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Abstract: In this paper, we applied the improved Bernoulli sub-equation function method for the Klein-

Gordon equation. Firstly, we reduced the equation to a nonlinear ordinary differential equation with 

the aid of wave transform. Then we obtained various new exact solutions via the method. These solutions 

can play an important role in engineering and physics. For some solutions, we drew two and three-

dimensional graphics to understand physical behaviors. We performed all the calculations and graphs 

in this article by Wolfram Mathematica.  
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1.  Introduction 

Nonlinear evolution equations (NLEEs) are widely used because it finds application in 

many nonlinear disciplines such as plasma physics, optical fibers, fluid mechanics, fluid 

dynamics[1-4] and so on. One of the best known of these equations is Klein-Gordon equation 

(KGE). KGE, the relative wave equation version of Schrödinger equation, is a relative field 

equation for scalar particles (spin-zero) [5]. 

 Sassaman and Biswas[5,6] investigated the general form of the perturbed KGE,  

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓(𝑢) = 𝜀(𝛼𝑢 + 𝑝𝑢𝑡 + 𝑞𝑢𝑥 + 𝛽𝑢𝑥𝑡 + 𝛾𝑢𝑡𝑡)                            (1), 

 

where 𝛼, 𝛽, 𝛾, 𝑝, 𝑞 are constants and 𝜀 is the perturbation parameter. Zhang [7] investigated 

this equation without local inductance and dissipation effect: 

 𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑓(𝑢) = 𝜀(𝛼𝑢 + 𝛽𝑢𝑥𝑡 + 𝛾𝑢𝑡𝑡)                                              (2) 

 

When 𝑓(𝑢) = 𝑎𝑢 − 𝑏𝑢2 and 𝜀 = 0, Eq.(1) degrades the KGE with quadratic nonlinearity:   

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑎𝑢 − 𝑏𝑢2 = 0                                                             (3) 
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When 𝑓(𝑢) = 𝑎𝑢 − 𝑏𝑢3 and 𝜀 = 0, Eq.(1) degrades the KGE with cubic nonlinearity:   

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 + 𝑎𝑢 − 𝑏𝑢3 = 0                                                             (4) 

 

Equation (4) has been solved by many different methods in the literature. Zhang [8] used the 

trigonometric function series method. Wazwaz[9] applied the tanh and sine-cosine methods. Hafez et 

al. [10] solved it with 
𝐺′

𝐺
  expansion method. Yindoula et al. [11] solved it with He-Laplace and the 

Decomposition Laplace-Adomian method. Lastly, Shahen et al. [12] used the exp(−𝜑(𝜀)expansion 

method. 

In this paper, we solved equation (4) by improved Bernoulli sub-equation function method (IBSEFM). 

The remainder of this paper is prepared as follows: In section 2, the method has been discussed. In 

section 3, we applied this method to the KGE with cubic nonlinearity. Lastly, conclusions are given in 

section 4. 

2. Material and method  

Improved Bernoulli sub-equation function method [13-17] formed by modifying the 

Bernoulli sub-equation function method will be introduced in this section. The algorithm below 

should be applied sequentially.  

1. Let’s consider the following partial differential equation; 

  

𝑃(𝑢, 𝑢𝑥 , 𝑢𝑦,… , 𝑢𝑥𝑥, 𝑢𝑥𝑦, … = 0,       (2) 

 

and take the wave transformation; 

 

𝑢(𝑥, 𝑦, 𝑡, … ) = 𝑈(𝜂), 𝜂 = 𝑘𝑥 + 𝑙𝑦 + 𝑚𝑡 +⋯  (3) 

 

where 𝑘, 𝑙,𝑚,… are constants and will be determined later. Putting Equation (3) in 

Equation (2), we get the following nonlinear ordinary differential equation; 

 

 , , , , 0.N U U U U          (4) 

 

2. Considering the trial equation in Equation (4), it can be written as follows; 

  

𝑈(𝜂) =
∑ 𝑎𝑖𝐹

𝑖(𝜂)𝑛
𝑖=0

∑ 𝑏𝑗𝐹
𝑗(𝜂)𝑚

𝑗=0

=
𝑎0+𝑎1𝐹(𝜂)+𝑎2𝐹

2(𝜂)+⋯+𝑎𝑛𝐹
𝑛(𝜂)

𝑏0+𝑏1𝐹(𝜂)+𝑏2𝐹2(𝜂)+⋯+𝑏𝑚𝐹𝑚(𝜂)
    (5) 
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According to Bernoulli theory, we can consider the general form of the Bernoulli 

differential equation for 𝐹′as follows: 

 

 

𝐹′ = 𝑤𝐹 + 𝑑𝐹𝑀, 𝑤, 𝑑 ≠ 0,𝑀 ∈ 𝑅 − {0,1,2}   (6)  

 

Where 𝐹 = 𝐹(𝜂) is Bernoulli differential polynomial. By replacing the above relations 

with Equation (4), it gives the equations of polynomial 𝜑(𝐹) as follows;  

 

𝜑(𝐹) = 𝜌𝑠𝐹
𝑠 +⋯+ 𝜌1𝐹 + 𝜌0 = 0    (7)  

 

According to the balance principle, we can determine the relationship between ,n m and

M .  

3. The coefficients of (F) must all be zero and give us an algebraic system of equations; 

0, 0, , .i si  
   

     (8)  

Solving this system, we will determine the values of 
0, , na a and

0, , mb b . 

4. When we solve the nonlinear Bernoulli differential equation (6), we get the following 

two cases with respect to 𝑤 and 𝑑; 

 

𝐹(𝜂) = [
−𝑑

𝑤
+

𝐸

𝑒𝑤(1−𝑀)𝜂]

1

1−𝑀
, 𝑤 ≠ 𝑑   (9) 

 

𝐹(𝜂) = [
(𝐸−1)+(𝐸+1)tanh⁡(𝑤(1−𝑀)

𝜂

2
)

1−tanh⁡(𝑤(1−𝑀)
𝜂

2
)

]

1

1−𝑀

, 𝑤 = 𝑑, 𝐸 ∈ 𝑅  (10)  

3. Findings 

In this section, the application of the improved Bernoulli sub-equation function method 

to the Klein-Gordon Equation is discussed. Using the wave transformation on equation (1) 

 

∅(𝑥, 𝑡) = 𝑈(𝜂), 𝜂 = 𝑘𝑥 − 𝑙𝑡⁡⁡⁡                                  (11) 

 

Substituting equation (11) into equation (1), gives the following NODE: 

 

(𝑙
2
+𝛼𝑘

2
)𝑈′′

+ 𝑎𝑈−𝑏𝑈3
= 0                             (12) 
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Balancing equation (12) by considering the highest derivative (𝑈′′) and the highest 

power (𝑈3), we obtain 

 

𝑛 −𝑚 = 𝑀 − 1. 

 

When ⁡𝑀 = 3, 𝑚 = 1,⁡gives 𝑛 = 3.⁡ Thus, the trial solution for equation (1) takes the following 

form: 

 

𝑈(𝜂) =
𝑎0+𝑎1𝐹(𝜂)+𝑎2𝐹

2(𝜂)+𝑎3𝐹
3(𝜂)

𝑏0+𝑏1𝐹(𝜂)
,                                      (13) 

 

Where 𝐹′ = 𝑤𝐹 + 𝑑𝐹3, 𝑤 ≠ 0, 𝑑 ≠ 0. Substituting equation (13), its second derivative along 

with 𝐹′ = 𝑤𝐹 + 𝑑𝐹3, 𝑤 ≠ 0, 𝑑 ≠ 0 into equation (12), gives an F polynomial. Solving the 

system of the algebraic equations gives the values of the relevant parameter. Substituting the 

obtained values of the parameters into equation (13), gives the solutions to equation (1). 

 

,w d We can find the following coefficients: 

Case 1.  

 

𝑎1 =
𝑎0𝑏1

𝑏0
; 𝑎2 =

2𝑑𝑎0

𝜎
; 𝑎3 =

2𝑑𝑎0𝑏1

𝜎𝑏0
; 𝑤 = 𝑑; 𝑐 = 2(𝑙2 + 𝑘2𝛼)𝜎2; 𝑏 = −

2(𝑙2+𝑘2𝛼)𝜎2𝑏0
2

𝑎0
2 ;  

(14)  

 

Case 2.  

 

 

𝑎1 =
𝑎0𝑏1

𝑏0
; 𝑎2 = 0; 𝑎3 = 0; 𝛼 = −

𝑙2

𝑘2
; 𝑤 = 3𝑑; 𝑎 = −

𝑏𝑎0
2

𝑏0
2 ;                  (15) 

 
 

Case 3.  

 

𝑎1 =
𝑎0𝑏1

𝑏0
; 𝑎2 → 0; 𝑎3 → 0; 𝑙 = −ⅈ𝑘√𝛼; 𝑎 = −

𝑏𝑎0
2

𝑏0
2 ;                                (16) 

 

Substituting equation (14) into equation (13), gives 

 

𝑢1(𝑥, 𝑡) =

𝑎0+
2𝑑𝑎0

(ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
𝑑

𝜎
)𝜎
+

𝑎0𝑏1

√ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
𝑑

𝜎
𝑏0

+
2𝑑𝑎0𝑏1

(ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
𝑑

𝜎
)
3 2⁄

𝜎𝑏0

𝑏0+
𝑏1

√ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
𝑑

𝜎

.          (17) 

 

Substituting equation (15) into equation (13), gives 

 



Middle East Journal of Science  (2020) 6(2):78-84         https://doi.org/10.23884/mejs.2020.6.2.04 

 

82 

 

𝑢2(𝑥, 𝑡) =

𝑎0+
𝑎0𝑏1

√ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
3𝑑

𝜎
𝑏0

𝑏0+
𝑏1

√ⅇ−2(−𝑙𝑡+𝑘𝑥)𝜎E−
3𝑑

𝜎

.                                    (18) 

Substituting equation (16) into equation (13), gives 

𝑢3(𝑥, 𝑡) =

𝑎0+
𝑎0𝑏1

√ⅇ−2(𝑘𝑥+ⅈ𝑘𝑡√𝛼)𝜎E−
𝑤

𝜎
𝑏0

𝑏0+
𝑏1

√ⅇ−2(𝑘𝑥+ⅈ𝑘𝑡√𝛼)𝜎E−
𝑤

𝜎

.                                (19) 

 

We performed numerical simulations by selecting appropriate parameter values and drawing 

2D and 3D graphs of the solutions obtained for equation (17). 

 

 

 

 

 

Figure 1. The 2D and 3D surfaces of the solution Eq.(17) for suitable values 

 

4.  Conclusions 

IBSEF method has been employed to get new exact solutions for the Klein-Gordon Equation. 

When we compared the results we obtained with the previous ones, we saw that they were new 

solutions. The results that we obtained can be helpful in explaining the physical sense of the diverse 

nonlinear models that originated in the area of the nonlinear sciences. The method is a robust and 

efficient mathematical tool that can be used to manipulate some type of nonlinear mathematical 

model.. We recommend that this method can be applied to distinct nonlinear partial differential 

equations. We suggest applying this method to different nonlinear partial differential equations. 

The compliance to the Research and Publication Ethics: This study was carried out in accordance 

with the rules of research and publication ethics. 
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