On The Connections Between Jacobsthal Numbers and Fibonacci p-Numbers

Özgür Erdağa ${ }^{\text {a }}$, Ömür Deveci ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey
${ }^{b}$ Department of Mathematics, Faculty of Science and Letters, Kafkas University 36100, Turkey

Abstract

In this paper, we define the Fibonacci-Jacobsthal p-sequence and then we discuss the connection between of the Fibonacci-Jacobsthal p-sequence with the Jacobsthal and Fibonacci p-sequences. Also, we provide a new Binet formula and a new combinatorial representation of the Fibonacci-Jacobsthal p-numbers by the aid of the nth power of the generating matrix of the Fibonacci-Jacobsthal p-sequence. Furthermore, we derive some properties of the Fibonacci-Jacobsthal p-sequences such as the exponential, permanental, determinantal representations and the sums by using its generating matrix.

1. Introduction

The well-known Jacobsthal sequence $\left\{J_{n}\right\}$ is defined by the following recurrence relation:

$$
J_{n}=J_{n-1}+2 J_{n-2}
$$

for $n \geq 2$ in which $J_{0}=0$ and $J_{1}=1$.
There are many important generalizations of the Fibonacci sequence. The Fibonacci p-sequence $\left\{F_{p}(n)\right\}$ (see detailed information in $[21,22]$) is one of them:

$$
F_{p}(n)=F_{p}(n-1)+F_{p}(n-p-1)
$$

for $n>p$ and $p=1,2,3, \ldots$, in which $F_{p}(0)=0, F_{p}(1)=\cdots F_{p}(p)=1$. When $p=1$, the Fibonacci p-sequence $\left\{F_{p}(n)\right\}$ is reduced to the usual Fibonacci sequence $\left\{F_{n}\right\}$.

It is easy to see that the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence are $g_{1}(x)=x^{2}-x-2$ and $g_{2}(x)=x^{p+1}-x^{p}-1$, respectively. We will use these in the next section.

Let the $(n+k)$ th term of a sequence be defined recursively by a linear combination of the preceding k terms:

$$
a_{n+k}=c_{0} a_{n}+c_{1} a_{n+1}+\cdots+c_{k-1} a_{n+k-1}
$$

in which $c_{0}, c_{1}, \ldots, c_{k-1}$ are real constants. In [12], Kalman derived a number of closed-form formulas for the generalized sequence by the companion matrix method as follows:

[^0]Let the matrix A be defined by

$$
A=\left[a_{i, j}\right]_{k \times k}=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \ddots & 0 & 0 \\
\vdots & \vdots & \vdots & & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
c_{0} & c_{1} & c_{2} & & c_{k-2} & c_{k-1}
\end{array}\right],
$$

then

$$
A^{n}\left[\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{k-1}
\end{array}\right]=\left[\begin{array}{c}
a_{n} \\
a_{n+1} \\
\vdots \\
a_{n+k-1}
\end{array}\right]
$$

for $n \geq 0$.
Several authors have used homogeneous linear recurrence relations to deduce miscellaneous properties for a plethora of sequences: see for example, [1, 4, 8-11, 19, 20]. In [5-7, 14-16, 21-23], the authors defined some linear recurrence sequences and gave their various properties by matrix methods. In this paper, we discuss connections between the Jacobsthal numbers and Fibonacci p-numbers. Firstly, we define the Fibonacci-Jacobsthal p-sequence and then we study recurrence relation among this sequence, Jacobsthal sequence and Fibonacci p-sequence. Also, we give the relations between the generating matrix of the Fibonacci-Jacobsthal p-numbers and the elements of Jacobsthal sequence and Fibonacci p-sequence. Furthermore, using the generating matrix the Fibonacci-Jacobsthal p-sequence, we obtain some new structural properties of the Fibonacci p-numbers such as the Binet formula and combinatorial representations. Finally, we derive the exponential, permanental, and determinantal representations and the sums of FibonacciJacobsthal p-sequences.

2. On The Connections Between Jacobsthal Numbers and Fibonacci \boldsymbol{p}-Numbers

Now we define the Fibonacci-Jacobsthal p-sequence $\left\{F_{n}^{J, p}\right\}$ by the following homogeneous linear recurrence relation for any given $p(3,4,5, \ldots)$ and $n \geq 0$

$$
\begin{equation*}
F_{n+p+3}^{J, p}=2 F_{n+p+2}^{J, p}+F_{n+p+1}^{J, p}-2 F_{n+p}^{J, p}+F_{n+2}^{J, p}-F_{n+1}^{J, p}-2 F_{n}^{J, p} \tag{1}
\end{equation*}
$$

in which $F_{0}^{J, p}=\cdots=F_{p+1}^{J, p}=0$ and $F_{p+2}^{J, p}=1$.
First, we consider the relationship between the Fibonacci-Jacobsthal p-sequence which is defined above, Jacobsthal sequence, and Fibonacci p-sequences.

Theorem 2.1. Let $J_{n}, F_{p}(n)$ and $F_{n}^{J, p}$ be the nth Jacobsthal number, Fibonacci p-number, and Fibonacci-Jacobsthal p-numbers, respectively. Then,

$$
J_{n}+F_{p}(n+1)=F_{n+p+2}^{J, p}-3 F_{n+p}^{J, p}-F_{n}^{J, p}
$$

for $n \geq 0$ and $p \geq 3$.
Proof. The assertion may be proved by induction on n. It is clear that $J_{0}+F_{p}(1)=F_{p+2}^{J, p}-3 F_{p}^{J, p}-F_{0}^{J, p}=0$. Suppose that the equation holds for $n \geq 1$. Then we must show that the equation holds for $n+1$. Since the characteristic polynomial of Fibonacci-Jacobsthal p-sequence $\left\{F_{n}^{J, p}\right\}$, is

$$
h(x)=x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2
$$

and

$$
h(x)=g_{1}(x) g_{2}(x),
$$

where $g_{1}(x)$ and $g_{2}(x)$ are the characteristic polynomials of Jacobsthal sequence and Fibonacci p-sequence, respectively, we obtain the following relations:

$$
J_{n+p+3}=2 J_{n+p+2}+J_{n+p+1}-2 J_{n+p}+J_{n+2}-J_{n+1}-2 J_{n}
$$

and

$$
F_{p}(n+p+3)=2 F_{p}(n+p+2)+F_{p}(n+p+1)-2 F_{p}(n+p)+F_{p}(n+2)-F_{p}(n+1)-2 F_{p}(n)
$$

for $n \geq 1$. Thus, by a simple calculation, we have the conclusion.

Theorem 2.2. Let J_{n} and $F_{n}^{J, p}$ be the nth Jacobsthal number and Fibonacci-Jacobsthal p-numbers. Then,
i.

$$
J_{n}=F_{n+p+1}^{J, p}-F_{n+p}^{J, p}-F_{n}^{J, p}
$$

ii.

$$
J_{n}+J_{n+1}=F_{n+p+2}^{J, p}-F_{n+p}^{J, p}-F_{n+1}^{J, p}-F_{n}^{J, p}
$$

for $n \geq 0$ and $p \geq 3$.

Proof. Consider the case ii. The assertion may be proved by induction on n. It is clear that $J_{0}+J_{1}=$ $F_{5}^{J, p}-F_{3}^{J, p}-F_{1}^{J, p}-F_{0}^{J, p}=1$. Now we assume that the equation holds for $n>0$. Then we show that the equation holds for $n+1$. Since the characteristic polynomial of Jacobsthal sequence $\left\{J_{n}\right\}$, is

$$
g_{1}(x)=x^{2}-x-2
$$

we obtain the following relations:

$$
J_{n+p+3}=2 J_{n+p+2}+J_{n+p+1}-2 J_{n+p}+J_{n+2}-J_{n+1}-2 J_{n}
$$

for $n \geq 1$. Thus, by a simple calculation, we have the conclusion.
There is a similar proof for i .

By the recurrence relation (1), we have

$$
\left[\begin{array}{c}
F_{n+p+2}^{J, p} \\
F_{n}^{J, p+p+1} \\
F_{n+p}^{J, p} \\
\vdots \\
F_{n}^{J, p}
\end{array}\right]\left[\begin{array}{cccccccccc}
2 & 1 & -2 & 0 & \cdots & 0 & 0 & 1 & -1 & -2 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{c}
\\
F_{n+p+3}^{J, p} \\
F_{n+p+2}^{J, p} \\
F_{n+p+1}^{J, p+p} \\
\vdots \\
F_{n+1}^{J, p}
\end{array}\right]
$$

for the Fibonacci-Jacobsthal p-sequence $\left\{F_{n}^{J, p}\right\}$. Letting

$$
M_{p}=\left[\begin{array}{cccccccccc}
2 & 1 & -2 & 0 & \cdots & 0 & 0 & 1 & -1 & -2 \\
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0 & 0 & 0 \\
\ddots & \ddots & \ddots & \ddots & \ddots & & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 & 1 & 0
\end{array}\right]_{(p+3) \times(p+3)}
$$

The companion matrix $M_{p}=\left[m_{i, j}\right]_{(p+3) \times(p+3)}$ is said to be the Fibonacci-Jacobsthal p-matrix. For detailed information about the companion matrices, see $[17,18]$. It can be readily established by mathematical induction that for $p \geq 3$ and $\alpha \geq 2 p$

$$
\left(M_{p}\right)^{\alpha}=\left[\begin{array}{ccccll}
F_{\alpha+1}^{J, p} & F_{\alpha+p+3}^{J, p}-2 F_{\alpha+p+2}^{J, p} & F_{p}(\alpha-p+2)-2 F_{\alpha+p+1}^{J, p} & F_{p}(\alpha-p+3) & \cdots \\
F_{\alpha+p+1}^{J, p} & F_{\alpha+p+2}^{J, p}-2 F_{\alpha+p+1}^{J, p} & F_{p}(\alpha-p+1)-2 F_{\alpha+p}^{J, p} & F_{p}(\alpha-p+2) & \cdots & \\
F_{\alpha+p}^{J, p} & F_{\alpha+p+1}^{J, p}-2 F_{\alpha+p}^{J, p} & F_{p}(\alpha-p)-2 F_{\alpha+p-1}^{J, p} & F_{p}(\alpha-p+1) & \cdots & M_{p}^{*} \\
\vdots & \vdots & \vdots & & \vdots & \\
F_{\alpha+1}^{J, p} & F_{\alpha+2}^{J, p}-2 F_{\alpha+1}^{J, p} & F_{p}(\alpha-2 p+1)-2 F_{\alpha}^{J, p} & F_{p}(\alpha-2 p+2) & \cdots \\
F_{\alpha}^{J, p} & F_{\alpha+1}^{J, p}-2 F_{\alpha}^{J, p} & F_{p}(\alpha-2 p)-2 F_{\alpha-1}^{J, p} & F_{p}(\alpha-2 p+1) & \cdots
\end{array}\right]
$$

where

$$
M_{p}^{*}=\left[\begin{array}{ccc}
F_{p}(\alpha) & F_{p}(\alpha+1)-F_{\alpha+p+2}^{J, p} & -2 F_{\alpha+p+1}^{J, p} \\
F_{p}(\alpha-1) & F_{p}(\alpha)-F_{\alpha+p+1}^{J, p} & -2 F_{\alpha+p}^{, j p} \\
F_{p}(\alpha-2) & F_{p}(\alpha-1)-F_{\alpha+p}^{J, p} & -2 F_{\alpha+p-1}^{J, p} \\
\vdots & \vdots & \vdots \\
F_{p}(\alpha-p-1) & F_{p}(\alpha-p)-F_{\alpha+1}^{J, p} & -2 F_{\alpha}^{J, p} \\
F_{p}(\alpha-p-2) & F_{p}(\alpha-p-1)-F_{\alpha}^{J, p} & -2 F_{\alpha-1}^{J, p}
\end{array}\right]
$$

We easily derive that $\operatorname{det} M_{p}=(-1)^{p+1} \cdot 2$. In [21], Stakhov defined the generalized Fibonacci p-matrix Q_{p} and derived the nth power of the matrix Q_{p}. In [13], Kılic gave a Binet formula for the Fibonacci p-numbers by matrix method. Now we concentrate on finding another Binet formula for the Fibonacci-Jacobsthal p-numbers by the aid of the matrix $\left(M_{p}\right)^{\alpha}$.

Lemma 2.3. The characteristic equation of all the Fibonacci-Jacobsthal p-numbers $x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2=$ 0 does not have multiple roots for $p \geq 3$.

Proof. It is clear that $x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2=\left(x^{p+1}-x^{p}-1\right)\left(x^{2}-x-2\right)$. In [13], it was shown that the equation $x^{p+1}-x^{p}-1=0$ does not have multiple roots for $p>1$. It is easy to see that the roots of the equation $x^{2}-x-2=0$ are 2 and -1 . Since $(2)^{p+1}-(2)^{p}-1 \neq 0$ and $(-1)^{p+1}-(-1)^{p}-1 \neq 0$ for $p>1$, the equation $x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2=0$ does not have multiple roots for $p \geq 3$.

Let $h(x)$ be the characteristic polynomial of matrix M_{p}. Then we have $h(x)=x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+$ $x+2$, which is a well-known fact from the companion matrices. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+3}$ are roots of the equation
$x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2=0$, then by Lemma 2.3, it is known that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+3}$ are distinct. Define the $(p+3) \times(p+3)$ Vandermonde matrix V_{p} as follows:

$$
V_{p}=\left[\begin{array}{cccc}
\left(\lambda_{1}\right)^{p+2} & \left(\lambda_{2}\right)^{p+2} & \ldots & \left(\lambda_{p+3}\right)^{p+2} \\
\left(\lambda_{1}\right)^{p+1} & \left(\lambda_{2}\right)^{p+1} & \ldots & \left(\lambda_{p+3}\right)^{p+1} \\
\vdots & \vdots & & \vdots \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{p+3} \\
1 & 1 & \ldots & 1
\end{array}\right]
$$

Assume that $V_{p}(i, j)$ is a $(p+3) \times(p+3)$ matrix derived from the Vandermonde matrix V_{p} by replacing the $j^{\text {th }}$ column of V_{p} by $W_{p}(i)$, where, $W_{p}(i)$ is a $(p+3) \times 1$ matrix as follows:

$$
W_{p}(i)=\left[\begin{array}{c}
\left(\lambda_{1}\right)^{\alpha+p+3-i} \\
\left(\lambda_{2}\right)^{\alpha+p+3-i} \\
\vdots \\
\left(\lambda_{p+3}\right)^{\alpha+p+3-i}
\end{array}\right]
$$

Theorem 2.4. Let p be a positive integer such that $p \geq 3$ and let $\left(M_{p}\right)^{\alpha}=m_{i, j}^{(p, \alpha)}$ for $\alpha \geq 1$, then

$$
m_{i, j}^{(p, \alpha)}=\frac{\operatorname{det} V_{p}(i, j)}{\operatorname{det} V_{p}} .
$$

Proof. Since the equation $x^{p+3}-2 x^{p+2}-x^{p+1}+x^{p}-x^{2}+x+2=0$ does not have multiple roots for $p \geq 3$, the eigenvalues of the Fibonacci-Jacobsthal p-matrix M_{p} are distinct. Then, it is clear that M_{p} is diagonalizable. Let $D_{p}=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p+3}\right)$, then we may write $M_{p} V_{p}=V_{p} D_{p}$. Since the matrix V_{p} is invertible, we obtain the equation $\left(V_{p}\right)^{-1} M_{p} V_{p}=D_{p}$. Therefore, M_{p} is similar to D_{p}; hence, $\left(M_{p}\right)^{\alpha} V_{p}=V_{p}\left(D_{p}\right)^{\alpha}$ for $\alpha \geq 1$. So we have the following linear system of equations:

$$
\left\{\begin{array}{c}
m_{i, 1}^{(p, \alpha)}\left(\lambda_{1}\right)^{p+2}+m_{i, 2}^{(p, \alpha)}\left(\lambda_{1}\right)^{p+1}+\cdots+m_{i, p+3}^{(p, \alpha)}=\left(\lambda_{1}\right)^{\alpha+p+3-i} \\
m_{i, 1}^{(p, \alpha)}\left(\lambda_{2}\right)^{p+2}+m_{i, 2}^{(p, \alpha)}\left(\lambda_{2}\right)^{p+1}+\cdots+m_{i, p+3}^{(p, \alpha)}=\left(\lambda_{2}\right)^{\alpha+p+3-i} \\
\vdots \\
m_{i, 1}^{(p, \alpha)}\left(\lambda_{p+3}\right)^{p+2}+m_{i, 2}^{(p, \alpha)}\left(\lambda_{p+3}\right)^{p+1}+\cdots+m_{i, p+3}^{(p, \alpha)}=\left(\lambda_{p+3}\right)^{\alpha+p+3-i}
\end{array}\right.
$$

Then we conclude that

$$
m_{i, j}^{(p, \alpha)}=\frac{\operatorname{det} V_{p}(i, j)}{\operatorname{det} V_{p}}
$$

for each $i, j=1,2, \ldots, p+3$.
Thus by Theorem 2.4 and the matrix $\left(M_{p}\right)^{\alpha}$, we have the following useful result for the FibonacciJacobsthal p-numbers.

Corollary 2.5. Let p be a positive integer such that $p \geq 3$ and let $F_{n}^{J, p}$ be the nth element of Fibonacci-Jacobsthal p-sequence, then

$$
F_{n}^{J, p}=\frac{\operatorname{det} V_{p}(p+3,1)}{\operatorname{det} V_{p}}
$$

and

$$
F_{n}^{J, p}=-\frac{\operatorname{det} V_{p}(p+2, p+3)}{2 \cdot \operatorname{det} V_{p}}
$$

for $n \geq 1$.
It is easy to see that the generating function of Fibonacci-Jacobsthal p-sequence $\left\{F_{n}^{J, p}\right\}$ is as follows:

$$
g(x)=\frac{x^{p+2}}{1-2 x-x^{2}+2 x^{3}-x^{p+1}+x^{p+2}+2 x^{p+3}}
$$

where $p \geq 3$.
Then we can give an exponential representation for the Fibonacci-Jacobsthal p-numbers by the aid of the generating function with the following Theorem.

Theorem 2.6. The Fibonacci-Jacobsthal p-sequence $\left\{F_{n}^{J, p}\right\}$ have the following exponential representation:

$$
g(x)=x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(2+x-2 x^{2}+x^{p}-x^{p+1}-2 x^{p+2}\right)^{i}\right)
$$

where $p \geq 3$.
Proof. Since

$$
\ln g(x)=\ln x^{p+2}-\ln \left(1-2 x-x^{2}+2 x^{3}-x^{p+1}+x^{p+2}+2 x^{p+3}\right)
$$

and

$$
\begin{aligned}
-\ln \left(1-2 x-x^{2}+2 x^{3}-x^{p+1}+x^{p+2}+2 x^{p+3}\right)= & -\left[-x\left(2+x-2 x^{2}+x^{p}-x^{p+1}-2 x^{p+2}\right)-\right. \\
& \frac{1}{2} x^{2}\left(2+x-2 x^{2}+x^{p}-x^{p+1}-2 x^{p+2}\right)^{2}-\cdots \\
& \left.-\frac{1}{i} x^{i}\left(2+x-2 x^{2}+x^{p}-x^{p+1}-2 x^{p+2}\right)^{i}-\cdots\right]
\end{aligned}
$$

it is clear that

$$
g(x)=x^{p+2} \exp \left(\sum_{i=1}^{\infty} \frac{(x)^{i}}{i}\left(2+x-2 x^{2}+x^{p}-x^{p+1}-2 x^{p+2}\right)^{i}\right)
$$

by a simple calculation, we obtain the conclusion.
Let $K\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ be a $v \times v$ companion matrix as follows:

$$
K\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\left[\begin{array}{cccc}
k_{1} & k_{2} & \cdots & k_{v} \\
1 & 0 & & 0 \\
\vdots & \ddots & & \vdots \\
0 & \cdots & 1 & 0
\end{array}\right]
$$

Theorem 2.7. (Chen and Louck [3]) The (i, j) entry $k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ in the matrix $K^{n}\left(k_{1}, k_{2}, \ldots, k_{v}\right)$ is given by the following formula:

$$
\begin{equation*}
k_{i, j}^{(n)}\left(k_{1}, k_{2}, \ldots, k_{v}\right)=\sum_{\left(t_{1}, t_{2}, \ldots, t_{v}\right)} \frac{t_{j}+t_{j+1}+\cdots+t_{v}}{t_{1}+t_{2}+\cdots+t_{v}} \times\binom{ t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}} k_{1}^{t_{1}} \cdots k_{v}^{t_{v}} \tag{2}
\end{equation*}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+v t_{v}=n-i+j,\binom{t_{1}+\cdots+t_{v}}{t_{1}, \ldots, t_{v}}=\frac{\left(t_{1}+\cdots+t_{v}\right)!}{t_{1} 1 \cdots t_{v}!}$ is a multinomial coefficient, and the coefficients in (2) are defined to be 1 if $n=i-j$.

Then we can give other combinatorial representations than for the Fibonacci-Jacobsthal p-numbers by the following Corollary.

Corollary 2.8. Let $F_{n}^{J, p}$ be the nth Fibonacci-Jacobsthal p-number for $n \geq 1$. Then i.

$$
F_{n}^{J, p}=\sum_{\left(t_{1}, t_{2}, \ldots, t_{p+3}\right)}\binom{t_{1}+t_{2}+\cdots+t_{p+3}}{t_{1}, t_{2}, \cdots, t_{p+3}} 2^{t_{1}}(-1)^{t_{p+2}}(-2)^{t_{3}+t_{p+3}}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(p+3) t_{p+3}=n-p-2$.
ii.

$$
F_{n}^{J, p}=-\sum_{\left(t_{1}, t_{2}, \ldots, t_{p+3}\right)} \frac{t_{p+3}}{t_{1}+t_{2}+\cdots+t_{p+3}} \times\binom{ t_{1}+t_{2}+\cdots+t_{p+3}}{t_{1}, t_{2}, \cdots, t_{p+3}} 2^{t_{1}}(-1)^{t_{p+2}}(-2)^{t_{3}+t_{p+3}}
$$

where the summation is over nonnegative integers satisfying $t_{1}+2 t_{2}+\cdots+(p+3) t_{p+3}=n+1$.
Proof. If we take $i=p+3, j=1$ for the case i . and $i=p+2, j=p+3$ for the case ii. in Theorem 2.7, then we can directly see the conclusions from $\left(M_{p}\right)^{\alpha}$.

Now we consider the relationship between the Fibonacci-Jacobsthal p-numbers and the permanent of a certain matrix which is obtained using the Fibonacci-Jacobsthal p-matrix $\left(M_{p}\right)^{\alpha}$.

Definition 2.9. Au×v real matrix $M=\left[m_{i, j}\right]$ is called a contractible matrix in the $k^{\text {th }}$ column (resp. row.) if the $k^{\text {th }}$ column (resp. row.) contains exactly two non-zero entries.

Suppose that $x_{1}, x_{2}, \ldots, x_{u}$ are row vectors of the matrix M. If M is contractible in the $k^{\text {th }}$ column such that $m_{i, k} \neq 0, m_{j, k} \neq 0$ and $i \neq j$, then the $(u-1) \times(v-1)$ matrix $M_{i j: k}$ obtained from M by replacing the $i^{\text {th }}$ row with $m_{i, k} x_{j}+m_{j, k} x_{i}$ and deleting the $j^{\text {th }}$ row. The $k^{\text {th }}$ column is called the contraction in the $k^{\text {th }}$ column relative to the $i^{\text {th }}$ row and the $j^{\text {th }}$ row.

In [2], Brualdi and Gibson obtained that $\operatorname{per}(M)=\operatorname{per}(N)$ if M is a real matrix of order $\alpha>1$ and N is a contraction of M.

Now we concentrate on finding relationships among the Fibonacci-Jacobsthal p-numbers and the permanents of certain matrices which are obtained by using the generating matrix of Fibonacci-Jacobsthal p-numbers. Let $K_{m, p}^{F, J}=\left[k_{i, j}^{(p)}\right]$ be the $m \times m$ super-diagonal matrix, defined by

$$
k_{i, j}^{(p)}=\left\{\begin{array}{cc}
2 & \text { if } i=\tau \text { and } j=\tau \text { for } 1 \leq \tau \leq m, \\
\text { if } i=\tau \text { and } j=\tau+1 \text { for } 1 \leq \tau \leq m-1, \\
1 & i=\tau \text { and } j=\tau+p \text { for } 1 \leq \tau \leq m-p \\
\text { and } \\
-1 & \begin{array}{c}
i=\tau+1 \text { and } j=\tau \text { for } 1 \leq \tau \leq m-1, \\
\text { if } i=\tau \text { and } j=\tau+p+1 \text { for } 1 \leq \tau \leq m-p-1, ~ \\
\text { if } i=\tau \text { and } j=\tau+2 \text { for } 1 \leq \tau \leq m-2
\end{array}, \text { for } m \geq p+3 . \\
-2 & \text { and } \\
0 & i=\tau \text { and } j=\tau+p+2 \text { for } 1 \leq \tau \leq m-p-2, \\
0 & \text { otherwise. }
\end{array},\right.
$$

Then we have the following Theorem.
Theorem 2.10. For $m \geq p+3$,

$$
\operatorname{per} K_{m, p}^{F, J}=F_{m+p+2}^{J, p}
$$

Proof. Let us consider matrix $K_{m, p}^{F, J}$ and let the equation be hold for $m \geq p+3$. Then we show that the equation holds for $m+1$. If we expand the $p e r K_{m, p}^{F, J}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

$$
\operatorname{per} K_{m+1, p}^{F, J}=2 \operatorname{per} K_{m, p}^{F, J}+\operatorname{per} K_{m-1, p}^{F, J}-2 \operatorname{per} K_{m-2, p}^{F, J}+\operatorname{per} K_{m-p, p}^{F, J}-\operatorname{per} K_{m-p-1, p}^{F, J}-2 \operatorname{per} K_{m-p-2, p}^{F, J} .
$$

Since

$$
\begin{gathered}
\operatorname{per} K_{m, p}^{F, J}=F_{m+p+2^{\prime}}^{J, p} \\
\operatorname{per} K_{m-1, p}^{F, J}=F_{m+p+1^{\prime}}^{J, p} \\
\operatorname{per} K_{m-2, p}^{F, J}=F_{m+p \prime}^{J, p} \\
\operatorname{per} K_{m-p, p}^{F, J}=F_{m+2^{\prime}}^{J, p} \\
\operatorname{per} K_{m-p-1, p}^{F, J}=F_{m+1}^{J, p}
\end{gathered}
$$

and

$$
\operatorname{per} K_{m-p-2, p}^{F, J}=F_{m}^{J, p},
$$

we easily obtain that $\operatorname{per} K_{m+1, p}^{F, J}=F_{m+p+3}^{J, p}$. So the proof is complete.
Let $L_{m, p}^{F_{J}}=\left[l_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
l_{i, j}^{(p)}=\left\{\begin{array}{cc}
2 & \text { if } i=\tau \text { and } j=\tau \text { for } 1 \leq \tau \leq m-3, \\
& \text { if } i=\tau \text { and } j=\tau \text { for } m-2 \leq \tau \leq m, \\
i=\tau \text { and } j=\tau+1 \text { for } 1 \leq \tau \leq m-1, \\
1 & i=\tau \text { and } j=\tau+p \text { for } 1 \leq \tau \leq m-p-2 \\
\text { and } \\
& i=\tau+1 \text { and } j=\tau \text { for } 1 \leq \tau \leq m-4, \\
-1 & \begin{array}{c}
\text { if } i=\tau \text { and } j=\tau+p+1 \text { for } 1 \leq \tau \leq m-p-1, \\
\text { if } i=\tau \text { and } j=\tau+2 \text { for } 1 \leq \tau \leq m-3
\end{array} \\
-2 & \text { and } \\
& i=\tau \text { and } j=\tau+p+2 \text { for } 1 \leq \tau \leq m-p-2, \\
0 & \text { otherwise. }
\end{array}, \text { for } m \geq p+3 .\right.
$$

Then we have the following Theorem.

Theorem 2.11. For $m \geq p+3$,

$$
\operatorname{perL} L_{m, p}^{F, J}=F_{m+p-1}^{J, p} .
$$

Proof. Let us consider matrix $L_{m, p}^{F, J}$ and let the equation be hold for $m \geq p+3$. Then we show that the equation holds for $m+1$. If we expand the $\operatorname{eer} L_{m, p}^{F, J}$ by the Laplace expansion of permanent with respect to the first row, then we obtain

Since

$$
\begin{gathered}
\operatorname{perL} L_{m, p}^{F, J}=F_{m+p-1^{\prime}}^{J, p} \\
\operatorname{perL} L_{m-1, p}^{F, J}=F_{m+p-2^{\prime}}^{J, p}
\end{gathered}
$$

$$
\begin{gathered}
\operatorname{per} L_{m-2, p}^{F, J}=F_{m+p-3}^{J, p} \\
\operatorname{per} L_{m-p, p}^{F, J}=F_{m-1}^{J, p} \\
\operatorname{per} L_{m-p-1, p}^{F, J}=F_{m-2}^{J, p}
\end{gathered}
$$

and

$$
\operatorname{perL} L_{m-p-2, p}^{F_{J}}=F_{m-3}^{J, p}
$$

we easily obtain that $\operatorname{per} L_{m+1, p}^{F, J}=F_{m+p}^{J, p}$. So the proof is complete.
Assume that $N_{m, p}^{F, J}=\left[n_{i, j}^{(p)}\right]$ be the $m \times m$ matrix, defined by

$$
N_{m, p}^{F, J}=\left[\right] \text {, for } m>p+3,
$$

then we have the following results:
Theorem 2.12. For $m>p+3$,

$$
\operatorname{per} N_{m, p}^{F, J}=\sum_{i=0}^{m+p-2} F_{i}^{J, p} .
$$

Proof. If we extend $\operatorname{per} N_{m, p}^{F, J}$ with respect to the first row, we write

$$
\operatorname{per} N_{m, p}^{F, J}=\operatorname{per} N_{m-1, p}^{F, J}+\operatorname{per} L_{m-1, p}^{F, J} .
$$

Thus, by the results and an inductive argument, the proof is easily seen.
A matrix M is called convertible if there is an $n \times n(1,-1)$-matrix K such that $\operatorname{per} M=\operatorname{det}(M \circ K)$, where $M \circ K$ denotes the Hadamard product of M and K.

Now we give relationships among the Fibonacci-Jacobsthal p-numbers and the determinants of certain matrices which are obtained by using the matrix $K_{m, p}^{F, J}, L_{m, p}^{F, J}$ and $N_{m, p}^{F, J}$. Let $m>p+3$ and let H be the $m \times m$ matrix, defined by

$$
H=\left[\begin{array}{cccccc}
1 & 1 & 1 & \cdots & 1 & 1 \\
-1 & 1 & 1 & \cdots & 1 & 1 \\
1 & -1 & 1 & \cdots & 1 & 1 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\
1 & \cdots & 1 & -1 & 1 & 1 \\
1 & \cdots & 1 & 1 & -1 & 1
\end{array}\right]
$$

Corollary 2.13. For $m>p+3$,

$$
\begin{aligned}
\operatorname{det}\left(K_{m, p}^{F, J} \circ H\right) & =F_{m+p+2^{\prime}}^{J, p} \\
\operatorname{det}\left(L_{m, p}^{F, J} \circ H\right) & =F_{m+p-1^{\prime}}^{J, p}
\end{aligned}
$$

and

$$
\operatorname{det}\left(N_{m, p}^{F, J} \circ H\right)=\sum_{i=0}^{m+p-2} F_{i}^{J, p} .
$$

Proof. Since $\operatorname{per} K_{m, p}^{F, J}=\operatorname{det}\left(K_{m, p}^{F, J} \circ H\right), \operatorname{per} L_{m, p}^{F, J}=\operatorname{det}\left(L_{m, p}^{F, J} \circ H\right)$ and $\operatorname{per} N_{m, p}^{F, J}=\operatorname{det}\left(N_{m, p}^{F, J} \circ H\right)$ for $m>p+3, b y$ Theorem 2.10, Theorem 2.11 and Theorem 2.12, we have the conclusion.

Now we consider the sums of the Fibonacci-Jacobsthal p-numbers. Let

$$
S_{\alpha}=\sum_{u=0}^{\alpha} F_{u}^{J, p}
$$

for $\alpha>1$ and $p \geq 3$, and let $T_{p}^{F, J}$ and $\left(T_{p}^{F, J}\right)^{\alpha}$ be the $(p+4) \times(p+4)$ matrix such that

$$
T_{p}^{E,}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
1 & & & & & \\
0 & & & & & \\
\vdots & & & M_{p} & & \\
0 & & & & & \\
0 & & & &
\end{array}\right]
$$

If we use induction on α, then we obtain

$$
\left(T_{p}^{F, J}\right)^{\alpha}=\left[\begin{array}{cccccc}
1 & 0 & 0 & \cdots & 0 & 0 \\
S_{\alpha+p+1} & & & & & \\
S_{\alpha+p} & & & & & \\
\vdots & & & \left(M_{p}\right)^{\alpha} & & \\
S_{\alpha} & & & & & \\
S_{\alpha-1} & & & & &
\end{array}\right] .
$$

References

[1] Bradie B. Extension and refinements of some properties of sums involving Pell number. Missouri J.Math. Sci. 22(1), 2010, 37-43.
[2] Brualdi RA, Gibson PM. Convex polyhedra of doubly stochastic matrices I: applications of permanent function. J. Combin. Theory, Series A. 22(2), 1997, 194-230.
[3] Chen WYC, Louck JD. The combinatorial power of the companion matrix. Linear Algebra Appl. 232, 1996, 261-278.
[4] Devaney R. The Mandelbrot set and the Farey tree, and the Fibonacci sequence. Amer. Math. Monthly. 106, 1999, $289-302$.
[5] Deveci O. The Jacobsthal-Padovan p-sequences and their applications. Proc. Rom. Acad. Series A. 20(3), 2019, 215-224.
[6] Erdag O, Deveci O, Shannon AG. Matrix Manipulations for Properties of Jacobsthal p-Numbers and their Generalizations. The Scientific Annals of "Al. I. Cuza" University of Iasi. in press.
[7] Deveci O, Adiguzel Z, Akuzum Y. On the Jacobsthal-circulant-Hurwitz numbers. Maejo International Journal of Science and Technology. 14(1), 2020, 56-67.
[8] Frey DD, Sellers JA. Jacobsthal numbers and alternating sign matrices. J. Integer Seq. 3, 2000, Article 00.2.3.
[9] Gogin N, Myllari AA. The Fibonacci-Padovan sequence and MacWilliams transform matrices. Programing and Computer Software, published in Programmirovanie. 33(2), 2007, 74-79.
[10] Horadam AF. Jacobsthal representations numbers. Fibonacci Quart. 34, 1996, 40-54.
[11] Johnson B. Fibonacci identities by matrix methods and generalisation to related sequences. http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf, March 25, 2003.
[12] Kalman D. Generalized Fibonacci numbers by matrix methods. Fibonacci Quart. 20(1), 1982, 73-76.
[13] Kilic E. The Binet fomula, sums and representations of generalized Fibonacci p-numbers. European Journal of Combinatorics. 29, 2008, 701-711.
[14] Kilic E, Tasci D. The generalized Binet formula, representation and sums of the generalized order- k Pell numbers. Taiwanese J. Math. 10(6), 2006, 1661-1670.
[15] Kocer EG. The Binet formulas for the Pell and Pell-Lucas p-numbers. Ars Comb. 85, 2007, 3-17.
[16] Koken F, Bozkurt D. On the Jacobsthal numbers by matrix methods. Int. J. Contemp. Math. Sciences. 3(13), 2008, 605-614.
[17] Lancaster P, Tismenetsky M. The theory of matrices: with applications. Elsevier. 1985.
[18] Lidl R, Niederreiter H. Introduction to finite fields and their applications. Cambridge UP. 1986.
[19] Shannon AG, Anderson PG, Horadam AF. Properties of cordonnier Perrin and Van der Lan numbers. Internat. J. Math. Ed. Sci. Tech. 37(7), 2006, 825-831
[20] Shannon AG, Horadam AF, Anderson PG. The auxiliary equation associated with the plastic number. Notes Number Theory Discrete Math. 12(1), 2006, 1-12.
[21] Stakhov AP. A generalization of the Fibonacci Q-matrix. Rep. Natl. Acad. Sci. Ukraine. 9, 1999, 46-49.
[22] Stakhov AP, Rozin B. Theory of Binet formulas for Fibonacci and Lucas p-numbers. Chaos, Solitions Fractals. 27, 2006, $1162-1177$.
[23] Tasci D, Firengiz MC. Incomplete Fibonacci and Lucas p-numbers. Math. Comput. Modell. 52, 2010, 1763-1770.

[^0]: Corresponding author: ÖE mail address: ozgur_erdag@hotmail.com ORCID:https://orcid.org/0000-0001-8071-6794, ÖD ORCID: https://orcid.org/0000-0001-5870-5298

 Received: 17 September 2020; Accepted: 28 October 2020; Published: 31 October 2020
 Keywords. (Jacobsthal sequence; Fibonacci p-sequence; Matrix; Representation.)
 2010 Mathematics Subject Classification. 11K31, 11C20, 15A15
 Cited this article as: Erdağ Ö. Deveci Ö. On The Connections Between Jacobsthal Numbers and Fibonacci p-Numbers. Turkish Journal of Science. 2020, 5(2), 147-156.

