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Abstract

Let f, g be positive integers such that f > ¢, ged(f,g) =1 and f #Z ¢g (mod 2). In 1993,
N. Terai conjectured that the equation x + (f2 — ¢%)¥ = (f? + ¢°)* has only one positive
integer solution (x,y,2) = (2fg,2,2). This is a problem that has not been solved yet. In
this paper, using elementary number theory methods with some known results on higher
Diophantine equations, we prove that if f = 2"s and g = 1, where r, s are positive integers
satisfying 21 s, r > 2 and s < 2", then Terai’s conjecture is true.
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1. Introduction

Let Z,N be the sets of integers and positive integers, respectively. Let (a,b,c) be a
primitive Pythagorean triple with 2 | a. Then we have

a:2fgv b:f2_927 C:f2+92 f7g€N¢
f>g, ged(f,g)=1 f#g (mod2).

Many of the unsolved problems in number theory are related to the properties of such
triples. In 1993, N. Terai [11] proposed the following conjecture about the generalized
Ramanujan-Nagell equation with primitive Pythagorean triples.

(1.1)

Conjecture 1.1. Let (a,b,c) be a primitive Pythagorean triple with 2 | a. Then the
equation

z? + b = ¢ (1.2)
has only one solution (z,y,z) = (a,2,2).

This is a problem that is far from resolved. So far it has only been proved for a few
special cases, mainly where b or ¢ is an odd prime power (see Section 2.3 of [7]). In
practical terms, Conjecture 1.1 has been verified in the following cases:

(i) (N. Terai [11]) b=1 (mod 4), b> + 1 = 2¢, b and ¢ are odd primes satisfying some
conditions.
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(iii) (M.-H. Le [5]) b= 43 (mod 8), b > 8- 10%, ¢ is an odd prime power.

(iv) (P.-Z. Yuan [12]; P.-Z. Yuan and J.-B. Wang [13]) b = £3 (mod 8), ¢ is an odd
prime power.

(v) (M.-H. Le [6]; J.-Y. Hu and H. Zhang [4]) b =7 (mod 8), b or ¢ is an odd prime

power.

Recently, a survey paper on the conjecture of Terai has been published by G. Soydan, M.
Demirci, I.N. Cangiil and A. Togbé (see [10] for the details about this conjecture).
By (1.1), (1.2) can be expressed as

2+ (fP—g*) =(f"+¢°% zy,z €N, (1.3)

In this paper, using elemantary number theory methods with some known results on higher
Diophantine equations, we deal with (1.3) in a case where neither b or ¢ is a prime power.
We prove the following result:

Theorem 1.2. If f, g satisfy
f=2"s,g=1,rs€eN, 2ts, r>2 s<21 (1.4)
then (1.3) has only one solution (z,y, z) = (2"1s,2,2).
Thus it can be seen that if f, g satisfy (1.4), then Conjecture 1.1 is true.
2. Preliminaries

Let n be a positive integer.

Lemma 2.1 (Theorems 1.75 and 1.76 of [8]). For any complex numbers o and /3, we have
[n/2]

a4 8" = 3 (1) '] (a+ 5 Pap)'
=0
where 1
[?]:WGN, i=0,1-[n/2], (2.1)

[n/2] is the integer part of n/2.
Lemma 2.2 (The equality (2.35) of [3]). If2{n, then

(n=1)/2
S (1) = (g
(3

i=0
Lemma 2.3 ([9]). Every solution (X,Y,Z) of the equation
X24Y?=27" XY, Z€N, ged(X,Y)=1, 2|Y (2.2)

can be expressed as
Z =u® 4%, u,v €N ged(u,v) =1, 2| v,
X 4+ Y V=1 = M(u+ AovV=1)" A\, \p € {1,-1}.
Lemma 2.4 ([1]). If n > 4, then the equation
X*4Y?2=2" X,Y,Z€N, ged(X,Y) =1 (2.3)
has no solutions.
Lemma 2.5. Let r, s be positive integers satisfying 21 s and s < 2"~1. Then the equation
2275?41 =u? + 0%, u,v €N, ged(u,v) =1, 2" |v (2.4)

has only the solution
(u,v) = (1,2"s). (2.5)
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Proof. We now assume that (u,v) is a solution of (2.4). Since 2" | v, we have 2 { u and
v=2"t teN. (2.6)
Substitute (2.6) into (2.4), we get
22 (s? — %) = u? — 1. (2.7)
When u = 1, by (2.7), we have t = s. Hence, by (2.6), we get (2.5).
When v > 1, let ¢ = (=1)®=D/2, Then u — ¢ and u + ¢ are positive integers satisfying
u—C=0 (mod4), u+¢=2 (mod4). (2.8)

Since u? — 1 = (u — ¢)(u + ¢), by (2.7) and (2.8), we get u — ¢ = 0 (mod 22"71). So we
have

u=2""Y+¢ ¢eN. (2.9)
Substitute (2.9) into (2.7), we get
s — 2 =027 20 + Q). (2.10)

Therefore, by (2.10), we have

Y

whence we get s > 2"71 a contradiction. Thus, (2.4) has only the solution (2.5). The
lemma is proved. O

3. Proof of Theorem 1.2
We now assume that (x,y, z) is a solution of (1.3), and f, g satisfy (1.4). Then we have

24+ (272 1)V = (2% +1)%, z,y,2z € N. (3.1)
Since 2%7s? — 1 and 2?"s? + 1 are both odd, by (3.1), we get
2| . (3.2)

Further, since 22"s? — 1 = —1 (mod 4), 22’s> +1 = 1 (mod 4) and 2% = 0 (mod 4) by
(3.2), we get from (3.1) that

2 y. (3.3)
Also, by (3.1) and (3.3), we have (22752 +1)% > (22752 —1)¥ > (22752 — 1)? > (2?52 + 1),
whence we get

) (3.4)

By (3.1), (3.3) and (3.4), we have
_ (227"82 + 1)2 o (22r82 o 1)y

_ 227"52 ((Z+y) +22r52 (i <Z> 221" 2 i ( > 22r 2) 2)) . (35)
i—2 \! =2

We see from (3.5) that 2"s |  and

z \? 2r 2
(27’3> =z+y (mod 24s%).

So we have
x=2"sxy, xr1 €N (3.6)
and
i =z+y (mod 4). (3.7)
On the other hand, we see from (3.1), (3.2) and (3.3) that (2.2) has a solution

(X,Y,Z) = ((2¥s* —1)¥/2,2,2%s® + 1) (3.8)
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for n = z. Applying Lemma 2.3 to (3.8), we have
27?2 11 =u? 402 uw,veN, ged(u,v) =1, 2| v (3.9)
and
(22752 — 1Y% 4 2v/=1 = A (u + AavvV—1)%, A, Ag € {1, -1} (3.10)
When 21z, we get from (3.10) that

(2—1)/2
(22rs — 1)/ =y Z (—1)¢ (;) 212 (3.11)
i=0 !
and
(ziﬂ i~ 2i—1,2
rT=0 (—1)Z< _ ) A P (3.12)
= 2i+1
Since 2 | v and 2 { z, we have 2 { u and
(2—1)/2 - bl 2
21 Z (2@' N 1) w0 (3.13)
Hence, by (3.6), (3.12) and (3.13), we get
2 | v (3.14)

Therefore, by Lemma 2.5, we deduce from (3.9) and (3.14) that w and v satisfy (2.5).
Substitute (2.5) into (3.11), we have

(2—1)/2
(2252 — 1)v/2 = Y (- ( ) (227 2 (3.15)
i=0
Since y/2 > 1 and 2?"s? = 1 (mod 2?"s? — 1), by (3.15), we get
(=2
Z; (—1)2<2i> =0 (mod 2%"s* —1). (3.16)
Further, by Lemma 2.2, we obtain from (3.16) that
2=0/2 =0 (mod 2%"s* — 1). (3.17)
But, since 22”52 — 1 is an odd integer with 22"s?> — 1 > 1, (3.17) is impossible. So, we have
2] z. (3.18)
We see from (3.1), (3.2),(3.3) and (3.18) that (2.2) has a solution
(X,Y,2Z) = ((2%s* — 1)¥/2, 2, (2% s> + 1)*/?) (3.19)
for n = 2. Applying Lemma 2.3 to (3.19), we get
(2% — 1)W1 =U? - V2 z =20V, (27s* +1)72 =U? +V?, (3.20)

UVeN U>V ged(U,V)=1, U#V (mod 2).
Further, by (3.20), we have
27— 1) = (U= V2> (U4 V) > U+ V2= (277 +1)7% > (2% — 1)*/2,

whence we get

z
—. 21
y> 3 (3.21)

By (3.3), (3.7) and (3.18), we have
2| a1. (3.22)
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Hence, by (3.7) and (3.22), we get
z4+y=0 (mod4). (3.23)
If 4 | z, then from (3.23) we get 4 | y. It follows from (3.1) that (2.3) has a solution
(X,Y,Z) = ((22"s> — 1)¥/* x,2%"s% +- 1) for n = 2. But, since 4 | z and z > 4, by Lemma
2.4, it is impossible. So we have
z=y=2 (mod 4). (3.24)
Since 2 | z, by (3.10), we have

z/2
92r g2 _ 1)/2 — )i B )22 3.95
st = (5 e (3.25)
and
z/2—1 .
_ 1y 2202, 2| 9
T =uvw ;( )<2i+1>u v (3.26)
Since 2t u, 2 | v and 2 || z by (3.24), we have
z/2—1 .
9 _1)i 2=2i-2,2i 9
I3 )QV+JU v (3.27)

Hence, by (3.6), (3.22), (3.26) and (3.27), we get (3.14). Therefore, by Lemma 2.5, we see
from (3.9) and (3.14) that w and v satisfy (2.5).
Substitute (2.5) into (3.25), we have

z/2
92rg2 _ 1)/2 — —1yi F ) (92rs2)i| 9
(275" = 1) ;()%(S) (3.28)
Let -
0=1+2"sv/—1, 6=1—-2"sy/—1. (3.29)
By (3.28) and (3.29), we get
1 _
(2752 —1)v/2 = 5|07+ 0% (3.30)
Further let -
a=0% p=6% (3.31)
By (3.29) and (3.31), we have
a+B=-212%s*—1), af = (2%"s* + 1)°. (3.32)
Since z/2 is odd by (3.24), applying Lemma 2.1 to (3.30), we get from (3.32) that
(@2 _ i1 = | 2B
a+f
(2/2-1)/2 T2/2 ‘ ‘
_ Z (71)3 { ] ] (72(227482 o 1))z/2—2]—1(22r82 + 1)2]
j=0 J
e j z/2 2r 2 2\j (927 .2 2-2j-1
=| > (-1 [(2/2_ 1)/2—3'] (4027 s? —1)2)7(2%s% +1)*/27271 | (3.33)
j=0
If y > 2, then we have
y=>06 (3.34)
by (3.24). Since
z/2 _z
el = (3:39)
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by (2.1), we see from (3.33), (3.34) and (3.35) that

=0 (mod 2%"s% —1). (3.36)

[NCNIRN

Let p be an odd prime divisor of 22"s? — 1, and let
z . . .
PG 128 =1 P (2541, 5 > 1 (3.37)
Then we have
log(2j + 1
;< B sy (3.38)
log p

By (2.1), if 2 { n, then

o= (T ) i T e

Hence, by (3.35), (3.37),(3.38) and (3.39), we get

z/2

P | {(2/2—1)/2] (27752 4 1)7/21 (3.40)

and
z/2
(2/2=1)/2—

Z(227’82 + 1)z/2—2j—1 ((2’/2 —1)/2 +j> 4j<22T32 - 1)2j
27 2j+1

] (4(227'52 + 1)2)j(22rs2 + 1)2/272j71

D |

2—-1
=0 (modp’™), j=1,-- ,Z/ SR (3.41)

Therefore, by (3.33), (3.37), (3.40) and (3.41), we obtain

(% —1)6=1. (3.42)
Taking p through over all the distinct prime divisors of 22752 — 1, by (3.37) and (3.42), we

have

g =0 (mod (2%s* — 1)y/2_1),
whence we get
% > (22rg2 — 1)¥/271, (3.43)
The combination of (3.21) and (3.43) yields
y > (2752 —1)v/2 71, (3.44)

But, by (3.34), (3.44) is false. So we have y = 2.
Since y = 2, by (3.18) and (3.21), we get z = 2. Thus, by (3.1), (z,y,2) = (271!s,2,2)

is the unique solution of (1.3). The theorem is proved.
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