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ABSTRACT. In this paper, we consider the periodic solutions of the following non-autonomous second order dis-
crete system

∆2u(n− 1) = ∇F (n, u(n)), n ∈ Z.
When the nonlinear function F (n, x) is like-quadratic for x, we obtain some existence and multiplicity results under
twisting conditions by using the least action principle and a multiple critical point theorem.

Keywords: Periodic solution, second-order discrete Hamiltonian system, the least action principle, critical point the-
ory.

2020 Mathematics Subject Classification: 35R02, 58J05.

1. INTRODUCTION AND MAIN RESULTS

In this paper, we consider the periodic solutions of the following nonautonomous second
order discrete Hamiltonian system

(1.1) ∆2u(n− 1) = ∇F (n, u(n)), u(n) ∈ RN , n ∈ Z,

where ∆u(n) = u(n+ 1)− u(n),∆2u(n) = ∆(∆u(n)) and∇F (n, x) denotes the gradient of the
function F with respect to the second variable x. F satisfies the following condition:

(A)
F (n, ·) ∈ C1(RN ,R),∀n ∈ Z;
F (n+ T, x) = F (n, x),∀(n, x) ∈ Z× RN , T ∈ Z and T ≥ 2.

Historically, in 2003, Guo and Yu, first considered the existence of periodic solutions of
difference equations as (1.1) via variational method and critical point theory in three papers
[2, 3, 4]. In 2004, Zhou, Yu and Guo [11], further studied the existence and multiplicity of peri-
odic solutions of the discrete Hamiltonian system (1.1). After that, the existence and multiplic-
ity of periodic solutions for system (1.1) have been extensively studied and many interesting
results were obtained. We refer the readers to [5, 6, 8, 9, 10] and the references therein for these
topics. Among them, we should mention some work which have relation with our work of
this paper. For the condition on F , Guo and Yu in [3], first required the nonlinearity ∇F (n, x)
is sub-linear included the bounded case. We say that the nonlinearity ∇F (n, x) is growing
sublinearly if there exist M1 > 0, M2 > 0 and α ∈ [0, 1) such that

(1.2) |∇F (t, x)| ≤M1|x|α +M2, ∀(n, x) ∈ Z[1, T ]× RN ,
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where Z[a, b] := Z ∩ [a, b] for all a, b ∈ Z with a ≤ b. Xue and Tang in [9] used the least
action principle to verified that system (1.1) possesses at least one T -periodic solution with the
assumption of

(1.3) lim
|x|→+∞

|x|−2α
T∑
n=1

F (n, x) = +∞.

We also refer the paper [3] for this topic. In the case of α = 1, assumption (1.2) becomes to the
following assumption in which the nonlinearity ∇F (n, x) does not exceed linear growth, that
is, there are M3 > 0 and M4 ≥ 0, such that

(1.4) |∇F (n, x)| ≤M3|x|+M4, ∀(n, x) ∈ Z[1, T ]× RN .

The case ∇F (n, x) = Ax + B satisfies the condition (1.4). It is well known that in this case
the system (1.1) in general does not possess a solution. A twisting condition is required to
avoid this case. Considering the nonlinearity ∇F (n, x) which is the sum of assumption (1.2)
and (1.4), Hu [6] also used the least action principle to verify that system (1.1) possesses at least
one T -periodic solution under a twisting condition which is included in the following case

(1.5) lim
|x|→+∞

|x|−2
T∑
n=1

F (n, x) > −∞.

When the nonlinearity∇F (n, x) meets the following assumption that there are f, g : Z[1, T ]→
R+ and α ∈ (0, 1), such that

(1.6) |∇F (t, x)| ≤ f(n)|x|α + g(n), ∀ (n, x) ∈ Z[1, T ]× RN

or

(1.7) |∇F (t, x)| ≤ f(n)|x|+ g(n), ∀ (n, x) ∈ Z[1, T ]× RN .

Tang and Zhang [8] obtained some existence results for the T -periodic solutions of system (1.1)
under some different twisting conditions.

In this paper, we will further study the existence and multiplicity of T -periodic solutions of
(1.5) with some different twisting conditions. The following are our main results.

Theorem 1.1. Suppose that F (n, x) = F1(n, x) + F2(n, x) with F1 and F2 satisfying the conditions
(A) and the following three growing conditions:
(B1) There exist f, g : Z[1, T ]→ R+ and α ∈ [0, 1), such that

|∇F1(n, x)| ≤ f(n)|x|α + g(n).

(B2) F2(n, x) satisfies condition (1.4), i.e., there exist constants M3,M4 ∈ R+ such that

|∇F2(n, x)| ≤M3|x|+M4, M3 < λ1 := λ1 = 2− 2 cos
2π

T
.

(B3) F satisfies that

lim
|x|→+∞

inf |x|−2
T∑
n=1

F (n, x) >
M2

3T

2(λ1 −M3)
.

Then, system (1.1) possesses at least one T -periodic solution that minimizes the functional ϕ given by

(1.8) ϕ(u) =
1

2

T∑
n=1

|∆u(n)|2 +

T∑
n=1

F (n, u(n))
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in the Hilbert space HT defined by

HT =
{
u : Z→ RN |u(n+ T ) = u(n), n ∈ Z

}
.

Remark 1.1. The condition (B3) is twisted with the conditions (B1) and (B2). Our condition (B3) in
Theorem 1.1 is different form the condition (A4) in Theorem 1 of [6]. In Theorem 1.1, when F1(n, x) ≡
0, comparing with Theorem 1.3 of [8], the condition (B3) in some sense is loose for some choices of T ,
one can check it for T = 2, 3, 4, 5, 6 and so on.

Theorem 1.2. Suppose F (n, x) = F1(n, x) + F2(n, x) satisfying condition (A) with F1 and F2 satis-
fying the following three growing conditions:
(B4) F1 satisfies the condition (1.7), i.e., there exist f, g : Z[1, T ]→ R+ such that

|∇F1(n, x)| ≤ f(n)|x|+ g(n),

T∑
n=1

f(n) < λ1.

(B5) F2 satisfies the condition (1.2), i.e., there are some constants M1,M2 ∈ R+ and α ∈ [0, 1) such
that

|∇F2(n, x)| ≤M1|x|α +M2.

(B6) F satisfies that

lim
|x|→+∞

inf |x|−2
T∑
n=1

F (n, x) >
1

2(λ1 −
∑T
n=1 f(n))

( T∑
n=1

f(n)
)2
.

Then, system (1.1) possesses at least one T -periodic solution.

Remark 1.2. Conditions of (B4) and (B6) in Theorem 1.2 are different form conditions of (A3) and
(A4) in Theorem 1 of [6], respectively. Condition (B6) in Theorem 1.2 is different form condition of
(1.14) in Theorem 1.3 of [8].

Theorem 1.3. Suppose that F (n, x) satisfies (A), (B1), (B2) , (B3) and
(A1) there are some constants δ > 0, k ∈ Z[0, [T2 − 1]] such that

−1

2
λk+1|x|2 ≤ F (n, x) ≤ −1

2
λk|x|2,

∀x ∈ RN with |x| < δ and ∀n ∈ [1, T ], where λk = 2 − 2 cos kω, ω = 2π
T , T > 2, [a] = max{k ∈

Z|k ≤ a} denotes the Gauss Function. Then, system (1.1) has at least two T -periodic solutions.

Parallelly, we have the following result.

Theorem 1.4. Suppose that F (n, x) satisfies (A), (B4), (B5) , (B6) and (A1). Then, system (1.1) has
at least two T -periodic solutions.

2. SOME IMPORTANT LEMMAS

HT :=
{
u : Z→ RN |u(n+ T ) = u(n), n ∈ Z

}
can be equipped with the inner product

(2.9) 〈u, v〉 =

T∑
n=1

(
u(n), v(n)

)
, ∀u, v ∈ HT ,

so the norm ‖·‖ is

(2.10) ‖u‖ =
( T∑
n=1

|u(n)|2
) 1

2

, ∀u ∈ HT ,
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where (·, ·) and |.| denotes the usual inner product and the usual norm in RN , respectively. It is
easy to verify that (HT , 〈·, ·〉) is a finite dimensional Hilbert space and linear homeomorphic to
RNT .

For every positive number r > 1, we can equip HT with another norm ‖u‖r, where

‖u‖r =
( T∑
n=1

|u(n)|r
) 1

r

, ∀u ∈ HT .

Distinctly, ‖u‖2 = ‖u‖ and (HT , ‖u‖2) is equivalent to (HT , ‖u‖r) for r > 1. Thus, there are two
constants C2 ≥ C1 > 0, such that ∀u ∈ HT

(2.11) C1‖u‖r ≤ ‖u‖ ≤ C2‖u‖r.

For system (1.1), Xue and Tang [10] verify that the problem of seeking T -periodic solutions
is equal to that of finding the critical points of ϕ(u) defined in (1.8) on HT .

To prove our results, we now give four useful lemmas.

Lemma 2.1. ([10]) As a subspace of HT , Nk is defined by:

Nk := {u ∈ HT | −∆2u(n− 1) = λku(n)},

where λk = 2− 2 cos kω, ω = 2π
T , k ∈ Z[0, [T2 ]]. The following statements hold:

(i) Nk⊥Nj , k 6= j, k, j ∈ Z[0, [T2 ]],

(ii) HT =
⊕[T2 ]

k=0Nk.

Lemma 2.2 ([10]). Define Hk :=

k⊕
j=0

Nj , H⊥k :=

[T/2]⊕
j=k+1

Nj , k ∈ Z[0, [T/2]− 1], then one has

T∑
n=1

|∆u(n)|2 ≤ λk‖u‖2, ∀u ∈ Hk;

T∑
n=1

|∆u(n)|2 ≥ λk+1‖u‖2, ∀u ∈ H⊥k .

Lemma 2.3 ([7]). If ϕ is weakly lower semi continuous on a reflexive Banach spaceX and has a bounded
minimizing sequence, then ϕ has a minimum on X .

Lemma 2.4 ([1]). Let ϕ be a C1 function on X = X1

⊕
X2 with ϕ(0) = 0, satisfying (PS) condition

and for some δ > 0,
ϕ(u) ≥ 0 for u ∈ X1, ‖u‖ ≤ δ,

ϕ(u) ≤ 0 for u ∈ X2, ‖u‖ ≤ δ.

Assume also that ϕ is bounded below and inf
X
ϕ < 0, then ϕ has at least two nonzero critical points.

By Lemma 2.1, one rewrites u as

(2.12) u = ū+ ũ ∈ N0

⊕
N⊥0 ,

where ū = (1/T )
∑T
n=1 u(n).
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By (2.9), (2.10) and (2.12), one has

‖u‖ =
( T∑
n=1

|u(n)|2
) 1

2

=
( T∑
n=1

|ū+ ũ(n)|2
) 1

2

=
( T∑
n=1

(
ū+ ũ(n), ū+ ũ(n)

)) 1
2

=
( T∑
n=1

(
|ū|2 + |ũ(n)|2

)) 1
2

=
(
T |ū|2 + ‖ũ‖2

) 1
2 .

Then, one has

‖u‖ ≤
√
T + 1(|ū|2 + ‖ũ‖2)

1
2 and ‖u‖ ≥ (|ū|2 + ‖ũ‖2)

1
2 .

Therefore, one has that ‖u‖ → ∞ if and only if
(
|ū|+ ‖ũ‖2

) 1
2 →∞.

3. PROOF OF MAIN RESULTS

Since the proof of Theorem 1.4 is similar to that of Theorem 1.3, we only prove Theorem 1.1,
Theorem 1.2 and Theorem 1.3 in this section.

For convenience, we denote

R1 =

T∑
n=1

f(n), R2 =

T∑
n=1

g(n).

Proof of Theorem 1.1. According to (B3), we can choose a positive constant a1, such that

(3.13) a1 >
ε+M3

λ1 −M3
> 0

for a small number ε > 0 and

(3.14) lim
|x|→+∞

inf |x|−2
T∑
n=1

F (n, x) >
a1
2
M3T.

By (B1) , we obtain

∣∣∣ T∑
n=1

[
F1(n, u(n))− F1(n, ū)

]∣∣∣
=
∣∣∣ T∑
n=1

∫ 1

0

(
∇F1(n, ū+ sũ(n)), ũ(n)

)
ds
∣∣∣

≤
T∑
n=1

∫ 1

0

f(n)|ū+ sũ(n)|α|ũ(n)|ds+

T∑
n=1

∫ 1

0

g(n)|ũ(n)|ds

≤
T∑
n=1

f(n)(|ū|α + |ũ(n)|α)|ũ(n)|+
T∑
n=1

g(n)|ũ(n)|
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≤R1|ū|α‖ũ‖∞ +R1‖ũ‖α+1
∞ +R2‖ũ‖∞

≤ ε

2a1
‖ũ‖2∞ +

a1
2ε
R2

1|ū|2α +R1‖ũ‖α+1
∞ +R2‖ũ‖∞

≤ ε

2a1
‖ũ‖2 +

a1
2ε
R2

1|ū|2α +R1‖ũ‖α+1 +R2‖ũ‖(3.15)

for any u ∈ HT with ‖u‖∞ := max
n∈Z∩[1,T ]

|u(n)|.

By (B2), we have∣∣∣∣∣
T∑
n=1

[F2(u(n))− F2(ū)]

∣∣∣∣∣
=

∣∣∣∣∣
T∑
n=1

∫ 1

0

(∇F2(ū+ sũ(n)), ũ(n)) ds

∣∣∣∣∣
≤

T∑
n=1

∫ 1

0

M3

(
|ū+ sũ(n)|

)
|ũ(n)|ds+

T∑
n=1

∫ 1

0

M4|ũ(n)|ds

≤M3

T∑
n=1

(
|ū|+ 1

2
|ũ(n)|

)
|ũ(n)|+

T∑
n=1

M4|ũ(n)|

≤M3

T∑
n=1

|ū||ũ(n)|+ M3

2

T∑
n=1

|ũ|2 +M4

T∑
n=1

|ũ|

≤M3

( T∑
n=1

|ū|2
) 1

2
( T∑
n=1

|ũ(n)|2
) 1

2

+
M3

2

T∑
n=1

|ũ|2 +M4

T∑
n=1

|ũ|

≤a1
2
M3

T∑
n=1

|ū|2 +
M3

2a1

T∑
n=1

|ũ|2 +
M3

2

T∑
n=1

|ũ|2 +M4

T∑
n=1

|ũ|

≤a1
2
M3T |ū|2 +

(M3

2a1
+
M3

2

)
‖ũ‖2 +M4

√
T‖ũ‖(3.16)

for any u ∈ HT .
Hence, by (1.8), (3.15), (3.16) and Lemma 2.2, we have

ϕ(u) ≥(
λ1
2
− ε

2a1
− M3

2a1
− M3

2
)‖ũ‖2 − (R2 +M4

√
T )‖ũ‖ −R1‖ũ‖α+1

+|ū|2
(
|ū|−2

T∑
n=1

F (n, ū)− a1
2
M3T

)
− a1

2ε
R2

1|ū|2α.(3.17)

Since u = ū+ ũ ∈ N0

⊕
N⊥0 , (3.13), (3.14) and (3.17) imply that

ϕ(u)→ +∞, ‖u‖ → ∞.

Thus, ϕ is coercive. Since ϕ is continuous, it possesses a bounded minimizing sequence in the
finite dimensional Hilbert space HT . Therefore, by Lemma 2.3, we obtain a critical point u
which is a T -periodic solution of system (1.1) and the minimizer of the function ϕ. The proof is
complete. �

By (3.15) in which the number ε
a1

should be replaced by λ1−ε andM3 = 0 in (3.16), we have
the following result.



184 Chungen Liu and Yuyou Zhong

Theorem 3.5. Suppose that F (n, x) with F2 = 0 satisfying (A), (B1) and
(B′3) lim|x|→+∞ inf |x|−2α

∑T
n=1 F (n, x) >

M2
1

2λ1
.

Then, system (1.1) has at least one T -periodic solution that minimizes the functional ϕ in the Hilbert
space HT .

Comparing with Theorem 1.1 of [8], we see that the condition (B′3) is loose for some choices
of T , for example T = 2, 3, 4, 5 and so on. In Theorem 1.1, when F1(n, x) ≡ 0, comparing with
Theorem 1.3 of [8], the condition (B3) in some sense is loose for some choices of T , one can
check it for T = 2, 3, 4, 5, 6 and so on.

Now, we give a proof of Theorem 1.2.

Proof of Theorem 1.2. By (B6), we can choose a positive constant a2 and ε > 0, such that

(3.18) a2 >
1

λ1 −R1 − ε
and

(3.19) lim
|x|→∞

inf |x|−2
T∑
n=1

F (n) >
a2
2
R2

1.

By (B4), ∀u ∈ HT , we have∣∣∣ T∑
n=1

[F1(n, u(n))− F1(n, ū)]
∣∣∣

=
∣∣∣ T∑
n=1

∫ 1

0

(∇F1(n, ū+ sũ(n)), ũ(n))ds
∣∣∣

≤
T∑
n=1

∫ 1

0

f(n)|ū+ sũ(n)||ũ(n)|ds+

T∑
n=1

∫ 1

0

g(n)|ũ(n)|ds

≤
T∑
n=1

f(n)(|ū|+ 1

2
|ũ(n)|)|ũ(n)|+

T∑
n=1

g(n)|ũ(n)|

≤R1|ū|‖ũ‖∞ +
R1

2
‖ũ‖2∞ +R2‖ũ‖∞

≤ 1

2a2
‖ũ‖2∞ +

a2
2
R2

1|ū|2 +
R1

2
‖ũ‖2∞ +R2‖ũ‖∞

=(
1

2a2
+
R1

2
)‖ũ‖2∞ +R2‖ũ‖∞ +

a2
2
R2

1|ū|2

≤(
1

2a2
+
R1

2
)‖ũ‖2 +R2‖ũ‖+

a2
2
R2

1|ū|2.(3.20)

By (B5) , we have ∣∣∣ T∑
n=1

[F2(n, u(n))− F2(n, ū)]
∣∣∣

=
∣∣∣ T∑
n=1

∫ 1

0

(∇F2(n, ū+ sũ(n)), ũ(n))ds
∣∣∣
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≤
T∑
n=1

∫ 1

0

M1|ū+ sũ(n)|α|ũ(n)|ds+

T∑
n=1

∫ 1

0

M2|ũ(n)|ds

≤
T∑
n=1

M1(|ū|α + |ũ(n)|α)|ũ(n)|+
T∑
n=1

M2|ũ(n)|

≤M1

√
T |ū|α‖ũ‖+M1

T∑
n=1

|ũ|α+1 +M2

T∑
n=1

|ũ(n)|

≤TM
2
1

2ε
|ū|2α +

ε

2
‖ũ‖2 + C1‖ũ‖α+1 + C2‖ũ‖.(3.21)

Hence, by (1.8), (3.20), (3.21) and Lemma 2.2, we have

ϕ(u) ≥(
λ1
2
− 1

2a2
− R1

2
− ε

2
)‖ũ‖2 − C1‖ũ‖α+1 − (C2 +R2)‖ũ(n)‖

+|ū|2
(
|ū|−2

T∑
n=1

F (n, ū)− a2
2
R2

1

)
− TM2

1

2ε
|ū|2α.(3.22)

Since u = ū+ ũ ∈ N0

⊕
N⊥0 , (3.18), (3.19) and (3.22) imply that

ϕ(u)→ +∞, ‖u‖ → ∞,

that is, ϕ is coercive. It is easy to verify that there exists a bounded minimizing sequence which
insures that ϕ possesses a minimal point in the finite dimensional Hilbert space HT by Lemma
2.3. The proof is complete. �

Proof of Theorem 1.3. According to the proof of Theorem 1.1, we can implies that ϕ is bounded
below and satisfies the (PS) condition. By (A1) and Lemma 2.2, one has

(3.23) ϕ(u) ≤ 1

2
λk‖u‖2 +

T∑
n=1

(
− 1

2
λk|u|2

)
= 0

for any u ∈ Hk with ‖u‖ ≤ δ and

(3.24) ϕ(u) ≥ 1

2
λk+1‖u‖2 +

T∑
n=1

(
− 1

2
λk+1|u|2

)
= 0

for any u ∈ H⊥k with ‖u‖ ≤ δ.
If inf
u∈HT

ϕ(u) < 0, we completed our proof of Theorem 1.3 by Lemma 2.4.

If inf
u∈HT

ϕ(u) ≥ 0, by (3.23) and (3.24), we have ϕ(u) = inf
u∈HT

ϕ(u) = 0 for any u ∈ Hk with

‖u‖ ≤ δ, which implies that any u ∈ Hk with ‖u‖ ≤ δ are minimum points of ϕ. Thus, any
u ∈ Hk with ‖u‖ ≤ δ are T -periodic solutions of systems (1.1) , and systems (1.1) has infinite
T -periodic solutions in HT . Hence, we complete the proof of our main results. �

The proof of Theorem 1.4 is almost the same as that in the proof of Theorem 1.3, so we omit
it.

4. EXAMPLES

In this section, we will give two examples to illustrate our theorems.
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Example 4.1. Let F (n+ T, x) = F (n, x) for any (n, x) ∈ (Z,RN ) and

(4.25) F (n, x) =
λ1
16
|x|2 +

(T + 1

2
− n

)
|x|7/4 + (

4

3
T − n)|x|3/2, n ∈ Z ∩ [1, T ],

where

(4.26) F1(n, x) =
(T + 1

2
− n

)
|x|7/4 + (2T − n)|x|3/2, ∀(n, x) ∈ (Z ∩ [1, T ],RN )

and

(4.27) F2(x) =
λ1
16
|x|2 − 2

3
T |x|3/2, ∀x ∈ RN .

According to (4.26), one has

|∇F1(n, x)| ≤7

8
|T + 1− 2n||x|3/4 +

3

2
|2n− T ||x|1/2

≤7

8
(|T + 1− 2n|+ ε)|x|3/4 +

9T 3

ε2
, ∀(n, x) ∈ Z× RN ,(4.28)

where ε > 0. Then, we obtained that (B1) holds with α = 3/4 and

(4.29) f(n) =
7

8
(|T + 1− 2n|+ ε), g(n) =

9T 3

ε2
.

According to (4.27), we have

|∇F2(x)| ≤λ1
8
|x|+ T |x|1/2

≤(
λ1
8

+ ε)|x|+ T

ε
, ∀(n, x) ∈ Z× RN ,(4.30)

where ε > 0. Then, we obtained that (B2) holds with

(4.31) R1 =
λ1
8

+ ε, R2 =
T

ε
.

Now, we verify that F (n, x) satisfies (B3). In fact,

lim
|x|→+∞

inf |x|−2
T∑
n=1

F (n, x)

= lim
|x|→+∞

inf |x|−2
T∑
n=1

[
λ1
16
|x|2 +

(T + 1

2
− n

)
|x|7/4 + (

4

3
T − n)|x|3/2]

=
λ1
16
T.

It is easy to verify that M3 < λ1. If T ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}, we can choose ε > 0, such that

lim
|x|→+∞

inf |x|−2
T∑
n=1

F (n, x) =
λ1
16
T >

(λ1

8 + ε)2T

2(λ1 − λ1

8 − ε)
=

M2
3T

2(λ1 −M3)
.

Thus, the system (1.1) has at least one T -periodic solution by Theorem 1.1.

Example 4.2. Let F (n+ T, x) = F (n, x), for any (n, x) ∈ Z× RN and

(4.32) F (n, x) =
T − n

20
|x|2 +

4

7
|x|7/4 − n|x|3/2 − |x|+ (h(n), x).
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Let

(4.33) F1(n, x) =
T − n

20
|x|2 − n|x|3/2 + (h(n), x),

h : Z ∩ [1, T ]→ RN , h(n+ T ) = h(n), for n ∈ Z ∩ [1, T ] and

(4.34) F2(x) =
4

7
|x|7/4 − |x|.

According to (4.33), one has

|∇F2(n, x)| ≤T − n
10
|x|+ 3n

2
+ |h(n)|

≤(
T − n

10
+ ε)|x|+ T 2

ε
+ |h(n)|, ∀(n, x) ∈ Z× RN ,

where ε > 0. Then, we obtained that (B4) holds with

(4.35) f(n) =
T − n

10
+ ε, g(n) =

T 2

ε
+ |h(n)|.

It is easy to verify that (B5) holds with α = 3/4 and M3 = M4 = 1.
Now, we verify that F (n, x) satisfies (B6). In fact, according to (4.32) and (4.35), we have

T∑
n=1

f(n) =

T∑
n=1

(
T − n

10
+ ε) = T (

T − 1

20
+ ε)

and

lim
|x|→∞

inf |x|−2
T∑
n=1

F (n, x)

= lim
|x|→∞

inf |x|−2
T∑
n=1

[T − n
20
|x|2 +

4

7
|x|7/4 − n|x|3/2 − |x|+ (h(n), x)

]
=
T (T − 1)

40
.

When T ∈ {2, 3, 4}, we can choose ε > 0, such that
T∑
n=1

f(n) = T (
T − 1

20
+ ε) < λ1

and

lim
|x|→∞

inf |x|−2
T∑
n=1

F (n, x) =
T (T − 1)

40

>
1

2(λ1 − T−1
20 − ε)

(T − 1

20
+ ε
)2

=
1

2(λ1 −
∑T
n=1 f(n))

( T∑
n=1

f(n)
)2
.

Thus, the system (1.1) has at least one T -periodic solution by Theorem 1.2.
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