applying Lemma 2.3 to (3.8), we have

22rs2 + 1 = u2 + v2, u, v ∈ N, gcd(u, v) = 1, 2 | v (3.9)
and

(22rs2 − 1)y/2 + x
√

−1 = λ1(u + λ2v
√

−1)z, λ1, λ2 ∈ {1, −1}. (3.10)
When 2 - z, we get from (3.10) that

(22rs2 − 1)y/2 = u

∣∣∣∣∣∣
(z−1)/2∑

i=0
(−1)i

(
z

2i

)
uz−2i−1v2i

∣∣∣∣∣∣ (3.11)

and

x = v

∣∣∣∣∣∣
(z−1)/2∑

i=0
(−1)i

(
z

2i + 1

)
uz−2i−1v2i

∣∣∣∣∣∣ . (3.12)

Since 2 | v and 2 - z, we have 2 - u and

2 -
(z−1)/2∑

i=0
(−1)i

(
z

2i + 1

)
uz−2i−1v2i. (3.13)

Hence, by (3.6), (3.12) and (3.13), we get
2r | v (3.14)

Therefore, by Lemma 2.5, we deduce from (3.9) and (3.14) that u and v satisfy (2.5).
Substitute (2.5) into (3.11), we have

(22rs2 − 1)y/2 =

∣∣∣∣∣∣
(z−1)/2∑

i=0
(−1)i

(
z

2i

)
(22rs2)i

∣∣∣∣∣∣ . (3.15)

Since y/2 ≥ 1 and 22rs2 ≡ 1 (mod 22rs2 − 1), by (3.15), we get
(z−1)/2∑

i=0
(−1)i

(
z

2i

)
≡ 0 (mod 22rs2 − 1). (3.16)

Further, by Lemma 2.2, we obtain from (3.16) that

2(z−1)/2 ≡ 0 (mod 22rs2 − 1). (3.17)
But, since 22rs2 − 1 is an odd integer with 22rs2 − 1 > 1, (3.17) is impossible. So, we have

2 | z. (3.18)
We see from (3.1), (3.2),(3.3) and (3.18) that (2.2) has a solution

(X, Y, Z) =
(
(22rs2 − 1)y/2, x, (22rs2 + 1)z/2) (3.19)

for n = 2. Applying Lemma 2.3 to (3.19), we get

(22rs2 − 1)y/2 = U2 − V 2, x = 2UV, (22rs2 + 1)z/2 = U2 + V 2,

U, V ∈ N, U > V gcd(U, V ) = 1, U ̸≡ V (mod 2).
(3.20)

Further, by (3.20), we have

(22rs2 − 1)y = (U2 − V 2)2 ≥ (U + V )2 > U2 + V 2 = (22rs2 + 1)z/2 > (22rs2 − 1)z/2,

whence we get
y >

z

2
. (3.21)

By (3.3), (3.7) and (3.18), we have
2 | x1. (3.22)
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Hence, by (3.7) and (3.22), we get
z + y ≡ 0 (mod 4). (3.23)

If 4 | z, then from (3.23) we get 4 | y. It follows from (3.1) that (2.3) has a solution
(X, Y, Z) = ((22rs2 − 1)y/4, x, 22rs2 + 1) for n = z. But, since 4 | z and z ≥ 4, by Lemma
2.4, it is impossible. So we have

z ≡ y ≡ 2 (mod 4). (3.24)
Since 2 | z, by (3.10), we have

(22rs2 − 1)y/2 =

∣∣∣∣∣∣
z/2∑
i=0

(−1)i

(
z

2i

)
uz−2iv2i

∣∣∣∣∣∣ (3.25)

and

x = uv

∣∣∣∣∣∣
z/2−1∑

i=0
(−1)i

(
z

2i + 1

)
uz−2i−2v2i

∣∣∣∣∣∣ . (3.26)

Since 2 - u, 2 | v and 2 || z by (3.24), we have

2 ||
z/2−1∑

i=0
(−1)i

(
z

2i + 1

)
uz−2i−2v2i. (3.27)

Hence, by (3.6), (3.22), (3.26) and (3.27), we get (3.14). Therefore, by Lemma 2.5, we see
from (3.9) and (3.14) that u and v satisfy (2.5).

Substitute (2.5) into (3.25), we have

(22rs2 − 1)y/2 =

∣∣∣∣∣∣
z/2∑
i=0

(−1)i

(
z

2i

)
(22rs2)i

∣∣∣∣∣∣ . (3.28)

Let
θ = 1 + 2rs

√
−1, θ̄ = 1 − 2rs

√
−1. (3.29)

By (3.28) and (3.29), we get

(22rs2 − 1)y/2 = 1
2

∣∣∣θz + θ̄z
∣∣∣ . (3.30)

Further let
α = θ2, β = θ̄2. (3.31)

By (3.29) and (3.31), we have
α + β = −2(22rs2 − 1), αβ = (22rs2 + 1)2. (3.32)

Since z/2 is odd by (3.24), applying Lemma 2.1 to (3.30), we get from (3.32) that

(22rs2 − 1)y/2−1 =
∣∣∣∣∣αz/2 + βz/2

α + β

∣∣∣∣∣
=

∣∣∣∣∣∣
(z/2−1)/2∑

j=0
(−1)j

[
z/2
j

]
(−2(22rs2 − 1))z/2−2j−1(22rs2 + 1)2j

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(z/2−1)/2∑

j=0
(−1)j

[
z/2

(z/2 − 1)/2 − j

]
(4(22rs2 − 1)2)j(22rs2 + 1)z/2−2j−1

∣∣∣∣∣∣ . (3.33)

If y > 2, then we have
y ≥ 6 (3.34)

by (3.24). Since [
z/2

(z/2 − 1)/2

]
= z

2
(3.35)
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by (2.1), we see from (3.33), (3.34) and (3.35) that
z

2
≡ 0 (mod 22rs2 − 1). (3.36)

Let p be an odd prime divisor of 22rs2 − 1, and let

pγ || z

2
, pδ || 22rs2 − 1, pδj || 2j + 1, j ≥ 1. (3.37)

Then we have

δj ≤ log(2j + 1)
log p

≤ j, j ≥ 1. (3.38)

By (2.1), if 2 - n, then[
n

(n − 1)/2 − j

]
= n

(
(n − 1)/2 + j

2j

) 1
2j + 1

, j = 0, · · · ,
n − 1

2
. (3.39)

Hence, by (3.35), (3.37),(3.38) and (3.39), we get

pγ ||
[

z/2
(z/2 − 1)/2

]
(22rs2 + 1)z/2−1 (3.40)

and [
z/2

(z/2 − 1)/2 − j

]
(4(22rs2 + 1)2)j(22rs2 + 1)z/2−2j−1

≡ z

2
(22rs2 + 1)z/2−2j−1

(
(z/2 − 1)/2 + j

2j

) 4j(22rs2 − 1)2j

2j + 1

≡ 0 (mod pγ+1), j = 1, · · · ,
z/2 − 1

2
. (3.41)

Therefore, by (3.33), (3.37), (3.40) and (3.41), we obtain

(y

2
− 1)δ = γ. (3.42)

Taking p through over all the distinct prime divisors of 22rs2 − 1, by (3.37) and (3.42), we
have

z

2
≡ 0 (mod (22rs2 − 1)y/2−1),

whence we get
z

2
≥ (22rs2 − 1)y/2−1. (3.43)

The combination of (3.21) and (3.43) yields

y > (22rs2 − 1)y/2−1. (3.44)

But, by (3.34), (3.44) is false. So we have y = 2.

Since y = 2, by (3.18) and (3.21), we get z = 2. Thus, by (3.1), (x, y, z) = (2r+1s, 2, 2)
is the unique solution of (1.3). The theorem is proved.
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