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Abstract
Our key aim is to propose effective estimators for the conditional probability density of
a scalar response variable given a functional co-variable, where the response variable is
considered to have missing data at random. Such estimators are constructed by combining
the approaches of the local linear method and the kernel nearest neighborhood. The main
feature of this estimation is the possibility to model the missing phenomena. Under less
restrictive conditions, we show the strong consistency of the proposed estimators. To assess
the efficacy of the developed estimators, empirical analysis as well as real data analyses
are performed.
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1. Introduction
For nonparametric statistics, the conditional density function plays a significant role. It

is used to characterize the relationship between two phenomena in various applied areas.
In particular, it helps in controlling the inflation rate in economics, predicting the pollution
peaks in environments or constructing the region predictive in the analysis of time series
problem.

Historically, the first study considering the estimation method in conditional density
dates back to [33]. He proved the almost surely convergence of the kernel estimator
of the transition probability density in the Markov chain. The issue of the automatic
determination of the smoothing parameters in the estimation method of conditional density
has been considered by [35]. We refer to [23] for the Lp consistency of the kernel estimation
method using the conditional probability density in which the observations meet the strong
markovian property. Some authors have treated the estimation method in the conditional
density as a preliminary model of the conditional mode (see, for instance, [12, 28,30]).
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The conditional density function has been introduced first in the functional statistics
area by [17]. They proposed the functional version of the Nadraya-Watson estimator in
the independent identically distributed case and then determined its almost complete con-
sistency. Later, the L2 consistency of their estimator was proved by [22]. The well-known
asymptotic normality of the kernel estimator has been considered by some researchers.
We cite, for instance, Ezzahrioui and Ould Said [16], who proved this asymptotic property
under the strong mixing condition. Considering the spatial dependent case, Dabo-Niang et
al. [13] have studied the almost complete consistency and the Lp convergence of the spatial
version of the functional Nadraya-Watson estimator of the conditional density function.

The local linear method has become of interest to many researchers. Baillo and Grane [6]
were the first to introduce this topic in the functional statistics area. Based on a regression
operator, they studied the scalar variable given a Hilberthian regressor. In contrast to the
multivariate case, several approaches to the local linear estimation exist in functional
statistics. For example, Barrientos-Marin et al. [7] have constructed a fast version that
can be used even if the predictor variable belongs to Banach space. Boj et al. [9] have
considered another alternative estimator for the functional local linear regression. All
these cited studies concern the regression operator. Demongeot et al. [14] considered the
conditional density and determined the first results of the functional local linear estimation.
In their constructed estimator and using the fast version of local linear modeling proposed
by [7], the uniform almost complete was established. It is notable that the principal
feature of the local linear method is the likelihood to reduce the bias term when using
classical kernel approach. Motivated by this feature, Rachdi et al. [32] considered the
conditional density, studied the bias term for the functional local linear estimator and
have quantified the gain on the bias. More recently, Almanjahie et al. [2] have constructed
an alternative estimator using the k nearest neighbor (kNN) smoothing and established
the almost complete consistency of their estimator. In parallel, Ferraty et al. [18] stated
the nonparametric modeling of functional data with missing responses at random. Based
on the regression operator, they used independent identically distributed (iid) data and
studied the kernel estimator when the functional regressor is completely observed and the
scalar response variable is Missing at Random (MAR). Later, their results were generalized
to an ergodic functional time series case by [25]. Considering the same data structure, the
problem of conditional mode estimation was investigated by [26]. Recently, Benchiha and
Kaid [8] considered the regression operator and used the local linear estimation method
in the MAR data case to construct the almost complete consistency of their estimator.

In this paper, the estimation method of the local linear approach for the Conditional
Density Probability (CDP) is considered but when the regressors are infinite-dimensional.
We construct two new estimators of the CDP which are constructed by combining the
approaches of local linear method to the kNN approach . The principal advantage is
that the built estimators inherit the good statistical properties of the two approaches.
In particular, the smoothing parameter of the kNN is locally adapted to the structure
of the data which is extremely beneficial in Functional Data Analysis (FDA) when the
convergence rate and the local behavior of the data are closely linked. However, because
of the randomness of the bandwidth parameter, the statement of the estimator asymptotic
properties is complex and needs some further mathematical devolvement. In this context,
the almost complete consistency)† of the two estimators will be proved. These asymptotic
properties will be treated under general conditions allows highlighting the bi-functional

†We say that the sequence of random variables (∆n) converges a.co. to zero, if and only if

∀τ > 0,
∑
n≥1

IP(|∆n| > τ) < ∞.

Furthermore, we say that ∆n = Oa.co.(δn), if there exists τ0 > 0, such that
∑
n≥1

IP(|∆n| > τ0δn) < ∞.
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dimensionality of both models and data. This study is illustrated based on real data ex-
amples and some Monte Carlo studies. Finally, let us stress that the statistical method for
analyzing functional data is actually in a continuous devolvement. The reader interested
by this topic may refer to the survey paper by [27] or the work by [3] for recent advances
and references. Meanwhile, for a background in kNN smoothing and/or nonparametric
modeling for functional MAR data, we refer to [4, 5, 10,20,31].

The outline of this paper is as follows. The presentation of the general framework of
this paper is introduced in Section 2. The construction of the estimators is performed in
Section 3. Also, we establish the asymptotic properties of the constructed estimators. We
devote Section 4 to the computational analysis of the constructed estimators. Such analysis
allows us to highlight the real impact of the proposed model in practice. Our proofs of
the technical lemmas are detailed in the appendix section. Conclusion and prospects are
stated in Section 5.

2. The incomplete functional data framework
For i = 1, . . . , n, let (Xi, Yi) represent n pairs of independent random vectors which are

drawn from (X, Y ) ∈ F × IR. Here, F represents a functional space, eventually, finite
dimensional, Hilbert (equipped with the norm ∥.∥) or semi-metric space (equipped with
a semi-metric d). From now, we take x in F(resp. y in IR) and the neighborhoods of x
and y are respectively Nx and Ny.

Next, we assume the conditional probability distribution of Y | X exists and is abso-
lutely continuous with respect the Lebesgue measure on IR. Note that the CDP function
of Y | X = x is indicated by φ(y|x). In addition, the functional variable X satisfies

ϕx(r) := IP(X ∈ B(x, r)) > 0, (2.1)
where B(x, r) is the closed topology ball in F centered in x and r being the radius. It is
defined by

B(x, r) = {z ∈ F : d(x, z) ≤ r} .

The function in Equation (2.1), is an invertible function, and if 0 < c < 1 < c∗ < ∞ exist,
then we have the following condition:

lim
r→0

ϕx(rc)
ϕx(r)

< 1 < lim
r→0

ϕx(rc∗)
ϕx(r)

. (2.2)

Considering the conditional density function and studying its local linear estimator is
the main objective of the current paper. Define the cumulative conditional distribution
function as

Φ(x, y) = IP(Y ≤ y|X = x).
Then, the CDP function is

φ(y|x) = ∂Φ(x, y)
∂y

.

Note that the variable Y is the response variable. Therefore, the functional space of this
nonparametric model is characterized using the following condition:

• If (F, ∥.∥) is Hilbert space: There exist γ > 0 , and C > 0 such that
∀(y1, y2) ∈ Ny × Ny, |φ(y1|x) − φ(y2|x)| ≤ C (|y1 − y2|γ) . (2.3)

• If (F, d) is semi-metric space: There exist C > 0, γ1 > 0 , and γ2 > 0 such that
∀(y1, y2) ∈ Ny × Ny and ∀(x1, x2) ∈ Nx × Nx

|φ(y1|x1) − φ(y2|x2)| ≤ C (dγ1(x1, x2) + |y1 − y2|γ2) . (2.4)
The novelty of the current work depends on considering the general case that covers the

MAR in Y . Such situation is modeled by introducing a variable δ which follows a Bernoulli
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distribution where δ = 1 means the Y is observed, otherwise the δ = 0. Considering the
MAR means that for a given X, Y and δ are conditionally independent. Mathematically,
we have

IP(δ = 1|X, Y ) = IP(δ = 1|X) = P (X),
where the functional operator P (·) is unknown. If the explanatory variable X is known,
then the function P (·) gives the probability to observe of Y . For the asymptotic study,
we need the following regularity condition.

P (·) is a continuous function on Nx and such that P (z) > 0, for all z ∈ Nx. (2.5)
Our objective is the construction and studying of the asymptotic property of two local
linear estimators adapted to this incomplete functional data case. The first one is used
for an structure while the second one is adapted for semi-metric functional space.

3. The kNN local linear estimation of the CDP

3.1. Hilbertian regressor case
In this part, F is assumed to be a separable Hilbert space on an orthonormal basis (vj)j≥1
and equipped with the norm ∥.∥. As all local linear fitting, it is also assumed that the local
approximation of φ(y|x) is achieved by a linear function. In sense that, for all x0 ∈ Nx,
we get

φ(y|x0) = ay|x + by|x(x0 − x) + ρy|x(x0 − x, x0 − x) + o(∥x0 − x∥2). (3.1)
Note that the linear by|x and bilinear ρy|x, in Equation (3.1), are continuous operators.
The former maps from F to IR and the later maps from F × F to IR. As suggested in
[1], the linearity property of by|x together with the decomposition process of (Xi − x) on
(vj)j≥1 of F to a threshold J are used to estimate the coefficients ay|x and by|x. Precisely,
As J → ∞, we get the consistency of

J∑
j=1

cjvj → X − x

from Parseval’s theorem. Note that the (cj)j represents the (X − x) coefficients in the
(vj)j≥1 basis. Under this consideration, the Local Linear kNN Estimators (kNN-LLE) of
ay|x and by|x are determined from minimizing the criterion

min
a,b1,...,bJ ∈ IR

n∑
i=1

ℓ−1
l H(ℓ−1

l (y − Yi) − a −
J∑

j=1
cijbj

2

δiK

(∥x − Xi∥
hk

)
,

where for j = 1, . . . , J , we put bj = by|x(vj) and K and H denote the kernels. The hk and
ℓl are the bandwidths, defined by

hk = min{h ∈ IR+ such that
n∑

i=1
1IB(x,h)(Xi) = k}

and
ℓl = min{ℓ ∈ IR+, such that

n∑
i=1

1I(y−ℓ, y+ℓ)(Yi) = l}.

Here, the 1IA refers to an indicator function on the set A. Note that the approach of kNN
method was presented in FDA area by [10]. In spite of the significance of this method-
ology, practically speaking, the useful of kNN smoothing has not yet been completely
investigated. Some contributions on this topic exist on the literature; see for instances,
[20, 21, 24]. Finally, the Hilibethian version of kNN-LLE estimation of φ(y|x) can be
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explicitly expressed by the matrix

φn(y|x) = âyx = eJ+1′

1 (Q′
BKQB)−1(Q′

BKH). (3.2)

eJ+1′

1 is the transpose vector of the first canonical basis vector of IRJ+1 and QB is given
by

QB =

 1 c11 . . . c1J
...

...
...

...
1 cn1 . . . cnJ

 .

We set
K = diag(δ1K(h−1

k ∥x − X1∥), . . . , δnK(h−1
k ∥x − Xn∥)),

H = ℓ−1
l (H(ℓ−1

l (y − Y1), . . . , H(ℓ−1
l (y − Yn))).

The following conditions (A4-A6) are needed for establishing the almost complete consis-
tency of the estimator φn(y|x):

The coefficients (cj)j such that
∑

j=J+1
c2

j = Oa.co(J−v) for certain v > 0. (3.3)

The kernel K is a differentiable function which is supported within (0, 1) such that
− ∞ < C∗ < K ′(t) < C < 0 for 0 ≤ t ≤ 1, C, C ′ > 0. (3.4)

The kernel H is a continuous function has compact support and satisfies∫
H(t)dt = 1. (3.5)

The number of nearest neighbors k and l satisfy that
n log n

lk
→ 0 as n → ∞. (3.6)

Theorem 1. If the conditions (2.2), (2.3),(2.5)-(3.6) are satisfied, then

|φ(y|x) − φn(y|x)| = O(J−v) + O

(
l

n

)γ

+ O

(
ϕ−1

x

(
k

n

)2
)

+ Oa.co.

√n log n

lk

 , (3.7)

as min(n, J) → ∞.

Proof: The proof is briefly presented. It is obtained by combining the ideas of [10] to those
used by [31]. Throughout we set, for α1, α2, α3 ∈ (0, 1) such that

ϕ−1
x

(
k

α1n

)
≤ Cϕ−1

x

(
α2k

n

)
,

by
hr

k = ϕ−1
x (k/α1n) , hl

k = ϕ−1
x (α2k/n) , ℓl = l

α3n
and ℓr = α3l

n
. (3.8)

Thus, Theorem 1 is a direct result of lemmas below.

Lemma 1. (See [11]) Under the conditions (2.2), (2.5), (3.3) and (3.4), we obtain, for all
j, j′ = 1, . . . , J ,

Sn,j′,j = Oa.co. (1) ,

where Sn,j′,j = 1
nh2ϕx(h)

n∑
i=1

cij′cijδiK(h−1∥x − Xi∥). for h = hr
k or hl

k.
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Lemma 2. Using the Theorem 1conditions and for all j = 1, . . . , J , we get

IE [Tn,j ] = O (ℓγ) and IE [en,j ] = O
(
h2
)

,

where Tn,j = 1
nhℓϕx(h)

n∑
i=1

cijδiK(h−1∥x − Xi∥)(H(ℓ−1(y − Yi) − φ(y|Xi)) and

en,j = 1
nhϕx(h)

n∑
i=1

cijδiK(h−1∥x − Xi∥)ρxy(Xi − x, Xi − x), for h = hr
k or hl

k

and ℓ = ℓr
l or ℓl

l.

Lemma 3. Using the same conditions that used in Theorem 1 and for all j = 1, . . . , J ,
we get

Tn,j − IE [Tn,j ] = Oa.co.

(√
log n

nℓϕx(h)

)
and

en,j − IE [en,j ] = Oa.co.

(√
log n

nϕx(h)

)
.

Corollary 1. Under the same conditions that used in Theorem 1, we determine

e′
1S−1

n Tn = O (ℓγ) + Oa.co.

(√
log n

nℓϕx(h)

)
,

with

e′
1S−1

n en = O
(
h2
)

+ Oa.co.

(√
log n

nϕx(h)

)
.

3.2. Functional regressor case
In this part, we work with more general structure by taking F to be a semi-metric

space. This space is equipped with a semi-metric d and we adopt the fast version of the
functional locally modeling that proposed by [7]. We work with the conditional density
and considered the following local approximation. For all x0 ∈ Nx, and using

φ(y|x0) = A(y|x) + B(y|x)β(x, x0) + o(d(x0, x)) (3.9)
where β(., .) is a known function from F2 into IR such that, ∀x′ ∈ F, β(x′, x′) = 0.

∀x′ ∈ F, C1 |δ(x, x′)| ≤ |β(x, x′)| ≤ C2 |δ(x, x′)|, where C1 > 0, C2 > 0.

Then, the minimization of the following quantity

min
(a,b)∈IR2

n∑
i=1

(
ℓ−1

l H(ℓ−1
l (y − Yi) − a − bβ(Xi, x)

)2
δiK(h−1

k d(x, Xi)), (3.10)

leads to the estimating of the scalars A(y|x) and B(y|x).

Note that the pair (x, y) is fixed and belongs to F × IR.Now, using the simple algebra
as in the Hilbertian case, we prove that the minimizers of (3.10) are the solutions of(

Â(y|x)
B̂(y|x)

)
= (D′KD)−1(D′KH).
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where

D =

 1 β(X1, x)
...

...
1 β(Xn, x)

 .

It follows that
φ̂n(y|x) = Â(y|x) = e2′

1 (D′KD)−1(D′KH).
Here e2′

1 is the transpose vector of the first canonical basis vector of IR2. Therefore it is
explicitly defined by

φ̂n(y|x) =
∑n

i,j=1 Fij(x, hk)H(ℓ−1
l (y − Yj))

ℓl
∑n

i,j=1 Fij(x, hk)
, (3.11)

where F̂ij(x, hk) = β(Xi, x) (β(Xi, x) − β(Xj , x)) δiδjK(h−1
k d(x, Xi))K(h−1

k d(x, Xj)).

Constructing the almost complete consistency of the above estimator, in Equation
(3.11), is not straightforward. To proceed, we need the following additional condition
for achieving our goal.

ϕ−1
x

(
k

n

)∫
B(x,hk)

β(u, x)dP (u) = o

(∫
B(x,hk)

β2(u, x) dP (u)
)

(3.12)

where dP (x) is the cumulative distribution of X.

Theorem 2. Based on the conditions (2.2), (2.4), (2.5) and (3.4)-(3.12), we have that:

|φ̂n(y|x) − φ(y|x)| = O

(
ϕ−1

x

(
k

n

)γ1)
+ O

(
k

n

)γ2

+ Oa.co.

√n log n

ℓk

 .

Proof: The proof is obtained by using a similar ideas to those used in Theorem 1. It
will be presented in brief. It is based on the results of the following lemmas with h =
either hr

k or hl
k and ℓ = either ℓr

l or ℓl
l

Lemma 4. Based on the conditions of the Theorem 2, we get, for all j = 0, 1, 2,

Ln,j − IE[Ln,j ] = Oa.co.

(√
log n

nϕx(h)

)
and

Cov(Ln,j , Ln,j′) = Oa.co.

(√
log n

nϕx(h)

)
, j, j′ = 0, 1, 2 (3.13)

where Ln,j = 1
nhjϕx(h)

n∑
i=1

δiβ
j(Xi, x)K(h−1d(x, Xi)).

Lemma 5. Based on the conditions of the Theorem 2, we get, for all j = 0, 1, 2,

Zn,j − IE[Zn,j ] = Oa.co.

(√
log n

nℓϕx(h)

)
and

Cov(Zn,j , Zn,j′) = Oa.co.

(√
log n

nℓϕx(h)

)
, j, j′ = 0, 1, 2

where Zn,j = 1
nℓhjϕx(h)

n∑
i=1

δiβ
j(Xi, x)K(h−1d(x, Xi))H(ℓ−1

l (y − Yi)).
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Lemma 6. Under the same conditions that used in Theorem 2, we determine∣∣∣B̂(x)
∣∣∣ = O (hγ1) + O (ℓγ2) ,

where B̂(x) =
IE[F12(x, h)ℓ−1

l H(ℓ−1
l (y − Y1))]

IE[F12(x, h)]
− φ(y|x)

4. Computational aspects

4.1. Simulation result
We evaluate the efficiency of the delivered estimators, based on a finite sample, by com-
paring their behavior to the local constant, defined by

φ̃n(y|x) =

n∑
i=1

H
(
ℓ−1

l (y − Yi)
)

K (ℓl∥x − Xi∥) δi

n∑
i=1

ℓlK
(
h−1

k ∥x − Xi∥
)

δi

.

For this empirical example, we draw a sample of random exploratory variable from the
following continuous process

X(t) = Wt

1 + cos(Wtπ) + W 2t2 , W is the standard normal distribution.

Using the same grid, we discretize all the curves Xi’s. Equi-spaced measurements of 100
in (0, 1) are used for generating the curves’ grid. Shown in Figure 1 is a plot for all these
functional curves.

Figure 1. The results of plotting 100 samples curves.

Next, we generate the response variable by the relation,

Y = r(X) + ϵ, with r(X) =
∫ 1

0

1
1 + X2(t)

dt,

where ϵ is drown from the standard normal distribution. The CDP of Y | X is clearly
obtained by shifting the distribution of ϵ. It is expressed by

φ(y|x) = 1√
2π

exp
(

−(y − r(x))2

2

)
.
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Of course, the novelty of this work is the examination of the behavior of the constructed
estimators under various missing rates. Precisely, we wish to compare the resistance of
φn, φ̂n and φ̃n to the missing phenomena. For this purpose, we control this phenomena
by the following conditional probability

P (X) = expit
(2α

π

∫ 1

0
X2(t)dt

)
,

where expit(u) = eu/(1 + eu)). Such kind of conditional probability of observation has
been used by [18] where the missing rate is measured by the parameter α. It is clear that
the dependency to the regressor X increases with higher values of α which also decrease
the degree of the missing rate. In this empirical study, we compare three missing rates:
strong, medium and weak cases with α = 0.05, α = 0.5 and α = 5 respectively. The
missing rate is quantified by the following benchmark

δ̄ = 1
n

n∑
i=1

δi.

The latter gives 5% missed observations for the weak case, 20% missed observations for
the medium case and there are more than (55%) missing observations in the strong case.
For the practical use of the estimators, we use the conditional mode cross-validation rule
to select the different parameter involved in the estimators. This rule has been used by
[19] for the prediction problem. It is based on the following criterion

MSE = 1
n

n∑
i=1

(
Yi − M̄−i

n (Xi)
)2

, where M̄−i
n (Xi) = arg max

y
φ̄n

−i(y|Xi), (4.1)

with φ̄n
(−i) refers to the estimation leave-one-out-curve of φ either φn, φ̂n or φ̃n . This rule

is used to select the optimal number k and the threshold J of the Fourier basis. The first
one is selected over {5, 10, 15, . . . , 60}2 and the second one from {2, 5, 8, 11, 12}. Finally,
we used L2 metric to simulate a quadratic kernel function that is supported in the interval
(0, 1). The efficiency of the three estimators is examined by the MAE-error expressed by

MAE = 1
n

n∑
i=1

∣∣∣φ(Yi|Xi) − φ̄n
−i(Yi|Xi)

∣∣∣ .
In Table 1, we summarize the MAE- error of the three estimators for various values

of n. For more readability of the effect of the missing rate, we plot the true conditional
densities versus their estimators for the three missing situations for n = 100 and for an
arbitrary conditioning curves X0 (randomly choosing); see Figure 2.

Table 1. MAE results.

Weak case Medium case Strong case
MAE(φ̂n) n=50 0.29 0.53 0.76

n=150 0.23 0.41 0.67
n=250 0.17 0.20 0.58

MAE( φn) n=50 0.25 0.48 0.84
n=150 0.22 0.37 0.66
n=250 0.15 0.25 0.62

MAE(φ̃n) n=50 0.38 0.63 0.97
n=150 0.32 0.43 0.69
n=250 0.28 0.36 0.74

Clearly, the local linear approach appears to perform better than the classical kernel
estimation of the CDP φ̃n, and the missing phenomena affects strongly the behavior of the
estimation processing. Moreover, without surprise, the efficiency of the three estimators
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decreases with respect to the sample size n. We also observe that the three estimators
have satisfactory results for n = 50 (see Table 1 which is a moderate sample size).

Figure 2. Comparison of the three estimators φn(—-), φ̂n(.....) or φ̃n (-.-.-).

4.2. A real-data application
In the real illustrative example, we examine how our approach performs over some food

quality data. Specifically, we focus on the determination of riboflavin content in the yogurt
using the Near-infrared curves. Such vitamin constitutes an important factor in yogurt
quality. It is beneficial for the vision mechanism as well as the integrity of the skin and
mucous membranes. The prediction of this vitamin has been considered by [29] using the
multivariate statistical models. The novelty of the present works is the modelization by
the nonparametric functional statistical models. They are more adapted for the functional
nature of the spectrometry curves. In particular, in this real data analysis, we consider
115 curves Xi(t) that represents the light absorption at 120 waves recorded from range
excitation wavelengths ranged between 270 and 550 nm, and emission wavelengths ranged
between 310-590. The data-set available at http://www.models.life.ku.dk/Yogurt and
the curves are plotted in Figure 3.

Figure 3. The spectra curves.

Of course the scalar response variable Yi is the riboflavin content in each observed unite
i = 1, . . . 115. Our main purpose is to examine the behavior of estimators φn and φ̂n

in presence of the missing observations. To do that we compare the prediction by the
conditional mode of the two estimators using two strategies to overcome the missing phe-
nomena:
In the first strategy we omit the missing observation. In sense that, we predict an obser-
vation Yi0 by

Mn(Xi0) = arg max
y

φn(y|Xi0) and M̂n(Xi0) = arg max
y

φ̂n(y|Xi0).

http://www.models.life.ku.dk/Yogurt
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While, the second strategy is based on the estimation of the missing observation by the
local mean. More precisely, we predict an observation Yi0 by

MLM
n (Xi0) = arg max

y
φLM

n (y|Xi0) and M̂n
LM

(Xi0) = arg max
y

φ̂n
LM (y|Xi0),

where φLM
n and φ̂n

LM are computed by replacing the missing observation Yj0 by

Ȳj0 = 1
k

k∑
i=1

Yi,j0 ,

(Yi,j0)i=1,...k being the k response observations associated to the kNN explanatory obser-
vations at Xj0 . Furthermore, we keep the same parameters and the same rules of the
simulation section. We change only the metric and the basis functions which are strongly
affected by the smoothed property of the spectrometry curves. So, as the curves have
discontinuous form, we proceeded with the PCA- projection basis and the PCA-metric
where the best threshold of eigenfunction J is selected from the subset {1, 3, 5, 7, 9, 112}.
We present the predication results in Table 2 and plotted them in Figure 4 and Figure 5.
In these figures, the predicted values versus the real values are shown for 35 observations
randomly chosen as testing points. This computational study is carried out over two levels
of missing rates: weak (5% observations are omitted) and strong (50% observations are
omitted).

Table 2. MSE results.

Weak case Strong case
MSE(Mn ) 0.17 0.27
MSE( M̂n ) 0.24 0.39
MSE(MLM

n ) 0.48 0.67
MSE( M̂n

LM
) 0.56 0.62

It appears clearly that the first strategy has more advantages over the second one.
This conclusion confirms Efromovich’s [15] statement that ignoring missing observations
is the best strategy to handle the missing phenomena with nonparametric modeling. In
addition, the two estimators are clearly very simple to apply in practice, and their efficiency
is directly related to the selection of the different parameters included in the estimation
methods.

5. Conclusion and prospects
In this paper, we have studied the problem of the nonparametric estimation of the

conditional density function using the local linear approach. We have considered the kNN
smoothing approach that allows us to improve the estimator’s efficiency by selecting the
appropriate bandwidth parameter. The second feature of this study is the possibility to
cover the incomplete data situation characterized by the missing phenomena. Empirical
analysis shows the excellent performance of the proposed methodology, which varied with
respect to the missing level. In addition to these features, the present study opens some
crucial tracks for the future. In particular, it will be interesting to investigate the other
types of incomplete functional data, such as the censored or truncated data. Another
possible direction is to study the asymptotic property of the kNN local linear estimator in
the functional times series case (complete or incomplete cases). In addition, the asymptotic
distribution of the proposed estimators is an interesting open question. Such asymptotic
property is essential as preliminary statistical analyses, including the confidence interval or
hypotheses testing. In addition, extending this kind of estimation to other nonparametric
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models, such as the conditional hazard function or the conditional distribution function,
is also a natural prospect of the present contribution.

Figure 4. Weak case.

Figure 5. Strong case.
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Appendix
The proofs of the intermediate results are given in short ways because we follow the

same ideas as in [11]. The main challenge, here, is how to handle the additional variable
δ. When no ambiguity is necessary then in what follows, we will denote some strictly
positive generic constants by C and C∗.

Proof of Lemma 2. For the first term, we write

IE[Tn,j ] = 1
ℓϕx(h)

IE
[
c1jδ1K(h−1∥x − Xi∥)

(
H(ℓ−1(y − Yi)) − φ(y|X1)

)]
.

Conditioning by X1, to conclude that

IE[Tn,j ] = 1
hℓϕx(h)

IE
[
c1jK(h−1∥x − X1∥)P (X1)(IE

[
H(ℓ−1

l (y − Yi))|X1
]

− φ(y|X1))
]

.

Observe that by standard analytical arguments, we obtain

IE
[
ℓ−1H(ℓ−1

l (y − Yi))|X1
]

= φ(y|X1)) + O(ℓγ).

It follows that
IE[Tn,j ] = O(ℓγ).

The proof of Lemma 2 is now completed, because the second term is treated in the same
manner.

Proof of Lemma 3. The main tool for proofing this lemma is the use of Bernstein’s
inequality on

∆i = 1
hℓϕx(h)

δicijK(h−1∥x − Xi∥)P (X1)(IE
[
H(ℓ−1(y − Yi))|X1

]
− φ(y|X1)),

for which
Tn,j = 1

n

n∑
i=1

[∆i − IE[∆i]].

Now, because of (vj)j≥1 is an orthonormal basis, for all j ≤ J , we obtain
|c1j | ≤ ∥vj∥∥x − X1∥ ≤ ∥x − X1∥.

Thus,
IE [cijδ1K1(h)] ≤ IE

[
∥x − X1∥2K1(h)

]
≤ Chϕx(h).

By using conditions (2.2) and (3.3), we obtain that

|∆| < C/ℓϕx(h) and IE |∆i|2 < C ′/ℓϕx(h).
Then, the Bernstein inequality (see [34], Page 205) permits to infer, for η > 0, that

IP
{∣∣∣∣∣ 1n

n∑
i=1

(∆i − IE[∆i])
∣∣∣∣∣ > η

√
log n

n ℓϕx(h)

}
≤ C∗n−Cη2

.
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We conclude that

Tn,j − IE[Tn,j ] = Oa.co.

(√
log n

n ℓϕx(h)

)
.

The proof of en,j follows the same line as Tn,j .

Proof of lemma 4. Because the variable δ and the kernel K are bounded, we obtain,
for all i = 1, . . . n ∣∣∣∣ 1

hjϕx(h)
δiβ

j(Xi, x)K(h−1d(x, Xi))
∣∣∣∣ ≤ C

1
ϕx(h)

and V ar

[ 1
hjϕx(h)

δiβ
j(Xi, x)K(h−1d(x, Xi))

]
≤ C ′ 1

ϕx(h)
,

which allows to infer that

IP
{

|Ln,j − IE[Ln,j ]| > η

√
log n

n ϕx(h)

}
≤ C∗n−Cξ2

, for certain ξ > 0.

On the other hand, by the same reasoning we obtain for all l = 0, 1, 2, and k = 0, 1, we
have

IE
[
δiβ

l(Xi, x)Kk(h−1d(x, Xi))
]

= O(hlϕx(h)). (A.1)
This last assertion is a consequence of the missing property where

IE
[
δiβ

j(Xi, x)Kk(h−1d(x, Xi))
]

= IE
[
P (Xi)βj(Xi, x)Kk(h−1d(x, Xi))

]
.

Now, concerning the covariance term, we use the independence and the stationarity of the
(Xi, δi, Yi)i to write that

Cov(Ln,j , Ln,j′) = 1
nhj+j′ϕ2

x(h)
Cov(δ1βj(X1, x)K(h−1d(x, X1)), δ1βj′(X1, x)K(h−1d(x, X1)))

= 1
nhj+j′ϕ2

x(h)
IE
[
δ2

1βj+j′(Xi, x)K2(h−1d(x, Xi))
]

− 1
nhj+j′ϕ2

x(h)
IE
[
δ1βj(Xi, x)K(h−1d(x, Xi))

]
IE
[
δ1βj′(Xi, x)K(h−1d(x, Xi))

]
Finally, using to deliver the proof of Equation (3.13).

Proof of Lemma 5. Proofing this lemma is very comparable to that of Lemma 4. The
key difference is in the additional term ℓ−1Hj(ℓ−1(y − Yi)); for j = 1, 2. The latter can be
manipulated by standard arguments. Indeed, we write

IE
[
ℓ−1Hj(ℓ−1(y − Yi))|X

]
=
∫

IR
Hj(t)φ(y − ℓt|X)dt.

Because of the Holderian condition (2.4) and the condition (3.5) on the kernel H, we prove
that

IE
[
ℓ−1Hj(ℓ−1(y − Yi))|X

]
=
∫

IR
Hj(t)φ(y − ℓt|X)dt = O(1).

Hence, for l = 0, 1, 2, j = 1, 2 and k = 0, 1, 2, we determine that

IE
[
δiβ

l(Xi, x)Kk(h−1d(x, Xi))ℓ−jHj(ℓ−1
l (y − Yi))

]
= O(hlℓj−1ϕx(h)).

Thus, to achieve the first part, we employ Bernstein’s inequality to conclude that

Zn,j − IE[Zn,j ] = Oa.co.

(√
log n

nℓ ϕx(h)

)
.
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Note that the stationarity property for the observations (Xi, δi, Yi)i can be used to conclude
that

Cov(Zn,j , Zn,j′) = Oa.co.

(√
log n

nℓϕx(h)

)
j, j′ = 0, 1, 2.

Proof of Lemma 6. We start with

B̂(x) = IE[F12(x, h)ℓ−1H(ℓ−1(y − Y2))]
IE[F12(x, h)]

− φ(y|x)

= 1
IE[F12(x, h)]

IE
[
F12(x, h)(ℓ−1H(ℓ−1(y − Y2)) − φ(y|x))

]
.

Then, treating the nominator term as

IE
[
F12(x, h)(ℓ−1H(ℓ−1(y − Y2)) − φ(y|x))

]
= IE

[
δ1β2(X1, x)K(h−1d(x, X1))K(h−1d(x, X2))P (X2)

(IE[ℓ−1H(ℓ−1(y − Y2))] − φ(y|x))
−δ1β(X1, x)K(h−1d(x, X1))β(X2, x)K(h−1d(x, X2))P (X2)

(IE[ℓ−1H(ℓ−1(y − Y2))] − φ(y|x))
]

.

Once again, we use the Holderian condition (2.4) to show that

IE
[
F12(x, h)(ℓ−1H(ℓ−1(y − Y2)) − φ(y|x))

]
= O (hγ1) + O (ℓγ2) .

Therefore,
B̂(x) = O (hγ1) + O (ℓγ2) .

Proof of Theorems For sake of brevity we proof only how the convergence rate of
Theorem 1 results from the Lemmas 1-3. The proof of Theorem 2 follows the same
lines. Indeed, as the convergence rates of Lemmas 1-3 are stated for h equal hr

k and hl
k

(respectively ℓ by ℓr and ℓl), then , if we replace in Lemma2 h by

hr
k = ϕ−1

x (k/α1n)
(
resp.hl

k = ϕ−1
x (α2k/n)

)
and ℓ by

ℓr = α3l

n
and ℓl = l

α3n
we get

IE [Tn,j ] = O

(
αγ

3 lγ

nγ

)
= O

(
l

n

)γ

for ℓ = ℓr

and
IE [Tn,j ] = O

(
lγ

αγ
3nγ

)
= O

(
l

n

)γ

for ℓ = ℓl.

Thus, for both cases ℓ by ℓr and ℓl), we have

IE [Tn,j ] = O

(
l

n

)γ

which is exactly the second term in Theorem 1. Using the same reasoning for en,j . Indeed,
as α1, α2 such that

ϕ−1
x

(
k

α1n

)
≤ Cϕ−1

x

(
α2k

n

)
,
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hence,
IE [en,j ] = O

((
ϕ−1

x (k/α1n)
)2
)

= O

((
ϕ−1

x (α2k/n)
)2
)

for h = hr

and
IE [en,j ] = O

((
ϕ−1

x (α2k/n)
)2
)

for h = hl

On the other hand, because of ϕ is increasing function we have, for α2 ∈ (0, 1),

ϕ−1
x (α2k/n) ≤ ϕ−1

x (k/n) .

We conclude that
IE [en,j ] = O

((
ϕ−1

x (k/n)
)2
)

for h = hr

and
IE [en,j ] = O

((
ϕ−1

x (k/n)
)2
)

for h = hl

which is exactly the third term in Theorem 1. Now, for the last term in Theorem 1, we
use the same ideas as in Lemma 2. Indeed, firstly observe that

ϕx(h) = ϕx

(
ϕ−1

x (α1k/n)
)

= α1k

n
for h = hr

and
ϕx(h) = ϕx

(
ϕ−1

x (k/α2n)
)

= k

α2n
for h = hl.

Then, the convergence rates in Lemma 3 are

Tn,j − IE [Tn,j ] = Oa.co.

(√
log n

nℓϕx(h)

)
= Oa.co.

(√
log n

nα3l
n

α1k
n

)
= Oa.co.

√n log n

lk


for h = hr, ℓ = ℓr

and

Tn,j − IE [Tn,j ] = Oa.co.

(√
log n

nℓϕx(h)

)
= Oa.co.

√√√√ log n

n l
α3n

k
α2n

 = Oa.co.

√n log n

lk


for h = hl, ℓ = ℓl.

Similarly,

en,j − IE [en,j ] = Oa.co.

(√
log n

nϕx(h)

)
= Oa.co.

(√
log n

nα1k
n

)
= Oa.co.

√ log n

k

 for h = hr

and

en,j − IE [en,j ] = Oa.co.

(√
log n

nϕx(h)

)
= Oa.co.

√√√√ log n

n k
α2n

 = Oa.co.

√ log n

k

 for h = hl.

It is clear that leading term between two convergence rate of Tn,j and en,j is Oa.co.

(√
n log n

lk

)
which is exactly the last term in Theorem 1.


