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Abstract

The fractional Fourier transform is a generalization of the classical Fourier transform
through an angular parameter «. This transform uses in quantum optics and quantum
wave field reconstruction, also its application provides solving some differrential equations
which arise in quantum mechanics. The aim of this work is to discuss compact and

non-compact embeddings between the spaces Ay (Rd> which are the set of functions

in LL (Rd) whose fractional Fourier transform are in L (Rd). Moreover, some relevant
counterexamples are indicated.
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1. Introduction

Throughout this article, we study on R?. For any function f : R¢ — C, the translation
and modulation operators are defined as Ty, f (t) = f(t—y) and M,f (t) = e™“'f (t)

for all y,w € R?, respectively [18]. C¢ (Rd> denotes the space of continuous complex

function on R¢ whose support is compact, and also Cp (]Rd) denotes the space of continuous

complex functions on RY which vanish at infinity [17]. Besides we write the Lebesgue
space (Lp (Rd) , H.Hp), for 1 < p < oo. A weight (Beurling weight) function w on R?
is a measurable and locally bounded function that satisfies w (z) > 1 and w (z +y) <

w (z)w (y) (submultiplicative, [11]) for all z,y € RY. Troughout the article we consider
Beurling weights. We define, for 1 < p < oo,

h, (RY) = { | fw e 7 (r%) }.
It is well known that LP (Rd) is a Banach space under the norm | f{|, ,, = [[fw]|, [16].
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Let w1 and wy be two weight functions. We say that w; < ws if there exisAts ¢ > 0, such
that wy (z) < cws (2) for all x € R?, [9]. We define the Fourier transform f (or Ff) of a
function f € L (R) as

+o00
Flw) = Ff(w) = \/12? / F(t)e=tdy.

The fractional Fourier transform was first studied by Wiener [20] in 1929. In [20], this
new transformation has been viewed as a generalization of the Fourier transform. The
importance of this transformation has been understood by Namias’ work [14]. Namias
used the fractional Fourier transform as a tool for solving ordinary and partial differential
equations arising in quantum mechanics. McBride and Kerr [13], using the results of
Namias, described this transformation in the Schwartz space and examined its properties.
This transform has many applications in signal processing, optics, filtering and time-
frequency analysis [1,2,6,15]. The fractional Fourier transform is a generalization of the
Fourier transform through an angle parameter « and can be considered as a rotation by
an angle « in the time-frequency plane. The fractional Fourier transform with angle « of
a function f € L' (R) is defined by

+oo
Tof (W) = [ Ka(u,0)f(0)dr
where,

(w22 .
1_icota Z(T> cot a—iutcosecar | . .
\/ e ,if « is not multiple of 7
St —u), it o =2km,keZ
ot +u), ifa=Q2k+ 1)1, keZ
and 0, Dirac delta function. The fractional Fourier transform with a = & corresponds to

the Fourier transform, [2—4,14,15,21].
The fractional Fourier transform can be extended for higher dimensions as [4]:

Kq(u,t) =

“+00 “+o00
(Farocn f) (U1 s 1) = / / Koo (U1 ooyt s ooy ) f (F1s s ) 1l
— 0o — 0

or shortly
[e’e] 400
Fuf (u) = / .../Ka(u,t)f(t)dt,

where
K, (U,t) = Koq,...,ocn (ula cony Ups T, ...,tn) = Kal (ulatl) Kag (U27t2) '-‘Kan (Unytn) .

Let w and w be weight functions on R% and 1 < p < oo. The space ALy (Rd> consists

of all fe€ L} (Rd) such that F,f € LP, (Rd>. The linear space Ap (]Rd) is a Banach
space under the norm:

1Lz = 17 + 1Fad T

The space Ay (Rd) is translation and modulation invariant space [19]. The family of
all translation and modulation invariant spaces, studied recently in [5]. In this work we
discuss compact and non-compact embeddings between the spaces Ay (Rd>. General
compactness criteria for function spaces are given in [7] or more general in [8].
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Let a = (a1, o, ...,aq), where o; = 2k7 for each index i with 1 < i < d and k € Z.
Then by definition of fractional Fourier transform, F,f(u) = f(u) for all u € R?. Thus
we have

Ave (RY) ={rerl (RY)|fery (RY)} =1 (RY) iz (RY).  (L1)

Let a = (o, ag, ..., aq), where o; = (2k + 1) 7 for each index ¢ with 1 <i < d and k € Z.
Then by definition of fractional Fourier transform, o f(u) = f(—u) for all v € RY. We
may assume without loss of generality that w symmetric, i.e., satisfy w (z) = w(—x) for
all z € R% Again, we obtain (1.1). Troughout this study, unless otherwise indicated, we
get o = (a1, 2, ..., ag), where «; # km for each index i with 1 <7 < d and k € Z. In this
paper we extend the results of [12] to the fractional Fourier transform. An angle parameter
a provides us a new aspect of results that have been established in [12]. Additionally, we
give some examples of why a necessary condition cannot be provided.

2. Some compact and non-compact embedding theorems for the function
spaces AYY (Rd)

We begin with the following basic findings that will be used as a tool to show the
inclusion properties and non-compact embeddings of the spaces Ag;;j (Rd).

Proposition 2.1. Let o = (a1, ag, ..., ), where o # k7 for each index i with 1 <i <d
and k € 7. Let w and w be weight functions on R and g € AL (]Rd). Then

1T, 2,90 g < 0 () ]y + [Tl (21)
and so TyM g €Ay (Rd), where b = (—yj cot aq, ..., —ygcot ag) for all y = (y1,...,yq) €
RY.

Proof. Let b = (—yicotay,...,—ygcotay) for all y = (y1,...,yq) € R? and let g €

ALy (Rd). Then, g € L} (Rd> and F,g9 € LP (Rd). We may write by [10, Proposi-
tion 1.7]

IT2,90,,,= [ 1ot =)l | w @) do = Tyl 22)

Rd

IN

w (y)

lw:*

Also, we have

5o (M) 2, = / Ta (T,M,9) (w) " () du

ﬁ ll—zcota]

o |0
11

ll—zcota]

d P
Z (% (u?—i—t?) cot aj—intjcosecaj)
= dt| wP (u)du
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d p
E (%(“ +t2)cot o —iugt; cosecaj)
x e dt| w? (u)du.

By substitution t —y = I, we get

d p
— 1 cot o
o manglr, = |1/ s
7=1
d
/ (l) E (%(” +(l+y5) )COtaj—in(lj-i-yj)cosecaj)
X g j=1
Rd [Rd
d p
Z —iljy; cot o
X e/~ dl| WP (u)du
p d . p
ﬁ \/m / Z:l (%yf cot ayj —iu;y;coseca )
= - S 6]:
=1 2 2
d P
Z (%(Ui-i-l?) cot aj—iujljcoseca]-)
/g e~ dl| wP (u)du
= [ Faglw)Pe? (u) du
Rd
= HSFQQHZ’W
Therefore, we obtain inequality (2.1). This means that T, M 49 € A“’ w (]Rd> 0

The following proposition will be needed to show the inclusion properties of the space
Age (RY).
Proposition 2.2. Let a = (v, ag, ..., aq), where a; # km for each index i with 1 <i <d

and k € Z. Let w and w be weight functions on R%. For every 0 # g € ALy (Rd) there
exists constants c¢(g),c(Fag) > 0 such that

¢(9)w () < |T,Mygll e < w(v) lgllazs (2.0
and

¢(Fag)w (@) < [ Magl s < 0 (a) lgll s (25)
where b = (—yicotay,...,—ygcotay) and a = (z1sinaq,...,zgsinag) for all y =

Y1y ¥d) » 2 = (21, ..., 20) € RY, respectively.

Proof. Let us take b = (—yjcotaq,...,—ygcotag) and a = (zsinay, ..., zgsinag) for
all y = (y1,..,94),2 = (21,...,24) € RY, respectively. Let 0 # g € A (Rd>. Thus
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g€ Ll (Rd) and F,g9 € LP, (Rd). By [10, Proposition 1.7], there exists ¢(g) > 0 such
that

(9)w(y) <|T,

w (Y) 1911, (2.6)
Using (2.2), (2.3) and (2.6

C
)

clwy) < Tyl < TyMygl,,, + |1Ta (TM9)|, .,
< w®llglp+ G 1Taglye = w @) gl

, we obtain

This means inequality (2.4) holds.
By Proposition 3 (2) in [19], we have
1Fa (M=)l = TaFagllp - (2.7)
Again, by [10, Proposition 1.7], there exists ¢ (Fog) > 0 such that
c(Fag)w(a) < [ TaFaglly, < w(a) | Fagll,.- (2.8)

Combining (2.7), (2.8) and the equality [|M.gl|; ,, = [|g]l; ,,» we get
c(Faglw(a) < [TaFagllye < IMzgllyy + 1Fa (Mzg)ll,,.
< w(a) gl +w (@) [[Faglly, = w (@) llgll 4w
U

The proof of the following lemma is very similiar to the proof of Lemma 11 in [19], and
therefore we omit the details.

Lemma 2.3. Let o = (aq, @2, ...,aq), where oy # km for each index i with 1 < i < d
and k € Z. Let w, w and v be weight functions on R®. If ALy (Rd) c L} (Rd), then

A (Rd) is a Banach space under the norm |||g||| =

Theorem 2.4. Let o = (a1, a2, ...,0q), where o; # kn for each index i with 1 < i < d
and k € Z. Let w, w and v be weight functions on RY. Then AL (Rd) cL! (]Rd) if and
only if v < w.

Proof. Assume that v < w. Hence, there exists ¢; > 0 such that v (z) < cjw (z) for all
z € R Let g € AV (]Rd) Thus g € L}, <Rd> and Fog € LP (]Rd). We write

lgvll; < allgwlly
and then

gl <
This implies

v < cillgllyw + e 1Fagll,w = c1llgllgwe < oo

Therefore, AgY (Rd) cL! (Rd).

Conversely, assume that Agy (Rd> c L} (Rd>. Let us take b =
(—y1cotary, ..., —ygcot ag) for all y = (y1,...,yq4) € R% By Proposition 2.2, there exists
constants co, c3 > 0 such that

cow (y) < ||TyMbg||Ag;;; < csw (y). (2.9)

By [9, Lemma 2.2] and (2.2), there exists constants c4, c5 > 0 such that

cav (y) < 1Tyl , = ITyMygll, , < csv (y)- (2.10)
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From Lemma 2.3 the space Ay (]Rd> is a Banach space under the norm |||g]|| for all
g €AYy (Rd). Then the closed graph theorem implies the existence of a constant cg > 0
such that ||g||; , < c6 HgHAg,g for all g € AY (Rd>. Since T, M g €Ay (]Rd), we get

ap P
7,0yl < €6 1T, My e .11)
Thus, combining (2.9), (2.10) and (2.11), we obtain
cqv (y) < HTngM = HTyMbgHL’U < C6 HTyMbQHAg;; < cscsw (y) -
Let ¢ = %%, Then we have v (y) < cw (y) for all y € RY. O

The following theorem is the extension of Theorem 12 in [19].

Theorem 2.5. Let a = (a1, 2, ..., aq), where oy # km for each index i with 1 < i < d and
k € Z. Let w1, we, w1 and wy be weight functions on R<. Then Ag’}p"’“ (Rd> - Agf’p’“? (Rd)
if and only if wo < w1 and wy < w1.
Proof. First of all, suppose that we < w; and wy < wy. Then it is clear that Ay« (Rd) C
Az (R?) by [19, Proposition 13].

Now, assume that Ay’ (]Rd> C AgZ™? (Rd). By Proposition 2.2, there exist
constants ¢y, c2, c3, c4 > 0 such that

Cclwq (y) < HTyMbQHAZ%M < cown (y) (2‘12)
and

cswsy (y) < HTyMbgHAZQP,wZ < cqws (y) (2.13)
where b = (—y1 cot oy, ..., —yg cot o) for all y = (y1, ..., 44) € R%. According to Lemma 11

in [19], the space ARyt (Rd> is a Banach space under the norm
Hglll = llgll azper +[lgll a2 (2.14)

for all g € AZL“ (Rd). Therefore, wo < wy follows from the closed graph theorem and

applying the same technique in the proof of the Theorem 2.4. Again, by Proposition 2.2,
there exist constants cs, cg, ¢y, cg > 0 such that

cswi (a) < [[Mzgl| grier < cowr (a) (2.15)

and

C7W? (a) < HMZQHAZ’FP’“JQ < cgwa (a) (2.16)

where a = (z1sinay, ..., zgsinay) for all z = (z1,...,24) € R% Then the closed graph
theorem implies the existence of a constant ¢y > 0 such that | g|| Avz2 < Co lall Avpe for

all g € AZL™ (Rd>. Since M.g € AL (]Rd), we get
Mgl graes < o || Mgl gzpen (2.17)
Thus, combining (2.15), (2.16) and (2.17), we obtain
crwy (a) < [[Mzgl| grze < cg || Meg|| goie1r < cocown (a) -

Let ¢ = <%, Then we have ws (a) < cwi (a) for all a € R O
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Theorem 2.6. Let o = (aq, a9, ...,q), where a; # km for each index i with 1 < i < d
and k € Z. Let 1 < p < 0o and w, w and v be weight functions on RE. If v < w and the

function w is bounded then Ay (Rd) s L} (Rd) is not compact.

Proof. Since v < w, then there exists ¢; > 0 such that v (z) < cyw (z) for all z € R? and
also Ay (Rd) Cc Ll (Rd> by Theorem 2.4. Besides the unit map I from Ag>’ (]Rd) into

L} (Rd) is bounded

<allfllaws

I (Dl =110 <
w,w d
for all f € AL (R).
Let g € Co (Rd) nAYy (Rd) be a fixed arbitrary function. We take sequence

(tn)pey in R? such that t, — oo as n — oo and define a sequence (9n)nen BY gn = My, g.
From the hypothesis, there exists co > 1 such that w(z) < ¢ for all x € R%. Then we
write

pew < C2llgllgwe- (2.18)

Hence, the sequence (gn),,cy is bounded in ARy (]Rd) Now, we will show that there is no

lgnll gz = 1Mo gll s < llgly o +ezll Tl

subsequence of (gn),,cy that is convergent in L}) (Rd). Let h € Co (Rd) be given. We get

/gn(x)hxd:r < /]Mtn )| |h(x)| de (2.19)
d

< Hh\loollglll

= Al 1729l

Since g € C¢ (Rd> C Cy (Rd>, 1,9 — 0 as n — oo and then there exists N € N such
that suppg (x —t,) = @ for all n > N and all + € R%. On the other hand we get
suppg (x —t;) = Kj where j =1,2,..., N —1. Let K = K UK>U...UKx_;. Then, using
(2.19) we write

Jon@ i@ ds| < bl [ 17, @) do. (2:20)
d K
Also we have
Tag (2) = lg(x = ta)| < sup|g(z —tn)] = llgllo (2.21)
r—t, ER4
for all n € N. Then by bounded converge theorem and using (2.20), (2.21) we obtain
/gn (x)h(x)dz — 0 (2.22)
Ra

as n — 0o0. Assume that (g,), oy converges to f # 0 in L} (]Rd). Thus we may write

[ =P @h@da </| @I I @) dr < [bllollgn =

d

Since ||gn — f|l;, = 0 as n — oo, then we have

/(gn—f)(x)h(:v)dxéo

R4
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as n — oo. Hence by using (2.22), we obtain
/f(:c) h(z)de =0
Rd
for all h € C¢o (]Rd). Then f = 0 almost everywehere. This is a contradiction. Therefore

only possible limit of (gy),,cp in L} (Rd) is zero. It is known that there exist c3 (g) ,ca > 0
such that

ez (g)v(z) <[ Taglly, < cav(z) (2.23)

for all g € L} (Rd) and z € R%, [9]. Therefore, we obtain

1Tt _ e3(g)vitn)
= llglly,, = w(tn) = ()

Then (gn),cn does not converge to zero and also it is impossible to find convergent sub-

—es(g). (224)

lgnll1,, =

sequence of (gn),,cy in L} (Rd). In that case, the embedding I is not compact. O

Let us give an example that the converse of the above theorem is not correct.

Example 2.7. Let a = (a1, ag, ..., ag), where «; # k7 for each index i with 1 < i < d and
k € Z. Let w, w and v be weight functions on R such that v (z) = w (z) = (1 + ||z[)* and
w(x) =1+ |z, for all z € RZ Tt is easy to see that these functions are weight functions.
Also let us take o = (aq, @y, ..., ), where oy = a9 = ... = ag. Then the embedding I

from Ag>Y (Rd> into L! (R?) is not compact and the function w is not bounded. Indeed,
v < w then Ay (Rd) c L} (Rd) and also the unit map I is continuous from Ay’ (Rd>
into L) (Rd>. Let us take any function g € Ay (]Rd) and fix it. Besides, we take

sequence (t,),cy in R such that t, — oo as n — oo and define a sequence (gy,),,cy by
n = ﬁ?ng) =1 157?5”)2. Therefore, we have
Tt g 1
ww = o = ——7/||T; w,w . 2.25
loobazs = | 5657, = ey o (225)
Also we write
2
w (@) =1+ [zl < (1 +[lz])” = w(z). (2.26)
Moreover we have the inequality
I Tagll g < w (@) lglly, +w (2 cos ar) [Fagll,, (2.27)

for all 2 € R% by Theorem 4 in [19]. Then, by using (2.26) we get

ITagl e < w(@)lgl, +w @cosar) [Fagl,,
w () |glly, + (1 + [cosarl [[z]]) |Fagll,.
< w(@) gl + @+ [[z]) [Fagll,,
< w(@)llgll s
Thus we have
loalazy = | g2 < Il = lolLazs-
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Hence, the sequence (gn),, oy is bounded in ARy (Rd>. Let h € C¢ (Rd) be given. We
write

(@) h (z) da 9 @)]h(z)] dr .
< i ||h|| lgll;-
Since w (x) tends to infinity as  — oo, w (t,) tends to infinity as n — co. Then we
obtain
/gn x)dr — 0 (2.29)

as n — oo. After that, by using the same technique in the proof of Theorem 2.6, we obtain
that the embedding I is not compact. On the other hand, w (x) — oo as x — oo, and
then the function w is not bounded.

Theorem 2.8. Let o = (aq, g, ...,q), where a; # km for each index i with 1 < i < d

and k € Z. Let 1 < p < 0o and w, w and v be weight functions on RY. If v < w and
v(z)

function ° w(@) does not tend to zero for x — oo, then the embedding
I:Awe (RY) < L} (R)
18 mever compact.

Proof. Since v < w, Theorem 2.4 and the proof of Theorem 2.6 implies that Ay (Rd) C

L} (Rd) and continuity of the unit map I, respectively.
First of all, suppose that w (z) — 0o as © — oo. Let us take any fixed function
g€ Ay (Rd) Also we take sequence (t,),cy in R? such that ¢, — 0o as n — co. Then

we deﬁne a sequence (by),,cy in R? such that bp; = —tnjcot aj. To show that the mapping

I ARy (Rd> — L} (Rd> is never compact, define a sequence (gn),cn bY gn = Tt;(ij‘gfsbg

Therefore, we have

T, My, g 1
9 ’"" = —— T4, My, gl g
H nHA w (tn) v w (tn) H t ”Aa,p
By using (2.1) we write
w (tn) _
lgnll 4w < w (t) 191l aze = llgll gz (2.30)

Hence, the sequence (gn),cy is bounded in Ag (Rd). Now, we will show that there

wouldn’t be a subsequence of (g,),y Which is convergent in L} (]Rd). We have
1
Jon@h@)de| < o [T My o) B ()] dr (231)
d " Rd

1
< —|h
< oy Pl

for all h € Co (Rd). Since w (t,) — 00 as n — oo, then by using inequality (2.31) we
obtain

/gn x)dr — 0
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as n — oo. Moreover, by the inequality

[on@n@dz| < [lg @] b)) do (232
Rd

d

< sup Ih @) [ lgn (@) da
z€R4 B

< Pl lignlly

and using the same technique in the proof of Theorem 2.6, we say that only possible limit
of (gn)pen in L (Rd> is zero. Also, using (2.23) and (2.2), there exists ¢ > 0 such that

v(ty) _
w (tn)

does not tend to zero for n — oo and then there exists § > 0 such

1 1
= —— |11, M =——||1; > 2.33
”gnul,v w (tn) H tn bngHLv W (tn) H tngHI,v =C ( )

v(tn)
w(tn)

that Z)(é:)) > § as n — oo. Then by using (2.33) we have

v(tn)
w (tn)
Hence, (gn),,cry does not converge to zero and also it is impossible to find convergent sub-
sequence of (gn),,cy in L} (]Rd). Consequently, the embedding I : A% (Rd) — L} (Rd)

Since the function

lgnlly, = ¢ > cd. (2.34)

9.
P
is never compact.

Suppose that w is constant or bounded function. Since v < w, the function ;’}((2))

is constant or bounded and then doesn’t tend to zero as x — oo. Let us take any fixed
function g € C¢ (]Rd> N ALY (Rd). Besides we take a sequence (t,),cy in R? such that

Ttn Mbng
w(tn)

a sequence in R? such that b,; = —t,jcot ;. Thus, the sequence (9n)pen is bounded in
Aww (Rd) by (2.30). Let h € Cc (Rd> be given. We write

tp — 00 as n — 0o. Then we define a sequence (g,),,cy bY gn = ,where (by,),,cy 18

1
tn)R/d Ty, Ms,, g ()] [h(x)| dx

Jon@h(@)ds| <

wl
1
< il R/ .9 (x)| dz.

Since g € C¢ (Rd) C Cy (Rd>, T;,9 — 0 as n — oo and then by using (2.20), (2.21) we
obtain

/gn (x) h(x)dz — 0.

Rd
Therefore, it is impossible to find convergent subsequence of (gy,),,cy in Ly (Rd> by (2.32),
(2.33) and (2.34). Thus, the embedding I : Ay (Rd) — Ll (Rd) is never compact. [

Again, we will give an example that the converse of the above theorem is not correct.

Example 2.9. Let a = («, ag, ..., aq), where a; # km for each index ¢ with 1 < i < d
and k € Z. Let w, v and w be weight functions on R? such that v(z) = 1 + ||z|,
w(z) = (1+|z[)? for all z € R and w is bounded. In that case, the embedding I :
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ARy (Rd) — L} (Rd) is never compact and the function 5((3;)) tends to zero as x — oo.
Indeed,we get

L+ Jlz]| < (1+ [l]l)*
for all z € RY  Since v < w, then Agy (Rd> c L} (]Rd). Also the unit map
I AYY (Rd> — L} (Rd) is continuous. Thus by using Theorem 2.6, it is clear that
the embedding I : Ay (Rd) — L} (Rd) is never compact. On the other hand, it is easy

to show that Z)(é)) tends to zero as x — oo.

Theorem 2.10. Let o = (g, a9, ..., aq), where a; # km for each index i with 1 <i < d
and k € Z. Let 1 < p < oo and wy, we, wi and wo be weight functions on R, If wo < wy,
wa(x) wa(w)

wy < wi and functions wr @) 7 o) do not tend to zero for x — oo, then the embedding

I from AQ (Rd) into Ag%e? (Rd) is not compact.

Proof. Let wy < wy and we < wi. Then it is known that Ag’}p’“’l (Rd) - Agj?p’“? (Rd> by
Theorem 2.5. Also there exists ¢, co > 0 such that ws (z) < ciw; (x) and wa(z) < cowi(x)
for all z € R%. Now, let us define a unit map I from AGLer (]Rd) into A%+ (Rd). Then
we have

I (D)l a2z = 1f a2z < callfllyw, + c2llFafllpw, < esllfllazye

where c3 = max {c1, ca}, for all f € AyLe1 (]Rd). So I is continuous.

First of all, let the function Zj Ei% does not tend to zero for x — co. Suppose that

wi (r) — 00 as ¥ — 0o0. Again, let us take any fixed function g € AL (Rd>. Also we
take sequence (t,),cy in R? such that ¢, — oo as n — oo. Then we define a sequence

(9n)nen bY gn = %ﬂﬁgg, where (b,),,cy is @ sequence in R? such that by,; = —t,;cot ;.

Thus, using by inequality (2.30), it is easy to see that (g, ),y is bounded in AL (Rd).
Now, assume that there exists convergent subsequence of (gn), oy in Ag%*2 (Rd). Since
the inclusion AZ2;~2 (Rd) c L, (Rd), then the subsequence of (gn),,cy is also convergent
in L,}m (Rd). But it is well known from the proof of Theorem 2.8 that it is impossible to

obtain convergent subsequence of (g,), oy in L}UQ (]Rd). That means the embedding I is
not compact. Suppose that w; is constant or bounded function. Similarly, let us take any

fixed function g € C¢ (Rd> NAGLe (Rd>. Besides we get sequence (ty),,cy in R? such that

Loy My, 9
w1 (tn)

a sequence in R? such that b,; = —t,jcot ;. Thus, the sequence (9n)pen is bounded in

tp — 00 as n — oo. Then we define a sequence (g,),,cy bY gn = ;where (by),,cy 18

ALt (Rd> by (2.30). Now, assume that there exists convergent subsequence of (gn),cn
in Ag2e (Rd>. Since the inclusion Ag2«? (Rd) C L, (Rd), then the subsequence of
(gn)pen is also convergent in L7, (Rd). But it is well known from the proof of Theorem

2.8 that it is impossible to obtain convergent subsequence of (gy),,cy in L}m (Rd). That

means the embedding I is not compact.

Now, let the function ng;g does not tend to zero for x — oo. Suppose that

wi (z) — oo as ¢ — oo. Also, let us take sequence (t),cy in R? such that ¢, — oo as
n — oo. Thus we define a sequence (“n)neN in R? such that Upj = tpjsin ;. Obviously,
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Uy, — 00 as n — o0. Now, let us take any fixed function g € Ay« (Rd>. Then we define

a sequence (gn),cn by gn = w]\f(tgf). Hence, we get

Mt g 1
wiwy = u = — || M, wy,wy . 2.35
lgnlazyes ‘Wl () Lz n (Un)H tn9llaye (2.35)
Also we have the inequality
||ng||A;v}Z;w1 < lglly o, + w1 (zisinen, ..., zgsin ag) | Fagll, ., (2.36)

for all z € R?, by Theorem 5 in [19]. Thus, by using (2.35) and (2.36) we write
wi (un)

1
90 Lazsn < a1+ oy 1y < ol gy

Therefore, the sequence (gn),,cy is bounded in AFLet (]Rd). Now, we will show that there

is no subsequence of (g,),, <y that is convergent in Ag2:*2 (Rd>. Let h € Ce (Rd) be given.
We obtain

1
[ gu @) h(@)de| < s R/ My, g ()| [h()] da
< s il gl

Since (un),cy and wi (z) tend to infinity as n — oo and x — oo, respectively, we obtain

/gn x)dr — 0 (2.37)

as n — 00. Assume that (gn),cy converges to f # 0 in Ag2«? (Rd). Thus we may write

[ =D @h@de| < /| o) (@) do < [l g = FLazz=-

d

Since ||gn — fHA}f%;“’? — 0 as n — oo, then we have

[ =@ h@da—0
Rd
as n — oo. Hence by using (2.37), we obtain
/f@)h(;p)dx:o
Rd
for all h € Cg¢ (Rd). Then f = 0 almost everywehere. This is a contradiction.

Therefore only possible limit of (gn),cy in Ag%«? (Rd) is zero. Let us take a =
(z1sinaq, ..., zgsin ag). Thus by using Proposition 3 in [19] we write

1Fa (Mag)llpw, = 11 Ta (Fag)llpw,- (2.38)
Besides, it is known by [9] that there exists ¢ > 0 such that

cws () < || T f]] (2.39)

p,w2
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for all f € LP, (Rd) and 2z € R%. Hence, by using (2.38) and (2.39) we obtain

1
lonlazzer > gl M)l (2.40)
1
= T,
i1 Gl
> wo (un)
w1 (un)

Since the function ngzzg does not tend to zero for n — oo, there exists > 0 such that

w2 (un)

oy 2 d as n — oo. Then by using (2.40) we have

wa (up)

wy,wy > > cd.
lonllazss 2 )2 €

Thus, it is impossible to find convergent subsequence of (gn),, oy in Ag%“? (Rd). Finally,
the embedding I is not compact. Assume that w; is constant or bounded function. Let
us take any fixed function g € C¢ (Rd) N AgL (Rd), a sequence (t,), oy in R? such
that ¢, — oo as n — oo and define a sequence (gn),cyy by gn = My, g. Thus, using by
inequality (2.18), it is easy to see that (gn),cy is bounded in AgL« (]Rd>. Now, assume

that there exists convergent subsequence of (gn),cy in Ag%*? (Rd). Hence, since the
inclusion Ag2*? (Rd) C L111;2 (Rd), then the subsequence of (gn),,cy is also convergent in
L}m (Rd). But it is well known from the proof of Theorem 2.6 that it is impossible to
obtain convergent subsequence of (gy),,cy in qu1}2 (Rd). That means the embedding I is
not compact. ]

We conclude the article with the following theorem, which is the main result of the
paper.

Theorem 2.11. Let a = (g, ae, ..., aq), where o; # km for each index i with 1 <i < d
and k € 7. Let w1, we and wy, we be weight functions on R and wy < wy, wy < wi. Then

the embedding T : A4 (Rd) Ay (Rd) is compact if and only if the functions wzg;
wa(x)

and & o1 (@) tend to zero as x — 0.

Proof. Let wy < w; and wy < wy. Then it is known by Theorem 2.5 that AZY*" (Rd) C
A2 (]Rd). Also it is easy to see that unit map I is bounded AZY™' (]Rd> into
A (RY),

Now, suppose that the functions 5223 and Z?gg tend to zero as x — oo. Let
us take a bounded sequence (fn),cy in Ay (Rd). To indicate that the embedding
AL (Rd> — AGHY (]Rd) is compact, we will prove that (f,,) has a convergent subse-

quence in Ag%5*? (Rd) As the sequence (fy), ey is bounded in AJY*! (Rd>, there exists
c1 > 0 such that

[fnllgrrer < 1 (2.41)
for all n € N. Moreover, boundedness of the unit map I, there exists co > 0 such that

1T ()l ames = 1l s < call ful g (2.42)
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Since, the functions 22 ©2(@) toq to zero as © — 0o, then there exist 6,8, > 0 such
wi(@)’ wi(z) k

that

1 1
wor) 1o g el 1 (2.43)
w1 (SU) k w1 (.T) k
where ||z|| > 65 and ||z|| > 0}, respectively for any k € N. Thus there are sequences
of increasing balls (Bj, ), oy and (Bs, ),y Which are centered at origin and d; — oo,

. — o0 as k — oo such that providing the inequalities (2.43), where x € R? — B, and
r e R — Bs:,, respectively for any k € N. Let S, = (B;,UBy/, ). Then we can write the
inequalities (2.43) such that » € R? — S, for k € N.

Suppose that, (t,),cy be any sequence which is dense in S7. Hence by (2.42), we
get

d
Z (% (uj2+t;2) cot aj—iut cosecas )

d
|Fafullo = sup |1 /ot ffn dt

ueRd [j=1

T_icot
Vot f | ()| dt
I—icot
VS o g
/1—icot o,
% C2”anAgj}1’“1-

1—zcot oy
V 21

IN
<

e 1 s

—_

IN
<

IN
=

<.
Il
-

d
Also, let ¢g = ]
j=1

cicz. Then by using inequality (2.41), we obtain

”ffozfn”oo < ¢p. (2.44)
Therefore there exists a subsequence ( Jnik )

) ni(k)eN °
(?a Frn (k) (tl)) converges. Likewise, there exists a subsequence ( fnz(k))
of (fm(k) 1 ()N

ng(k)GN
this method, there exists a subsequence (fnl(k)) (B)eN of (fnl—l(k)) (B)eN such that
ny ny—1

converges. Hence the sequence (ffa Tru (k) (tr))

f (fn),en such that the sequence

nl(k)EN nz(k)EN
such that the sequence (ffa Tna(k) (tg)) converges. Continuing

the sequence (?afnl(k) (tl))nl(k)eN ()N
converges, for all [ € N such that » < [. Let m(k) = ng(k), then the sequence
(?afm(k) (tl))m(k)EN converges which is subsequence of (?afnl(k) (t1) ()N’ Thus there
exists a subsequence (gm),,cny Of (fn)nen Such that the sequence (Fagm (4)),,en cOD-
verges, for all [ € N. Also, since the sequence (t,),cy is dense in S, then the sequence
(Fagm (7)),,en converges, for any x € S;. Using the method reviewed above, we can
find a sequence (um),,cy Which is a subsequence of (gm),,cy such that the sequence
(Fatm (x)),,en converges, for all x € Sp. Reiterating this technique, we obtain a se-
quence (hy,),cy Which is a subsequence of (fy),cy such that the sequence (Fohy, (7)), cn
converges, for all € Si. Also, let 8 = (B4, B2, ..., 84), such that a = (aq, ag, ..., ),

1—icot 3 - M,
ol = 155 (Fahn) H et

2
S M102||hn||Aw11,w1 S M1€2C1.
a,

where §; + a; =

Then by using (2.41) and (2.42) we get

[Fahnlly (2.45)
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Hence, (hy),cy is bounded. By applying the steps in the first part of this proof, we have a
sequence (sp),cy that is a subsequence of (hy,), oy, Where the sequence (sy,),, oy converges
on S, for all k € N.

Furthermore, by (2.41) and (2.43) we have

llsn — 3m||AZ?1‘“’2

= ||sn — Sm”l,w2 + | Fa (50 — Sm)Hl,m

= [lsn(@) = sm(x)|w2 (x)dz+ [ |sn(x) — sm(a)| w2 (z) dx
Sk

Rd—S},
+ [ Fatn(o) = Fasn@lwn @ dat [ [Fomn(e) = Tasu(@lwa @)oo

< [ sn(x) = sm(x)|we (x) dx + [ |Fasn(x) — Fasm(z)|ws (x) dx
Sk Sk
+ 4 (Isnlliy + lsmllyuy ) + 3 (1Fasully e, + 1Fasmll,)
< [ sn(@) = spm(@)|wa (x) da + [ |Fasn(z) — Fasm(x)|ws (z) dx + 241,
, Sk

Sk

Let € > 0 be given. Also, we select k large enough where 4% < 5. Besides the sequences
(5n)ney and (Fasy),cn converge on S such that the set S, is closure of Sj. Since the se-

quences (sp ),y and (Fasn), ey converge pointwise on S, and according to the inequalties
(2.44) and (2.45) and the bounded converge theorem there exists n; € N such that

/ 5n(2) = s (@) w2 (2) do < (2.47)
Sk

for all m,n > n; and also there exists ny € N such that

/\?asn(x) — Fosm(x)|wa (x) dx < g (2.48)
Sk
for all m,n > ny. Let N = max{ni,n2}. Thus, combining (2.46), (2.47) and (2.48) we
get
lsn = smll gvze < Sf [sn(2) = sm(2)| w2 (z) do

k
+ [ [Fasn(r) — Fasm(x)|ws (v) de + 4 <&
Sk

for all m,n > N. This implies that the sequence (s,),cy is a Cauchy sequence in
AL (Rd). Thus, the embedding of the space Aj4y*" (Rd) into A 7 (]Rd) is com-
pact.

Conversely, if the functions
Theorem 2.10 the embedding of the space A5 (Rd) into Ag %" (]Rd) is not compact.
This is the desired result. O

w2(@) o @28 46 not tend to zero for x — oo, then by
wi(z) w1 (x)

Acknowledgment. The authors would like to thank the reviewer for his/her valuable
comments and constructive suggestions

References

[1] T. Alieva, V. Lopez, F. Agullo-Lopez and L.B. Almeida, The fractional Fourier trans-
form in optical propagation problems, J. Modern Opt. 41 (5), 10371044, 1994.

[2] L.B. Almeida, The fractional Fourier transform and time-frequency representations,
IEEE Trans. Signal Process. 42 (11), 3084-3091, 1994.

[3] L.B. Almeida, Product and convolution theorems for the fractional Fourier transform,
IEEE Signal Process. Lett. 4 (1), 15-17, 1997.



[4]
[5]

[6]
[7]

Compact and non-compact embeddings of the spaces Ay (Rd) 1635

A. Bultheel and H. Martinez, A shattered survey of the fractional Fourier transform,
K.U.Leuven: Department of Computer Science, Report TW337, 2002.

P. Dimovski , S. Pilipovic, B. Prangoski and J. Vindas, Translation-modulation in-
variant Banach spaces of ultradistributions, J. Fourier Anal. Appl. 25 (3), 819-841,
2019.

R.G. Dorsch, A.W. Lohmann, Y. Bitran, D. Mendlovic and H.M. Ozaktas, Chirp
filtering in the fractional Fourier domain, Appl. Optics, 33 (32), 7599-7602, 1994.
H.G. Feichtinger, A compactness criterion for translation invariant Banach spaces of
functions, Anal. Math. 8, 165-172, 1982.

H.G. Feichtinger, Compactness in translation invariant Banach spaces of distributions
and compact multipliers, J. Math. Anal. Appl. 102, 289-327, 1984.

H.G. Feichtinger and A.T. Girkanl, On a family of weighted convolution algebras,
Int. J. Math. Sci. 13 (3), 517-526, 1990.

R.H. Fischer, A.T. Giirkanli and T.S. Liu, On a family of weighted spaces, Math.
Slovaca, 46 (1), 71-82, 1996.

K. Grochenig, Weight functions in time-frequency analysis, in: Pseudodifferential
Operators: Partial Differential Equations and Time-Frequency Analysis, Fields Inst.
Commun. 52, 343-366, Amer. Math. Soc., Providence, RI, 2007.

A.T. Giirkanli, Compact embeddings of spaces A%, , (Rd>, Taiwanese J. Math. 12 (7),
1757-1767, 2008.

A.C. McBride and F.H. Kerr, On Namias’s fractional Fourier transforms, IMA J.
Appl. Math. 39, 159175, 1987.

V. Namias, The fractional order of Fourier transform and its application in quantum
mechanics, J. Inst. Math. Appl. 25, 241-265, 1980.

H.M. Ozaktas, M.A. Kutay and Z. Zalevsky, The Fractional Fourier Transform with
Applications in Optics and Signal Processing, Chichester, John Wiley and Sons, 2001.
H. Reiter, Classical Harmonic Analysis and Locally Compact Group, Oxford Univer-
sity Press, 1968.

W. Rudin, Real and Complex Analysis, New York, McGraw-Hill, 1966.

W. Rudin, Functional Analysis, McGraw-Hill, 1973.

E. Toksoy and A. Sandik¢i, On function spaces with fractional Fourier transform in
weighted Lebesgue spaces, J. Inequal. Appl. 2015 (1), Article 1d:87, 1-10, 2015.

N. Wiener, Hermitian polynomials and Fourier analysis, J. Math. Phys. 8, 70-73,
1929.

AL Zayed, On the relationship between the Fourier and fractional Fourier transforms,
IEEE Signal Proc. Let. 3, 310-311, 1996.



