
Turk. J. Math. Comput. Sci.
13(1)(2021) 14–18
©MatDer
DOI : 10.47000/tjmcs.797556

Geometric Interpretation and Manifold Structure of Markov Matrices
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Abstract. In probability theory and statistics, the term Markov property refers to the memoryless property of
a stochastic process. It is named after the Russian mathematician Andrey Andreyevich Markov. Every Markov
matrix gives a linear equation system, and the solution of this equation system gives us a subset of Rn

n. This paper
presents the new manifold structure on the set of the Markov matrices. In addition, this paper presents the set of
Markov matrices is drawable, and this gives geometrical interpretation to Markov matrices. For the proof, we use
the one-to-one corresponding among n × n Markov matrices, the solution of linear equation system from derived
Markov property, and the set of (n − 1)-polytopes.
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1. Introduction

A.A. Markov studied an important type of chance process. In this process, the outcome of a specified experiment
can effect the outcome of the next experiment. This type of process is called a Markov chain.

Let S = {S 1, S 2, ..., S n} be a set of states. The process begins in one of these states and moves successively from
one state to another. Each move is called a step. If the chain is currently in state S i, then it moves to state S j at the
next step with probability by Pi j, and this probability does not depend upon which states the chain was in before the
current state. The probabilities Pi j are called transition probabilities. The transition probabilities of a Markov chain
can be given in the Markov matrices.

A Markov (or stochastic) matrix A is defined to be a real n × n matrix with non-negative entries satisfying the

equations
n∑

j=1
Ai j = 1, 1 ≤ i ≤ n.

The spectral properties of non-negative matrices and linear operators and in particular of Markov matrices have been
studied in great detail, because of their great importance in finance, population dynamics, medical statistics, sociology
and many other areas.

After the development of Markov chain, some of universal problems are studied by Laplace, D. Bernoulli and
Ehrenfests [1].

In Markov’s 1908 paper, for an irreducible chain satisfying an additional condition, Markov proved that 1 is a simple
eigenvalue of transition matrix, and the moduli of the other eigenvalues are less than 1. This additional condition is
stronger than the condition requiring a chain to be aperiodic. An interesting paper by Schneider examines Markov’s
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https://orcid.org/0000-0002-3915-6526
https://orcid.org/0000-0002-1026-9471
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irreducibility condition and his additional condition in detail. In the literature, there are a lot of article about Markov
chain. Some of them are about the geometric structure of Markov matrices [7, 8].

Pullman (1965) and Bernhard (2013) studied geometry of finite Markov chains and geometry of Markov chain [2,6].
In this article, we construct a new manifold structure on Markov matrices. So we can interpret the Markov matrices,

and we show that the Markov matrices can be drawn.
We will give the basic ideas needed for this article. Markov chains require to introduce qi to be the probability that

chain is in state i at time 0. In other words, P(x0 = i) = qi. The vector q = [q1, ..., qn] is called the initial probability
distribution for the Markov chain. The transition probabilities are displayed as an n × n transition probability matrix P.
The transition probability matrix P may be written as

P11 · · · P1n
...

...
Pn1 · · · Pnn

 .

Given that the state at time t is i, the process must be somewhere at time t + 1. This means that for each i
n∑

j=1

P(xt+1 = J | P(Xt = i)) = 1,

n∑
j=1

Pi j = 1.

All entries in the transition probability matrix are nonnegative, and the sum of entries in each row must be 1.
Let P be the transition matrix of a Markov chain. The i jth entry P(n)

i j of the matrix Pn gives the the probability that
the Markov chain, starting in states si, will be in state s j after n steps. Let P be n × n matrix and J = [1 j] is n × 1
column matrix, all entries are 1. If

PJ = J, (1.1)
then P is a Markov matrix and this is called Markov property [5].

The equation (1.3) is very useful and functional. Let A and B be two Markov matrices, n × n. Then AB is a Markov
matrix such that A and B are Markov matrices. So we can write

AJ = J, BJ = J

and we have
(AB)(J) = A(B(J)) = AJ = J

so AB is a Markov matrix.
Let v be a probability vector and P be a transition matrix of a Markov chain. Then the probability that the chain is

in state si after n steps is the i th entry in the vector

v(n) = vPn

2. Geometric Interperation andManifold Structure ofMarkovMatrices

In this section we will give the geometric shape and manifold structure of Markov matrices.
Equation (2.1) is a property of Markov matrix.

PJ = J (2.1)
where P is a Markov matrix, n × n, and J = [1 j]n×1. Equation (2.1) gives us a linear equation system. We will use xi j

Euclid coordinate function instead of Pi j. In this manner we can write the linear equation systems as follows

Li :
n∑

j=1

xi j = 1, 1 ≤ i ≤ n.

The solution of Li is a closed convex polytope which xi j ≥ 0, ∀i, j, 1 ≤ i, j ≤ n, and we show this solution set as S (Li).
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Let

U1 = (1, 0, ..., 0)
U2 = (0, 1, ..., 0)

...

Uk = (0, ..., 0, 1, 0, ..., 0)
...

Un = (0, 0, ..., 0, 1)

be given. UiUi+1 is a line segment. U = U1U2 ∪ U2U3 ∪ ... ∪ Un−1Un ∪ UnU1 is the collection of the line segments.
Now we define a mapping ϕ, from U to Rn as follows.

ϕ(u1, ..., un) = OA1 + u1A1A2 + u1u2A2A3 + ...

+ui−2ui−1Ai−1Ai + ... + un−2un−1An−1An

where Ak = (0, ..., 0, 1k, 0, ..., 0), 0 ≤ u1, ..., un ≤ 1.
ϕ(U) is a part of the hyperplane x1 + x2 + ... + xn = 1 : HP. If we say Rn

+ = {(x1, ..., xn) | xi ≥ 0, 1 ≤ i ≤ n}, then we
have ϕ(U) = HP ∩ Rn

+. For every point of ϕ(U) is the solution any equation Li.
In fact, if Y ∈ ϕ(u1, ..., un), then

Y = (1, 0, ..., 0) + u1(−1, 1, 0, ..., 0) + ... +

ui−2ui−1(0, ...0,−1i−2, 1i−1, 0, ..., 0) + ... + (0, ...0, un−1)
= (1 − u1, u1 − u2, ..., un−1 − un−2, un−1),

that is
n∑

i=1

yi = 1.

For example, for n = 3, {S (Li)} = ϕ(U) is a triangle region with corners A1 = (1, 0, 0), A2 = (0, 1, 0) and A3 =

(0, 0, 1). For every closed set A, we can find an open ball, Br(m), with center m and radius r, such that A ⊂ Br(m).
For every, r, m, Br(m) is a (smooth) submanifold of Rn [4]. Consequently, A is a closed submanifold of Rn. Pn−1 is a
hyperplane in Rn, with dimension (n − 1). ϕ(U) ⊂ Pn−1. So ϕ(U) is a manifold with dimension (n − 1).

Theorem 2.1 ( [3]). If M1,M2, ...,Mr are differentiable manifolds with dimension, m1,m2, ...,mr, respectively, then
M1 × M2 × ... × Mr is a differentiable manifold with dimension m1 + m2 + ... + mr.

Proof. Suppose that M1,M2, ...,Mr are differentiable manifolds with dimension m1,m2, ...,mr. Let Ai = {(Ui j, ϕi j)} ,
1 ≤ i ≤ r be differentiable structure of the manifold Mi. Then we can define an atlas as

A = {(Ui1 × Ui2 × ... × Uir, ϕi1 × ϕi2 × ... × ϕir)}.

The atlas A is a differentiable atlas. The atlas A defines a differentiable structure on M = M1 × M2 × ... × Mr and M is
a differentiable manifold with dimension m = m1 + m2 + ... + mr. �

Theorem 2.2. S (L1) × S (L2) × ... × S (Ln) is a differentiable manifold with dimension n(n − 1).

Proof. We know that every S (Li) is a differentiable manifold with dimension (n − 1). For every i, we take S (Li) = Mi,
and using Theorem 2.1, then we have S = S (L1)×S (L2)× ...×S (Ln) is a product manifold with dimension n(n−1). �

Theorem 2.3. There are one-to-one corresponding among MR(n × n), {S (Li)} and ϕ(U)n.

Proof. Let A ∈ MR(n × n), n × n Markov matrices. Then every row Ai of A is the solution of a Li and A goes to S (Li).
Conversely, when S (L1), S (L2), ..., S (Ln) are given, we can write a Markov matrix which its rows are Ai = S (Li). We
know that every point of ϕ(U) = Y has the property ∑

yi = 1.
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If we take a point (Y1,Y2, ...,Yn) ∈ ϕ(U)n, we can write a Markov matrix which its rows are Yi. Conversely, suppose
that A ∈ MR(n × n). Ai = (ai1, ai2, ..., ain), ∑

ai j = 1

we have (A1, ..., An) ∈ ϕ(U)n. �

The case n = 3. Firstly we take the Li equation.

Li : xi1 + xi2 + xi3 = 1, 1 ≤ i ≤ 3.

The solution of Li is in the part of a plane at first part of space, ∀xi ≥ 0. For the sake of brevity, if we take x = xi1,
y = xi2, z = xi3, we have P : x + y + z = 1 in R3. For the solution of the equation Li we can write

S (Li) ∈ P ∩ R3
+

where R3
+ = {(x, y, z) | x, y, z ≥ 0}.

In generally, let A, B and C be nonlinear points in R3, then the 2-simplex ∆(ABC) can be given with the parametric
form as follows.

ϕ(u, v) = OA + uAB + uvBC, 0 ≤ u, v ≤ 1.

For A = A1 = (1, 0, 0), B = A2 = (0, 1, 0), C = A3 = (0, 0, 1), 0 ≤ u1, u2 ≤ 1, we have

ϕ(u1, u2) = OA1 + u1A1A2 + u1u2A2A3.

If X ∈ ϕ(u1, u2) , then we write

X = (1, 0, 0) + u1(−1, 1, 0) + u1u2(0,−1, 1)
= (1 − u1, u1 − u1u2, u1u2)

and we have
3∑

i=1

xi = 1,

where x1 = 1 − u, x2 = u1 − u1u2 and x3 = u1u2.
Every 3 × 3 Markov matrix gives us solution of a linear equation system {Li, 1 ≤ i ≤ 3}. Every solution set S (Li)

defines a 2-simplex ∆(A1A2A3) = N. So all 3 × 3 Markov matrices are represented by N3 = N × N × N..Taking a point
from N3 is the same taking 3-points from N.

Theorem 2.4. Non-collinear three points of N3 defines a Markov matrix which determinant different zero.

Proof. Let A, B,C ∈ N3 be non-collinear. [ A B C ] is a matrix which rows are linear independent so det[ A B C ] ,
0. �

Theorem 2.5. 3-fold points (A, A, A) ∈ N3 define a Markov matrix that it is limit matrix.

Proof. Let A be Markov matrix. For n ∈ Z+, every Markov matrix has the form that every rows are same. This matrix
is called the limit matrix of given matrix. Every subset with three points of ∆(A1A2A3) goes to a one point as limit. �

We show that there are a one-to-one corresponding between MR(n × n) and the n-simplices in the region which
border are line segments [AiAi+1], where Ai = (0, ..., δi j, ..., 0), 1 ≤ i, j ≤ n. So all properties of n-simplices can be
interpret in MR(n × n) and conversely.

For example, the centroid of the triangle ∆(A1A2A3) is C = ( 1
3 ,

1
3 ,

1
3 ). Point C defines a Markov matrix C = [ai j],

ai j = 1
3 , 1 ≤ i, j ≤ 3. Matrix C takes the any Markov matrix to its limit matrix. That is, if A is any Markov matrix, CA

is the limit matrix of A.
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3. Conclusion

Every Markov matrix gives a linear equation system, and the solution of this equation system gives us a subset of
(Rn)n. Every linear equation Li has a solution on Rn. This solution set lies on the

∑
xi = 1 hyperplane and from the

restriction xi ≥ 0, the solution also lies on the first region of Rn. Every S (Li) has a differentiable manifold structure and
(S (Li))n is a differentiable product manifold. MR(n × n), n × n Markov matrices, defines a differential manifold. This
manifold is a product manifold and each multiplier is a region in first part of Rn which border is a (n − 1)−polytope
and corner points are Ai = (0, ..., δi j, ..., 0). n−points from the region which corner points are Ai and border surface is
(n − 1)−polytope gives us a n × n Markov matrix. There is a one-to-one corresponding among n × n Markov matrices,
the solution of linear equation system {Li} and (n − 1)−polytope. So the Markov matrices can be drawn.
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