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Highlights 
• This paper outlines an alternative Hammerstein model Identification of a pH neutralization process. 

• Model identification is done with Laguerre Least Square Support Vector Machines (LLSSVM).  

• LLSSVM Hammerstein model is used to implement an efficient Nonlinear Model Predictive Controller. 

ArticleInfo 

 

Abstract 

The ability to describe the nonlinear process dynamics is an essential feature of the Hammerstein 

model that paved more research and application studies in system identification and control. 

Using the Hammerstein model, this study shows an alternative approach to identify and control 

the highly nonlinear pH neutralization process. This Hammerstein model called Laguerre Least 

Square Support Vector Machines (LLSSVM) models the static nonlinearity with LSSVM and the 

linear part with Laguerre filter. The identified LLSSVM Hammerstein model performance 

evaluation with Mean Squared Error (MSE) and Variance Accounted For (VAF) is better than 

the Linear Laguerre model. We apply the identified LLSSVM Hammerstein model to implement 

a Nonlinear Model Predictive Controller (NMPC) to control the pH neutralization process. Then 

evaluated NMPC performance in terms of Integral Squared Error (ISE), Integral Absolute Error 

(IAE), and Total Variation (TV) and Control Effort (CE) parameters to verify its effectiveness in 

set-point tracking and disturbance rejection problems. The comparison of the NMPC with the 

Linear Laguerre Model-based Predictive Controller (LMPC) shows better performance of the 

NMPC than the LMPC. Results show that the LLSSVM Hammerstein model replicates the pH 

neutralization process well than the Linear Laguerre model. Also, the identified LLSSVM 

Hammerstein model provides an efficient NMPC than the LMPC for the pH neutralization 

process. 
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1. INTRODUCTION 

 

Major research areas in chemical, pharmaceutical, and other process industries include model identification 

and model-based control of nonlinear systems like pH neutralization, CSTR, and the distillation column 

[1]. Linear models can only approximate a process at one operating point. In contrast, nonlinear models can 

provide process dynamics in a better way [2]. A pH neutralization process has inherent non-linearity and is 

sensitive to disturbances as fluid process variation from alkaline to acidic and vice versa. This pH parameter 

is crucial in the food industry, chemical industry, and wastewater treatment. It showed the usefulness of a 

mathematical model in designing a predictive controller for nonlinear systems [3].  

 

Several researchers have tried to get an identified model of nonlinear processes for the controller 

implementation [4-6]. Many processes are nonlinear in the chemical, food, and pharmaceutical industries 

and have multiple operating regions over their operating range. For nonlinear processes, linear MPC 

(LMPC) does not give the required control performance. Also, the computational burden is more in using 

the LMPC for nonlinear process control. These are a few reasons many researchers started focusing on  
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NMPC design in many nonlinear dynamic process applications [7-8]. Block-oriented model identification 

with the Hammerstein model structure is a popular parameter estimation approach [9]. Its simple structure 

has fixed Eigen-values, flexible nature, and requires fewer tuning parameters [10-14]. The Hammerstein 

model structure can approximate nonlinear dynamics with high accuracy and replicate the physical system 

[15-19]. These are the few findings that motivated us to use the Hammerstein model to identify the pH 

neutralization model in this study. Hammerstein’s model structure was implemented with the Recursive 

least squares(RLS) algorithm using an infinite impulse response(IIR) filter, least squares regression 

models, Auto-Regressive with eXogenous model input(ARX), and Auto-Regressive Moving Average with 

eXogenous model input(ARMAX) like polynomial models [20-22]. These identification methods give 

highly complex models, as they require many parameters.  

 

The researchers perform model identification using machine learning with Support Vector Machine (SVM) 

and Least Square-Support Vector Machine (LSSVM). The SVM solves the quadratic programming 

methods but is time-consuming and complex. In contrast, the LSSVM resolves the quadratic programming 

problem, minimizing tracking errors with lesser complexity,  

time and also requires fewer tuning parameters [23-24]. 

 

To overcome the above problems, we apply an alternative approach with LLSSVM (Least Square Support 

Vector Machine- Laguerre) Hammerstein model [25] for modeling the pH neutralization system in this 

work. We model the static nonlinearity with LSSVM with the RBF (Radial Basis Function) Kernel [26]. In 

contrast, the Laguerre filter represents the linear part. This research study includes a nonlinear benchmark 

pH process [27] as the actual process model to check the fitness of the identified model. We evaluate the 

identified model in terms of parameters MSE (Mean Squared Error) and VAF (Variance Accounted For), 

which outperform the conventional Linear Laguerre model. Lesser is the MSE value; better is the quality 

of the estimated model. For validating the identified model, the VAF value must be higher. This VAF value 

shows the variance between identified and actual model outputs.  The identified LLSSVM Hammerstein 

model is used to implement NMPC for controlling the pH neutralization process. The result analysis shows 

that in the set-point tracking and disturbance rejection, the designed NMPC performs better in ISE, IAE, 

TV, and CE parameters than in the LMPC. 

 

2. LLSSVM HAMMERSTEIN MODEL IDENTIFICATION ALGORITHM 

 

Identification of LLSSVM Hammerstein Models using LSSVM and Laguerre Filter structure is shown in 

Figure 1. This model identification uses the measurable input-output signals only. The LLSSVM 

Hammerstein model for the pH Neutralization process under study, shown in Figure 1, comprises the RBF 

Kernel based on LSSVM and Laguerre (L) Filter. LSSVM models the static nonlinearity for the pH 

neutralization process, whereas the Laguerre filter represents the linear part. 

 

 

 

 

 

Figure 1. The LLSSVM Hammerstein Model structure for the pH Neutralization system 

 

We use the input vector xi∈Rm   and output vector yi∈R from the actual benchmark pH neutralization model 

as training and validation data for identifying the LLSSVM Hammerstein model. In SVM terminology, a 

nonlinear function Φ(xi) maps input space (Rm) from lower to higher dimensional feature space. This 

mapping helps to identify the static nonlinearity of the Hammerstein model, as shown in Equation (1) 

 

yi(xi) =  wTΦ(xi) + b .                   (1) 

 

The LS-SVM parameters to be estimated are weighing factor-w and bias-b and are used to minimize 

training errors. The LS-SVM standard regression algorithm for identifying the optimized Hammerstein 

model structure uses Equation (2) 
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𝑀𝑖𝑛
𝑤,𝑏𝑏𝑖𝑎𝑠,𝑒

𝐽𝑝(𝑤, 𝑏𝑏𝑖𝑎𝑠, 𝑒) =
1

2
𝑤𝑇𝑤 +

𝛾

2
∑ {𝑒(𝑘)}2𝑁

𝑘=1  .                             (2)

  

Subject to satisfying the equality conditions given below. Here, γ is a hyper-parameter used to tune the 

amount of regularization against the sum squared error. And ei (deviation of the estimated output from the 

actual output) are the errors whose value decides the least-squares data fitting. 

 

Equation (3) represents the LLSSVM Hammerstein model structure identification [25] approach:  

 

𝑦𝑖(𝑥𝑖) =  𝑤𝑇𝛷(𝑥𝑖) + 𝑏 + 𝑒𝑖 .                   (3) 

 

Equation (4) gives the optimization problem solution with the Lagrange function [26] as: 

 

𝐿(𝑤, 𝑏, 𝑒, 𝛼) = 𝐽(𝑤, 𝑒) − 𝛼𝑖(𝑤𝑇𝛷(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖) .                (4) 

 

In Equation (4),  α = αi and ∀𝑖 ∈ [1, 𝑁] are the Lagrange multipliers set. 

 

Solving the optimality conditions [28, 29] by taking partial differentiation of Equation (4) with respect to 

w, b, ei, and αi as described in Equations (5) to (8) 

 
𝜕𝐿

𝜕𝑊
= 0 → 𝑤 = ∑ 𝛼𝑖

𝑛
𝑖=1 𝛷(𝑥𝑖)                   (5) 

        
𝜕𝐿

𝜕𝑏
= 0 → ∑ 𝛼𝑖

𝑛
𝑖=1 = 0                     (6) 

        
𝜕𝐿

𝜕𝑒𝑖
= 0 → 𝛼𝑖 = 𝛾𝑒𝑖                    (7) 

 
𝜕𝐿

𝜕𝛼𝑖
= 0 → 𝑤𝑇𝛷(𝑥𝑖) + 𝑏 + 𝑒𝑖 − 𝑦𝑖  = 0;     ∀𝑖 = 1, 𝑁 .                            (8) 

 

Defining, 

 

𝑌 =  [𝑦1, 𝑦2, … . . , 𝑦𝑁]𝑇 , 
 
1 =  [1, 1, … . . , 1]𝑇 , 
 
𝛼 =  [𝛼1, 𝛼2, … . . , 𝛼𝑁]𝑇 . 
 

The RBF kernel is: 

 

𝛺𝑖𝑙 = 𝛷(𝑥𝑖)𝛷(𝑥𝑙) = 𝐾(𝑥𝑖 , 𝑥𝑙) .                  (9) 

 

The RBF kernel helps to retrieve nonlinear dynamics associated with the plant [30].   

 

Removal of the terms wand e makes the optimization or minimization problem simplified with linear 

equations as: 

 

[
0 1𝑇

1 𝛺 + 
𝐼

𝛾

] [
𝑏𝑏𝑖𝑎𝑠

𝛼
] =  [

  0  
𝑦

] .                 (10)  

 

For invertible matrix[
0 1𝑇

1 𝛺 +  
𝐼

𝛾

], ensure that γ>0.  
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Here γ is the regularization constant to minimize training errors, model complexity, and data fitting.  

Then the solution for band α is given as: 

 

[
  𝑏 
𝛼

] = [
0 1𝑇

1 𝛺 +  
𝐼

𝛾

]

−1

[
  0  
𝑌

] .                 (11) 

 

From the obtained band α, the output equation becomes: 

 

𝑦(𝑥) = ∑ ∝𝑖
𝑛
𝑖=1 𝐾(𝑥 , 𝑥𝑖) + 𝑏 .                             (12) 

 

In Equation (12), K(x, xi) is the RBF kernel function shown below 

 

𝐾(𝑥 , 𝑥𝑖) = 𝑒𝑥𝑝
∥𝑥− 𝑥𝑖∥2

2𝛿2                                           (13) 

 

where δ represents RBF kernel bandwidth and the RBF kernel computes the variance ∥ 𝑥 − 𝑥𝑖 ∥. The RBF 

kernel gives the best results than other kernel functions in terms of smoothness and also quicker calibration. 

 

The Laguerre filters Li(z) implement the linear dynamics of the LS-SVM Hammerstein structure as 

represented in Equation (14) with output terms. The computational and dimensional complexity reduces 

with the lesser no. of Laguerre filters 'N' 

 

𝑦̂(𝑧) = (∑ 𝑐𝑖𝐿𝑖(𝑧)𝑁
𝑖=1 )𝑢(𝑧)                 (14) 

 

where 

 

𝐿𝑖  (𝑧) = √(1 − ∝2)𝑇  
(1− ∝𝑧)𝑖−1

(𝑧− ∝)𝑖  .                            (15)

        

The time scale parameters p>0 and p=T (time constant) achieve a faster convergence to satisfy 

controllability and observability conditions.  

 

The Laguerre filters output representing the linear part of the system is: 

 

𝑦̂(𝑘) =  𝑐𝑇𝐿(𝑘)                  (16)

         

where cT= [c1, c2,…,cN] are Laguerre filter coefficients. 

 

The approximation error or tracking error of sample k: 

 

𝑒𝑘 = 𝑦(𝑘) − 𝑦̂(𝐿(𝑘)) .                  (17)  

       

Equation (17) gives a cost function term used as a minimization term in the optimization problem. 

 

3. LLSSVM HAMMERSTEIN MODEL IDENTIFICATION FOR THE pH NEUTRALIZATION 

PROCESS  

 

This study includes a pH neutralization process as a benchmark system for identification and control, as 

shown in Figure 2. This pH neutralization process comprises three inlet streams, a q1-acid stream containing 

Nitric acid-HNO3, q2-buffer stream containing a weak base Sodium bicarbonate-NaHCO3, and q3-base 

stream of Sodium Hydroxide-NaOH with traces of Sodium bicarbonate-NaHCO3. In this process, the 

measured variables are tank liquid level (h) and pH. The acid stream is a disturbance variable, and the 

unmeasured disturbances are buffer and acid stream flows. Regulating the manipulated variable base flow 

helps to control the output variable pH. 
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Figure 2. The pH neutralization process under study (Benson &Seaborg) 

 

Table 1 shows the various parameters and their nominal values for the benchmark pH neutralization 

process. 

Table 1. pH neutralization process parameters 

Process Parameters Nominal Value Process Parameters Nominal Value 

Area of the tank, A 207 (cm2) Acid stream Wb1 0 (mol/L) 

Valve coefficient, Cv 8.75 (ml/cm·s) Buffer stream Wb2 3×10−2 (mol/L) 

pK1 (first dissociation constant of 

weak acid H2CO3) 

6.35 Base stream Wb3 5×10−5 

(mol/L) 

pK2 (second dissociation constant 

of weak acid H2CO3) 

10.25 Acid- HNO3 stream flow 

rate q1 

16.6 (mL/s) 

Reaction Invariant of Acid stream 

Wa1 

3×10−3 (mol/L) Buffer-NaHCO3 stream 

flow rate q2 

0.55 (mL/s) 

Reaction Invariant of Buffer 

stream Wa2 

-3×10−2 (mol/L) Base-NaOH and NaHCO3 

stream flow rate q3 

15.55(mL/s) 

Reaction Invariant of Base stream 

Wa3 

-3.05×10−3 

(mol/L) 

Height of reactor tank h 14.0 (cm) 

Wa4 and Wb4 are the effluent stream reaction invariants-Not measured 

 

The following equations mathematically model this pH neutralization process dynamics 

 
𝑑ℎ 

𝑑𝑡
=  

1

𝐴
(𝑞1 + 𝑞2 + 𝑞3 − 𝐶𝑣  ℎ

0.5 )                  (18)

        
𝑑𝑊𝑎4

𝑑𝑡
=

1

𝐴ℎ
[(𝑊𝑎1 − 𝑊𝑎4)𝑞1 + (𝑊𝑎2 − 𝑊𝑎4)𝑞2 + (𝑊𝑎3 − 𝑊𝑎4)𝑞3]              (19)

    
𝑑𝑊𝑏4

𝑑𝑡
=

1

𝐴ℎ
[(𝑊𝑏1 − 𝑊𝑏4)𝑞1 + (𝑊𝑏2 − 𝑊𝑏4)𝑞2 + (𝑊𝑏3 − 𝑊𝑏4)𝑞3]              (20)

     
𝑊𝑏4(1+2 × 10𝑝𝐻−𝑝𝐾2)

1+10𝑝𝐾1−𝑝𝐻+10𝑝𝐻−𝑝𝐾2
+ 𝑊𝑎4 + 10𝑝𝐻−14 = 10−𝑝𝐻 .              (21)

     

We use the input and output data from the actual benchmark pH neutralization process in training and 

validation to identify the LLSSVM Hammerstein model. This identification requires the generation of 

training and validation data for the actual model and model to be identified. Application of a persistent 

GBN (Generalized Binary Noise) signal with switching time (Tsw) =50 sec and SNR=20 excites the pH 

neutralization process under study. The base flow is the input to the model with a nominal flow rate of 

15.55 mL/s (refer to Table 1) for 400 seconds duration at a sampling rate of 0.1 sec, while the pH is the 

output of this pH neutralization process.  
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The applied input excitation to the pH neutralization process provides 4000 input and output data samples 

for model identification (with 3000 data points) and model validation (with the remaining 1000 data points). 

The model mismatch evaluation in terms of MSE and VAF includes comparing the identified model output 

with the actual model output.  

 

Figure 3 shows the test signal, which acts as a base flow rate (mL/sec) input to the pH neutralization process 

and the corresponding model output signal. We derived this output data from Equations (20), (21), (22), 

and (23) and used it to identify the Hammerstein model for the pH neutralization system. The applied 

LLSVM Hammerstein model fit performance depends on suitably selecting the tuning parameters p, N, γ, 

and δ. 

 

 
Figure 3. The pH neutralization system Input (Base flow rate)–Output (pH) data for model training 

 

We trained and validated the LLSSVM Hammerstein model for the pH neutralization process with the well-

tuned parameters. This model meets the lower value of MSE (Mean Squared Error) lesser than 0.5 and a 

higher value of VAF (variance accounted for) greater than 95% [28]. 

4.CROSS-VALIDATION OF THE LLSVM HAMMERSTEIN MODEL  

 

The cross-validation of the LLSSVM Hammerstein model uses different 1000 validation data points other 

than the 3000 data points used for training to check the model quality in predicting the process behavior 

and avoid over-fitting. Test results show model fitness or correctness with a parameter VAF (Variance 

Accounted For). The higher value of VAF (greater than 95%) shows that the estimated model output (ŷ) is 

close matches with the actual process model output (y). 

 

The calculation of the VAF implies the following formula: 

 

𝑉𝐴𝐹 = 𝑚𝑎𝑥 {1,
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑦−𝑦̂ )

𝑣𝑎𝑟(𝑦)
, 0}  𝑋 100%.                                            (22)

      
The best VAF values are verified by adjusting tuning parameters p, N, γ, and σ. We apply a trial and error 

method to tune the LLSSVM Hammerstein model for the tuned parameter combinations. We varied the 

tuning parameters p, N, γ, and σ till we got the best VAF and MSE performance of the LLSSVM 

Hammerstein model. 

 

Initially, the Linear Laguerre model is trained and validated with the pH neutralization process input-output 

data. Figure 4 shows the identified model response with the Linear Laguerre model with a red-colored line. 

For the Linear Laguerre model, the best results of VAF=93.3827 and MSE=0.5835 are for N=13, with 

p=1.1. It is essential to select p and N parameters properly to meet the trade-off between MSE and VAF.  
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Later, we trained and validated the LLSSVM Hammerstein model. One can see the identified model 

response with the LLSSVM Hammerstein model in Figure 4, shown with a blue-colored line for the 

validation data input. This response got for σ=200, γ=1, p=0.011 and N=9 and showed VAF=96.9270, 

MSE=0.3066. In contrast, the LLSSVM Hammerstein model with N=5 responds in terms of VAF=95.7483 

and MSE=0.4391.  

 

Figure 4 shows that the identified model output with the LLSSVM Hammerstein model is comparatively 

better than the Linear Laguerre model with the actual plant output. 

 

 
(a) Process and Model(s) Output 

 
 (b) Validating Input excitation for pH process 

Figure 4(a, b). Comparison of performance of Hammerstein and Linear Laguerre models in system 

identification of pH Neutralization process 

 

It is clear from the analysis that the LLSSVM Hammerstein model reproduces the benchmark pH 

neutralization system with a higher value of VAF=96.9270 and a smaller value of MSE=0.3066, showing 

high confidence in the estimation. Also, a lower value of MSE suggests the predictions made by the model 

match with the observed data or the actual process data. 

 

 

5.LLSSVM HAMMERSTEIN NONLINEAR MODEL PREDICTIVE CONTROLLER OF pH 

NEUTRALIZATION PROCESS 

 

A nonlinear MPC uses a plant model to predict the next control move of future control efforts for a defined 

control horizon (Hc) by minimizing a performance index over a finite moving horizon defined by the 

prediction horizon (Hp). The comparison of the LSSVM-Laguerre(LLSSVM) Hammerstein Model 

predicted output with the actual output of the process provides the solution for the optimization problem. 

Evaluating the corrected model prediction over the prediction horizon (Hp) helps to verify plant-model 

mismatch and unmeasured disturbances.  

 

Equation (23) includes the terms for minimizing objective function or performance index J(k) for the 

NMPC output. It comprises set-point variable ysp(k), predicted output ŷ(k) from future values and current 

values of output y(k), manipulated variable u(k) with present and past control values along with positive 

output diagonal matrix Q and R as shown in Equation (23). The controller fine-tuning and normalization 

of variables depend on Q and R matrices 

 

𝐽(𝑘) = ∑ {[𝑦𝑠𝑝(𝑘 + 𝑗) − 𝑦̂(𝑘 + 𝑗
𝐻𝑝
𝑗=1 |𝑘)]𝑇𝑄[𝑦𝑠𝑝(𝑘 + 𝑗) − 𝑦̂(𝑘 + 𝑗|𝑘)]} + ∑ 𝑢(𝑘 + 𝑗)𝑇𝐻𝑐

𝑗=1 𝑅𝑢(𝑘 + 𝑗).(23) 
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We use the identified LLSSVM Hammerstein model to implement an NMPC for the benchmark pH 

neutralization process. In this process, as discussed earlier, the base flow rate is the manipulated variable, 

the pH is the controlled variable, and the acid flow rate is a disturbance variable. 

 

In set-point tracking operation, NMPC is used to track the changes in the set-point variable pH by 

manipulating the base flow rate. Here, we use the acid flow rate as a disturbance variable in the disturbance 

rejection to check whether NMPC can maintain pH at the constant or desired set-point value in the presence 

of load or disturbances.  

The following sections give details of the comparative performance analysis of the NMPC with LMPC for 

the set-point tracking and disturbance rejection problems. The NMPC and LMPC performance analysis 

checks for the different values of the prediction horizon. And we evaluate their performance in terms of 

parameters ISE (Integral of Squared Error), IAE (Absolute of Squared Error), TV (Total Variation), and 

CE (Control Effort). The total variation (TV) indicates the smoothness of manipulated variable during 

control action [29] and provides a trade-off between input and output performance. The calculated value of 

the Total Variation should be as slight as possible and as per the formula given in Equation (24) 

𝑇𝑉 ≅ ∑ |𝑢(𝑘 + 1) − 𝑢(𝑘)|∞
𝑘=1 .                                (24) 

 
In Equation (24), u(k) and u(k+1) are the controller output present and past sample values. The control 

effort (CE) in Equation (25) considers the power of the control signal u(k) and relates to energy 

consumption to maintain the output variable at the set-point value. This CE value must be as small as 

possible 

 

𝐶𝐸 = ∫ |𝑢(𝑘)|
𝑛

𝑘=1
.                  (25) 

The other essential performance indices, ISE (Integral Squared Error), integrate the squared errors over 

time and penalize significant errors. IAE (Integral Absolute Error) integrates the absolute error over time 

and penalizes all errors equally, regardless of error direction. ISE and IAE, shown in Equations (26) and 

(27), are the cost functions to penalize system errors and achieve good under-damped system responses 

𝐼𝑆𝐸 =  ∫ 𝑒2∞

0
(𝑘)                  (26) 

 

𝐼𝐴𝐸 =  ∫ |𝑒(𝑘)|
∞

0
.                  (27) 

 

Initially, for the set-point tracking operation (pH set-point changes pH=7 to 10, from 10 to 4 and from 4 to 

10), the LMPC (based on the Linear Laguerre model) tuned at N=13, p=1.1, Q=10, R=1000, giving the 

better values of VAF=93.3827 and MSE=0.5835 with Control horizon Hc=2 and sampling time Ts=0.1 sec 

and applied to maintain the pH of the pH neutralization system with different values of the prediction 

horizon Hp=2, 4 and 6. 

 

If we take a minimal value of Hp, it may lead to an unstable controller response and more errors. In contrast, 

higher values of Hp give minor errors at the cost of more computational complexity for the nonlinear plants. 

We selected prediction horizon Hpvalue on the trial and error basis and with Hp=6 got the smaller ISE and 

IAE, as shown in Table 2. The performance parameters ISE, IAE, TV, and CE for these settings are as 

shown in Table 2. Figures 5 to 7 show the LMPC performance for the servo problem at different values of 

the prediction horizon Hp=2, 4, and 6. 
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(a) Controlled output 

 
(b) Manipulated input 

Figure 5(a, b). LMPC (with Laguerre model) and NMPC (with LLSSVM Hammerstein model) LMPC 

with Hp= 2 for Set-Point Tracking in the pH neutralization 

 

 

 
(a) Controlled output 

 
(b) Manipulated input 

Figure 6(a, b). LMPC and NMPC output with Hp= 4 for Set-Point Tracking in the pH neutralization. 

 

 
(a) Controlled output 
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(b) Manipulated input 

Figure 7(a, b). LMPC and NMPC output with Hp= 6 for Set-Point Tracking in the pH neutralization 

 

Figures 5 to 7 show that the output variable pH of the pH neutralization process is not exactly reaching the 

desired set-point values in the set-point tracking problem using LMPC design based on the Linear Laguerre 

model. 

 

Then, we applied the NMPC based on the LLSSVM Hammerstein model with the well-tuned values per 

required constraints (N=5, σ=200, γ=1, p=0.009). This NMPC gives good values of VAF=96.8948 and 

MSE=0.3082) for the smooth and precise set-point tracking. It is clear from Figures 5 to 7 that the NMPC 

outperforms the LMPC in the set-point tracking/servo operation by reaching the set point steadily, unlike 

the LMPC. 

 

Table 2 shows the NMPC performance with Q=10, R=1000, control horizon Hc =2, and sampling time  

Ts =0.1 sec with different values of the prediction horizon Hp =2, 4, and 6. 

 

Table 2. LMPC and NMPC performance Evaluation for Set pointing tracking problem 

Prediction 

Horizon  

ISE IAE TV CE 

Hp LMPC NMPC LMPC NMPC LMPC NMPC LMPC NMPC 

2 1.2124 0.1913 0.7679 0.3288 60.2120 9.8193 5062.5 4758.3 

4 1.2041 0.1868 0.7577 0.3222 61.0206 9.8959 5062.5 4760.3 

6 1.2027 0.1860 0.7558 0.3209 61.1739 9.9096 5076.2 4760.7 

 

The analysis from Tables 2 and Figures 5 to 7 shows that the NMPC does much better set-point tracking 

than the LMPC as ISE and IAE are smaller with the NMPC than the LMPC. Also, a smaller value of TV 

and CE indicates smoothness in the NMPC control action for the applied input changes and lower energy 

consumption to maintain the output at the set-point value, respectively.  

 

It is clear from Table 2 that as the prediction horizon increases, the ISE and IAE values decrease. The 

NMPC based on the LLSSVM Hammerstein model tracks the set-point trajectory and keeps the output 

variable pH at the desired set-point. Thus, in the set-point tracking control problem, the NMPC performs 

more effectively than the LMPC. 

Maintaining the output pH in a chemical process like a pH neutralization system by rejecting the 

disturbances is a fundamental aspect of process control. In a pH neutralization system, it is vital to keep the 

reactant pH at a value of 7. The efficient controller design is crucial in the disturbance rejection process by 

regulating the output variable at the set-point trajectory. 

For the disturbance rejection control problem, we suddenly varied the acid flow rate as a disturbance from 

its normal flow rate of 16.6mL/sec at different intervals (t1=2 min, t2=10 min, and t3=20 min) to the pH 

neutralization process. And then, we analyzed the LMPC performance in minimizing the effect of 

disturbance to maintain the output pH at the unchanged set-point value. The set parameters of the LMPC 

are Q=10, R=1000, Control horizon HC=2, and sampling time Ts=0.1 sec with different values of the 

prediction horizon Hp=2, 4, and 6. Figures 8 to 10 show the LMPC and NMPC performance for the 

disturbance rejection problem at different values of the prediction horizon Hp=2, 4, and 6. The LMPC can't 

force the output variable pH to reach the set-point in the presence of disturbances. 
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.  

(a)Controlled output 

 
(b) Manipulated input 

Figure 8(a, b). LMPC and NMPC output with Hp= 2 for Disturbance Rejection in the pH neutralization 

 

 
(a)Controlled output  

 
(b)Manipulated input 

Figure 9(a, b). LMPC and NMPC output with Hp= 4 for Disturbance Rejection in the pH neutralization 

 

 
(a)Controlled output 

 
(b) Manipulated input 

Figure 10(a, b). LMPC and NMPC output with Hp= 6 for Disturbance Rejection in the pH neutralization 
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Then, we applied NMPC using the LLSSVM Hammerstein model for the disturbance rejection control 

problems in the pH neutralization process. We tuned the NMPC for Q=10, R=1000, Control horizon  

Hc =2, and sampling time Ts =0.1sec with different values of the prediction horizon Hp =2, 4, and 6. Figures 

8 to 10 show the NMPC performance for the disturbance rejection problem to varying values of the 

prediction horizon Hp =2, 4, and 6. The acid flow rate fluctuation is the disturbance to the process applied 

at the different time intervals (t1=2 min, t2=10 min, and t3 =20 min). It is clear from Figures 8 to 10 that the 

NMPC rejects the effect of disturbances and regulates the pH at the set-point better than the LMPC.  

 

Table 3 shows the improved ISE, IAE, TV, and CE performance parameters of the NMPC with the 

LLSSVM Hammerstein model than the LMPC with a Linear Laguerre model.  

 

Table 3. LMPC and NMPC performance Evaluation for Disturbance Rejection problem 

Prediction 

Horizon 

ISE IAE TV CE 

Hp LMPC NMPC LMPC NMPC LMPC NMPC LMPC NMPC 

2 0.6402 0.1967 0.3114 0.1882 46.5141 13.4178 5085.8 4791.0 

4 0.6257 0.2061 0.3928 0.2369 78.6250 14.8911 5269.3 4782.0 

6 0.6400 0.2083 0.4259 0.2436 83.7660 15.1006 5361.1 4780.3 

 

6. THE RESEARCH FINDINGS AND DISCUSSION 

 

This research proposes an LSSVM-Laguerre (LLSSVM) Hammerstein model structure, as shown in Figure 

1, to overcome the limitations of the linear Laguerre model structure used. As shown in Figure 2, this 

simulation studies use the pH neutralization process to check model efficacy. Table 1 specifies the pH 

process parameters used to model this process. The LLSSVM Hammerstein model structure 

implementation includes LSSVM and RBF Kernel to represent the static nonlinear part of the pH 

neutralization process and the linear part with Laguerre filters. This combination is novel, as earlier 

combinations tested for other processes but not for a pH neutralization system. The input-output data 

obtained from the pH neutralization process applies in training the LLSSVM Hammerstein model, as shown 

in Figure 3.  

 

Training and validating the LLSSVM Hammerstein model with different tuning parameter combinations 

improve VAF and MSE performance. Figure 4 shows the Linear Laguerre model with N=13 with p=1.1 

gives the best results of VAF= 93.3827 and MSE=0.5835. Therefore, to achieve better model performance 

with a good model fit in terms of VAF and MSE, the LLSSVM Hammerstein model is trained and validated 

with different tuning parameter combinations. 

 

As shown in Figure 4, the LLSSVM Hammerstein identifies the pH neutralization process output with more 

accuracy (in terms of VAF and MSE) than the Linear Laguerre model. The VAF and MSE for the LLSSVM 

Hammerstein model are 95.7968 and 0.4308 with σ=200, γ=1, p=0.011, N=9, whereas 95.7483 and 0.4391 

for σ=200, γ=1, p=0.011, N=5. We choose N=5 while tuning the LLSSVM Hammerstein model with lower 

complexity. 

 

Thus, the LLSSVM Hammerstein model performs better than the linear Laguerre model for a nonlinear pH 

neutralization process under study. We further used the identified LLSSVM Hammerstein model structure 

as an NMPC for model-based controller implementation of the nonlinear pH neutralization process under 

investigation. 

 

Figures 5 to 7 show that for the set-point tracking problem, the NMPC provides better set-point tracking 

than the LMPC. It is clear from Figures 8 to 10 that the NMPC implemented with the LLSSVM 

Hammerstein model rejects the effects of acid flow fluctuations more effectively than the LMPC 

implemented from the linear Laguerre Model in the disturbance rejection problem. Tables 2 and 3 show 

that the NMPC based on the LLSSVM Hammerstein Model gives better ISE, IAE, and TV over the LMPC 

based on the Linear Laguerre model. Also, the CE parameter fluctuation is a lesser one. Thus, the LLSSVM 
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Hammerstein model performs better than the Laguerre model in identification and model-predictive control 

for the pH neutralization benchmark system under study. 

 

7. RESULTS 

 

This research proposes a newer kind of nonlinear Hammerstein type modeling technique to identify and 

model predictive control of a highly nonlinear system, such as the pH neutralization process. In the 

developed Hammerstein model, LSSVM implements a static nonlinear mapping tool, and the Laguerre 

filter in its state space form describes the linear dynamic part. In the system identification procedure, the 

LLSSVM model parameters tuning is on a trial and error basis for the best performance of the identified 

model.  

From the case study, the identified Hammerstein model has higher modeling accuracy than its linear 

counterpart, and the resulting model predictive controller proved efficient in controlling the pH 

neutralization process. This LLSSVM Hammerstein model approach can be crucial in identifying and 

controlling MIMO nonlinear processes like Distillation columns and multi-tank liquid level systems.  
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