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Abstract
The multi-variable special matrix polynomials have been identified significantly both in
mathematical and applied frameworks. Due to its usefulness and various applications, a
variety of its extensions and generalizations have been investigated and presented. The
purpose of the paper is intended to study and emerge with a new generalization of Hermite
matrix based Sheffer polynomials by involving integral transforms and some known oper-
ational rules. Their properties and quasi-monomial nature are also established. Further,
these sequences are expressed in determinant forms by utilizing the relationship between
the Sheffer sequences and Riordan arrays. An analogous study of these results is also
carried out for certain members belonging to generalized Hermite matrix based Sheffer
polynomials.
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1. Introduction and preliminaries
The Sheffer polynomials are one of the most important class of polynomial sequences

and have been extensively studied [2, 10, 11, 13] not only due to the fact that they arise
in numerous branches of mathematics but also because of their importance in applied
sciences, such as physics and engineering. The Sheffer polynomials Sn(p) for the pair
(g(t), f(t)) are defined by the generating function [14, Pg. 18]:

1
g(f−1(t))

exp
(
pf−1(t)

)
=

∞∑
n=0

Sn(p) tn

n!
, (1.1)

where g(t) is invertible series and f(t) is delta series and is given by

g(t) =
∞∑

n=0
gn

tn

n!
(g0 ̸= 0) (1.2)
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and

f(t) =
∞∑

n=0
fn

tn

n!
(f0 = 0, f1 ̸= 0). (1.3)

Sheffer class of polynomials contain two subclasses that are the corresponding associated
sequences and the Appell sequences. The pair (1, f(t)) reduces the Sheffer sequences to the
associated Sheffer sequence, and the pair (g(t), t) reduces to the Appell sequence [14, Pg.
17]. The applications of Appell polynomials lie in a variety of mathematical fields, e.g.,
statistics, number theory, and probability theory. The generalized Appell polynomials
play an essential role in approximating 3D-mappings in combination with Clifford analysis
methods. These polynomials also appear in representation theory in the field of quantum
physics.

The concept of the Riordan arrays was introduced by Shapiro et al. [15]. For the in-
vertible series g(t) and delta series f(t) defined by (1.2) and (1.3), the generalized Riordan
array (g(t), f(t)) with respect to the sequence (cn)n∈N, defines an infinite, lower triangular
array (an,k)0≤k≤n<∞ according to the rule:

an,k =
[

tn

cn

]
g(t)(f(t))k

ck
, (1.4)

where the notation
[

tn

cn

]
stands for the “coefficient of” operator and the functions g(t) (f(t))k

ck

are called the column generating functions of the Riordan array (g(t), f(t)) i.e.,

g(t)(f(t))k

ck
=

∞∑
n=k

an,k
tn

cn
. (1.5)

Particularly, the classical Riordan arrays correspond to the case of cn = 1, and the expo-
nential Riordan arrays correspond to the case of cn = n!.

The Sheffer polynomial sequences can also be represented via algebraic (determinant)
form [18] and provide significant advantages in several numerical and computational view-
point. If (Sn(p))n∈N0

is a Sheffer sequence for the pair (g(t), f(t)) satisfying the following
condition:

pn =
n∑

k=0
an,k Sk(p), (1.6)

then Sn(p) can be expressed by the following determinant form :

S0(p) = 1
a0,0

, (1.7)

Sn(p) = (−1)n

a0,0 a1,1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 p p2 · · · pn−1 pn

a0,0 a1,0 a2,0 · · · an−1,0 an,0
0 a1,1 a2,1 · · · an−1,1 an,1
0 0 a2,2 · · · an−1,2 an,2
...

...
... . . . ...

...
0 0 0 · · · an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (1.8)

where an,k is the (n, k)th entry of the Riordan array (g(t), f(t)).
Conversely, if a polynomial sequence (Sn(p))n∈N0

is defined by (1.7) and (1.8), where
an,k is the (n, k)th entry of the Riordan array (g(t), f(t)), then

Sn(p) =
n∑

k=0
bn,k pk, (1.9)

where bn,k is the (n, k)th entry of the Riordan array
(

1
g(f−1(t)) , f−1(t)

)
and (Sn(p))n∈N0

is
Sheffer sequence for (g(t), f(t)) (see [17]).
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An extension to the matrix framework of the classical special polynomials has been
extensively studied and investigated in recent years [4, 7, 8, 19–21]. Matrix polynomials
are important due to their applications in certain areas of statistics, physics, and en-
gineering and is an emergent field. Moreover the introduction of multi-variable special
functions serves as an analytical foundation for the majority of problems in mathematical
physics that have been solved exactly and finds a wide range of practical applications.
For some physical problems, the utilization of hybrid classes of special functions provided
solutions hardly achievable with conventional numerical and analytical means. We review
the definitions and concepts related to the 3-index 3-variable Hermite matrix based Sheffer
polynomials.

Throughout the paper unless otherwise stated, we assume that B is a positive stable
matrix in CN×N , that is, B satisfies the following condition:

Re(ν) > 0, for all ν ∈ σ(B), (1.10)

where σ(B) denotes the set of all the eigenvalues of B.
If D0 is the complex plane cut along the negative real axis and log(r) denotes the

principal logarithm of r, then r1/2 represents exp(1
2 log(r)). If B is a matrix in CN×N

with σ(B) ⊂ D0, then B1/2 =
√
B denotes the image by r1/2 of the matrix functional

calculus [6] acting on the matrix B.
The 3-index 3-variable Hermite matrix based Sheffer polynomials (3I3VHMSP) denoted

by HS
(m,η)
n (p, q, r;B) are defined by the generating function [21]:

1
g(f−1(t))

exp
(
pf−1(t)

√
mB − q(f−1(t))mI + r(f−1(t))ηI

)
=

∞∑
n=0

HS(m,η)
n (p, q, r;B) tn

n!
,

(1.11)
where m and η are both positive integers.

It has been shown in [21], that 3I3VHMSP HS
(m,η)
n (p, q, r;B) are quasi-monomial under

the action of the following multiplicative and derivative operators:

Φ+
HS :=

(
p
√

mB − mq(
√

mB)−(m−1) ∂m−1

∂pm−1 + ηr(
√

mB)−(η−1) ∂η−1

∂pη−1 − g′(DP )
g(DP )

)
1

f ′(DP )
(1.12)

and
Φ−

HS := f(DP ) (1.13)
respectively, where

Dp√
mB

= DP .

The operational rule connecting the 3I3VHMSP HS
(m,η)
n (p, q, r;B) with the Sheffer

polynomials Sn(p) is given by

HS(m,η)
n (p, q, r;B) = exp

(
r(

√
mB)−η ∂η

∂pη
− q(

√
mB)−m ∂m

∂pm

){
Sn(p

√
mB)

}
. (1.14)

In view of (1.9) for the pair (g(t), f(t)), explicit series representation for 3I3VHMSP
HS

(m,η)
n (p, q, r;B) is given by

HS(m,η)
n (p, q, r;B) =

n∑
k=0

bn,kH
(m,η)
k (p, q, r;B), (1.15)

where bn,k is the (n, k)th entry of the Riordan array ( 1
g(f−1(t)) , f−1(t)) and H

(m,η)
n (p, q, r;B)

are the 3-index 3-variable Hermite matrix polynomials given by the following operational
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rule [7]:

H(m,η)
n (p, q, r;B) = exp

(
r(

√
mB)−η ∂η

∂pη
− q(

√
mB)−m ∂m

∂pm

){
(p

√
mB)n

}
. (1.16)

Operational methods can be exploited to simplify the derivation of properties associ-
ated with ordinary and generalized special matrix functions and to define new families of
hybrid special matrix polynomials. In addition, operational methods, developed within
the context of the fractional derivative formalism [12] have opened new possibilities in the
application of calculus. The combined use of integral transforms and operational methods
provides a powerful computational tool to allow further progress and reveal new avenues
for the study of fractional derivatives. We recall that the Euler integral [16, Pg. 218] is
given by

a−µ = 1
Γ(µ)

∫ ∞

0
e−attµ−1dt, min {Re(µ), Re(a)} ≥ 0. (1.17)

The Euler integral form the foundation of new generalizations of special matrix poly-
nomials. The fusion of the properties of exponential operators with suitable integral
representations for the special polynomials leads to a new and efficient method of treating
fractional operators, for example, see [5].

This article is an attempt to generalize 3I3VHMSP HS
(m,η)
n (p, q, r;B) in view of frac-

tional calculus which looks very promising for developing a new perspective on the theory
of special matrix polynomials. In Section 2, generalized three index three variable Hermite
matrix based Sheffer polynomials are introduced. These sequences are studied within the
framework of the monomiality principle, fractional calculus, and Riordan array. Its sub-
classes are discussed in Section 3. Further, in order to show some applications of the main
results, several illustrative examples are also constructed in Section 4. In the last section,
summation formula and identities corresponding to some well known identities are derived
using operational formalism.

2. Generalized form of three index three variable Hermite matrix based
Sheffer polynomials

In order to introduce the generalized three index three variable Hermite matrix based
Sheffer polynomials, denoted by HS

(m,η)
n,µ (p, q, r;B; α), first we prove the following theorem:

Theorem 2.1. For the generalized three index three variable Hermite matrix based Sheffer
polynomials HS

(m,η)
n,µ (p, q, r;B; α), the following operational rule holds true:(

α + q(
√

mB)−m ∂m

∂pm
− r(

√
mB)−η ∂η

∂pη

)−µ {
Sn(p

√
mB)

}
= HS(m,η)

n,µ (p, q, r;B; α).

(2.1)

Proof. Replacing a in Euler integral (1.17) by
(
α −

(
r(

√
mB)−η ∂η

∂pη − q(
√

mB)−m ∂m

∂pm

))
and then operating the resultant expression on Sheffer polynomials Sn(p

√
mB), we obtain

(
α + q(

√
mB)−m ∂m

∂pm
− r(

√
mB)−η ∂η

∂pη

)−µ {
Sn(p

√
mB)

}
= 1

Γ(µ)

∫ ∞

0
tµ−1

exp
(

−
(

α + q(
√

mB)−m ∂m

∂xm
− r(

√
mB)−η ∂η

∂xη

)
t

){
Sn(p

√
mB)

}
dt, (2.2)
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which on using (1.14) gives(
α + q(

√
mB)−m ∂m

∂pm
− r(

√
mB)−η ∂η

∂pη

)−µ {
Sn(p

√
mB)

}
= 1

Γ(µ)

∫ ∞

0
e−αttµ−1

HS(m,η)
n (p, qt, rt;B)dt. (2.3)

The integral transform on the right hand side of (2.3) defines a hybrid class of poly-
nomials. Denoting this hybrid class of polynomials by HS

(m,η)
n,µ (p, q, r;B; α) and naming

it as the generalized three index three variable Hermite matrix based Sheffer polynomials
(G3I3VHMSP), we have

HS(m,η)
n,µ (p, q, r;B; α) = 1

Γ(µ)

∫ ∞

0
e−αttµ−1

HS(m,η)
n (p, qt, rt;B)dt. (2.4)

In view of (2.3) and (2.4), (2.1) follows. □

Next, we derive the generating function of the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) by

proving the following result.

Theorem 2.2. For the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), the following generating func-

tion holds true:
exp

(
pf−1(u)

√
mB

)
g(f−1(u)) (α + q(f−1(u))mI − r(f−1(u))ηI)µ =

∞∑
n=0

HS(m,η)
n,µ (p, q, r;B; α)un

n!
. (2.5)

Proof. Multiplying both sides of the integral representation (2.4) of G3I3VHMSP
HS

(m,η)
n,µ (p, q, r;B; α) by un

n! and summing the resultant expression over n, we obtain
∞∑

n=0
HS(m,η)

n,µ (p, q, r;B; α)un

n!
=

∞∑
n=0

1
Γ(µ)

∫ ∞

0
e−αttµ−1

HS(m,η)
n (p, qt, rt;B)un

n!
dt. (2.6)

Using (1.11) in the right hand side of (2.6), it follows that
∞∑

n=0
HS(m,η)

n,µ (p, q, r;B; α)un

n!
= exp(pf−1(u)

√
mB)

g(f−1(u))
1

Γ(µ)

∫ ∞

0
tµ−1

exp
(
−
(
α + q(f−1(u))mI − r(f−1(u))ηI

)
t
)

dt. (2.7)

which in view of Euler integral (1.17), leads to (2.5). □

Remark 2.3. Using similar argument as in the proof of Theorem 2.1 on the operational
rule (1.16), we can form a new class of the generalized 3-index 3-variable Hermite ma-
trix polynomials (G3I3VHMP), denoted by H

(m,η)
n,µ (p, q, r;B; α), defined by the following

integral transform

H(m,η)
n,µ (p, q, r;B; α) = 1

Γ(µ)

∫ ∞

0
e−αttµ−1H(m,η)

n (p, qt, rt;B)dt (2.8)

and its operational representation is given by

H(m,η)
n,µ (p, q, r;B; α) =

(
α + q(

√
mB)−m ∂m

∂pm
− r(

√
mB)−η ∂η

∂pη

)−µ {
(p

√
mB)n

}
. (2.9)

Theorem 2.4. For the pair (g(t), f(t)), explicit series representation for G3I3VHMSP
HS

(m,η)
n,µ (p, q, r;B; α) is given by

HS(m,η)
n,µ (p, q, r;B; α) =

n∑
k=0

bn,kH
(m,η)
k,µ (p, q, r;B; α), (2.10)
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where bn,k is the (n, k)th entry of the Riordan array
(

1
g(f−1(t)) , f−1(t)

)
and

H
(m,η)
k,µ (p, q, r;B; α) are the G3I3VHMP given by (2.8).

Proof. In (1.15), replacing q by qt, r by rt and then multiplying both sides by 1
Γ(µ)e−αttµ−1

and thereafter integrating with respect to t from t = 0 to t = ∞, we obtain

1
Γ(µ)

∫ ∞

0
e−αttµ−1

HS(m,η)
n (p, qt, rt;B)dt

= 1
Γ(µ)

∫ ∞

0
e−αttµ−1

n∑
k=0

bn,kH
(m,η)
k (p, qt, rt;B)dt, (2.11)

which on using integral transforms (2.4) and (2.8), leads to (2.10). □

Differentiating generating function (2.5) w.r.t α, the following result is obtained:

Lemma 2.5. For the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), the following recurrence relation

holds true:
∂

∂α

(
HS(m,η)

n,µ (p, q, r;B; α)
)

= −µ HS
(m,η)
n,µ+1(p, q, r;B; α). (2.12)

To frame the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) within the context of monomiality prin-

ciple, we prove the following result:

Theorem 2.6. The G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) are quasi-monomial with respect

to the following multiplicative and derivative operators:

Φ+
GHS :=

(
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1

− ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1 − g′(DP )
g(DP )

) 1
f ′(DP )

(2.13)

and
Φ−

GHS := f(DP ) (2.14)

respectively, where

DP = Dp√
mB

.

Proof. In view of monomiality principle, expression (1.12) and (1.13) can be written as:

HS
(m,η)
n+1 (p, q, r;B) =

(
p
√

mB − mq(
√

mB)−(m−1) ∂m−1

∂pm−1

+ ηr(
√

mB)−(η−1) ∂η−1

∂pη−1 − g′(DP )
g(DP )

) 1
f ′(DP )HS(m,η)

n (p, q, r;B) (2.15)

and
n HS

(m,η)
n−1 (p, q, r;B)Φ−

HS := f(DP )HS(m,η)
n (p, q, r;B), (2.16)

where

DP = Dp√
mB

.
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Now in (2.15) and (2.16), replacing q by qt, r by rt and then multiplying both sides by
1

Γ(µ)e−αttµ−1 and thereafter integrating with respect to t from t = 0 to t = ∞, we obtain

1
Γ(µ)

∫ ∞

0
e−αttµ−1

HS
(m,η)
n+1 (p, qt, rt;B)dt

= 1
Γ(µ)

∫ ∞

0
e−αttµ−1

(
p
√

mB − mqt(
√

mB)−(m−1) ∂m−1

∂pm−1

+ ηrt(
√

mB)−(η−1) ∂η−1

∂pη−1 − g′(DP )
g(DP )

) 1
f ′(DP )HS(m,η)

n (p, qt, rt;B)dt (2.17)

and
n

Γ(µ)

∫ ∞

0
e−αttµ−1

HS
(m,η)
n−1 (p, qt, rt;B)dt

= 1
Γ(µ)

∫ ∞

0
e−αttµ−1f(DP )HS(m,η)

n (p, qt, rt;B)dt, (2.18)

which on using integral transform (2.4) and recurrence relation (2.12), leads to (2.13) and
(2.14). □

In view of the monomiality principle, following consequences of the above result are
obtained:

Corollary 2.7. The G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) satisfy the following differential

recurrence relations:(
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1 − g′(DP )
g(DP )

)
× 1

f ′(DP )HS(m,η)
n,µ (p, q, r;B; α) = HS

(m,η)
n+1,µ(p, q, r;B; α) (2.19)

and
f(DP )HS(m,η)

n,µ (p, q, r;B; α) = n HS
(m,η)
n−1,µ(p, q, r;B; α). (2.20)

Corollary 2.8. The G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) satisfy the following differential

equation:({
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

− g′(DP )
g(DP )

}
f(DP )
f ′(DP )

− n

)
HS(m,η)

n,µ (p, q, r;B; α) = 0. (2.21)

Corollary 2.9. The G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) satisfy the following explicit rep-

resentation:

HS(m,η)
n,µ (p, q, r;B; α) =

({
p
√

mB + mq(
√

mB)−(m−1)

× ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1 − g′(DP )
g(DP )

} 1
f ′(DP )

)n

{1}. (2.22)

The determinant approach is equivalent to the corresponding approach based on oper-
ational methods. The simplicity of this approach allows non-specialists to use its appli-
cations and is beneficial in detecting the solution of general linear interpolation problems
and also suitable for computation. Inspired by the novel work on determinant approaches
of the Sheffer sequences proposed by W. Wang [17] in 2014, the determinant definition of
the G3I3VHMSP HS

(m,η)
n,µ (p, q, r;B; α) is established by proving the following result.
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Theorem 2.10. The G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) of degree n are defined by the

following determinant form:

HS
(m,η)
0,µ (p, q, r;B; α) = 1

a0,0
H

(m,η)
0,µ (p, q, r;B; α), (2.23)

HS(m,η)
n,µ (p, q, r;B; α) = (−1)n

a0,0 a1,1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0 H1 H2 · · · Hn−1 Hn

a0,0 a1,0 a2,0 · · · an−1,0 an,0
0 a1,1 a2,1 · · · an−1,1 an,1
0 0 a2,2 · · · an−1,2 an,2
...

...
... . . . ...

...
0 0 0 · · · an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(2.24)
where an,k is the (n, k)th entry of the Riordan array (g(t), f(t)) and Hn =
H

(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).

Proof. In (1.6), replacing p by p
√

mB and then operating(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ
on both sides. Afterwards, in the resul-

tant expression using operational rules (2.1) and (2.9) in r.h.s and l.h.s. respectively, we
find

H(m,η)
n,µ (p, q, r;B; α) =

n∑
k=0

an,k HS
(m,η)
k,µ (p, q, r;B; α). (2.25)

The above equality leads to the following system of infinite equations in the unknowns
HS

(m,η)
n,µ (p, q, r;B; α), n = 0, 1, 2, · · · ,



a0,0 HS
(m,η)
0,µ (p, q, r;B; α) = H

(m,η)
0,µ (p, q, r;B; α),

a1,0 HS
(m,η)
0,µ (p, q, r;B; α) + a1,1 HS

(m,η)
1,µ (p, q, r;B; α) = H

(m,η)
1,µ (p, q, r;B; α),

a2,0 HS
(m,η)
0,µ (p, q, r;B; α) + a2,1 HS

(m,η)
1,µ (p, q, r;B; α) + a2,2 HS

(m,η)
2,µ (p, q, r;B; α)
= H

(m,η)
2,µ (p, q, r;B; α),

...
an,0 HS

(m,η)
0,µ (p, q, r;B; α) + an,1 HS

(m,η)
1,µ (p, q, r;B; α) + an,2 HS

(m,η)
2,µ (p, q, r;B; α) + · · ·

+an,n HS
(m,η)
n,µ (p, q, r;B; α) = H

(m,η)
n,µ (p, q, r;B; α),

...
(2.26)

From first equation of system (2.26), (2.23) follows. Applying Cramer’s rule to the first
n + 1 equations, it follows that

HS(m,η)
n,µ (p, q, r;B; α) = 1

a0,0 a1,1 · · · an,n

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0,0 0 0 · · · 0 H
(m,η)
0,µ (p, q, r;B; α)

a1,0 a1,1 0 · · · 0 H
(m,η)
1,µ (p, q, r;B; α)

a2,0 a2,1 a2,2 · · · 0 H
(m,η)
2,µ (p, q, r;B; α)

...
...

... . . . ...
...

an−1,0 an−1,1 an−1,2 · · · an−1,n−1 H
(m,η)
n−1,µ(p, q, r;B; α)

an,0 an,1 an,2 · · · an,n−1 H
(m,η)
n,µ (p, q, r;B; α)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.27)
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Now, bringing the (n + 1)th column to the first place by n transpositions of adjacent
columns and noting that the determinant of a square matrix is the same as that of its
transpose, (2.24) follows. □

3. Subclasses
The two particular subclasses of the Sheffer sequences are the sequences of the Appell

polynomials and the associated Sheffer polynomials, which are discussed in Section 1. To
study the subclasses related to the G3I3VHMSP HS

(m,η)
n,µ (p, q, r;B; α) , we consider the

following cases:

3.1. The subclass related to the associated Sheffer polynomials
As mentioned in Section 1, Sheffer polynomials Sn(p) for the pair (1, f(t)) become the

associated Sheffer polynomials sn(p). Therefore, by taking g(t) = 1, so that
1

g(f−1(t))
= 1 and g′(t) = 0 (3.1)

in the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), we find that the generalized three index three

variable Hermite matrix based associated Sheffer polynomials (G3I3VHMASP), denoted
by Hs

(m,η)
n,µ (p, q, r;B; α), related with the pair (1, f(t)) is defined by the following generating

function:
exp

(
pf−1(u)

√
mB

)
(α + q(f−1(u))mI − r(f−1(u))ηI)µ =

∞∑
n=0

Hs(m,η)
n,µ (p, q, r;B; α)un

n!
. (3.2)

The other results for the G3I3VHMASP Hs
(m,η)
n,µ (p, q, r;B; α) are given in Table 1, where

DP = Dp√
mB

and bn,k is the (n, k)th entry of the Riordan array
(
1, f−1(t)

)
.

S. No. Results Expressions
I Operational Representation Hs

(m,η)
n,µ (p, q, r;B; α)

=
(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ {
sn(p

√
mB)

}
II Series Representation Hs

(m,η)
n,µ (p, q, r;B; α) =

∑n
k=0 bn,kH

(m,η)
k,µ (p, q, r;B; α)

III Multiplicative Operator Φ+
GHAS :=

(
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1

−ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

)
1

f ′(DP )

IV Derivative Operator Φ−
GHAS := f(DP )

V Differential Equation
({

p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1

−ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

}
f(DP )
f ′(DP ) − n

)
Hs

(m,η)
n,µ (p, q, r;B; α) = 0

Table 1. Results for G3I3VHMASP Hs
(m,η)
n,µ (p, q, r;B; α).

In view of (1.4) and considering the fact that cn = n! for associated Sheffer polynomials
sn(p), the determinant form of Sheffer polynomials Sn(p) reduces to that of associated
Sheffer polynomials sn(p) for:

an,0 =
[

tn

n!

] (f(t))0

0!
= n! [tn] 1 = δn,0. (3.3)

Consequently by making the same substitution in the determinant form (2.23) and
(2.24), we find that the G3I3VHMASP Hs

(m,η)
n,µ (p, q, r;B; α) are defined by means of the

following determinant:

Hs
(m,η)
0,µ (p, q, r;B; α) = H

(m,η)
0,µ (p, q, r;B; α), (3.4)
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Hs(m,η)
n,µ (p, q, r;B; α) = (−1)n+1

a1,1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣

H1 H2 · · · Hn−1 Hn

a1,1 a2,1 · · · an−1,1 an,1
0 a2,2 · · · an−1,2 an,2
...

... . . . ...
...

0 0 · · · an−1,n−1 an,n−1

∣∣∣∣∣∣∣∣∣∣∣∣
, (3.5)

where an,k is the (n, k)th entry of the Riordan array associated with (1, f(t)) and Hn =
H

(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).

3.2. The subclass related to the Appell polynomials
We know that the Sheffer polynomials Sn(p) for the pair (g(t), t) become the Appell

polynomials An(p). Therefore, by taking f(t) = t , so that

f−1(t) = t,
1

g(f−1(t))
= 1

g(t)
and f ′(t) = 1 (3.6)

in the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), we find that the generalized three index

three variable Hermite matrix based Appell polynomials (G3I3VHMAP), denoted by
HA

(m,η)
n,µ (p, q, r;B; α), related with the pair (g(t), t) is defined by the following generat-

ing function:

exp
(
pu

√
mB

)
g(u) (α + qumI − ruηI)µ =

∞∑
n=0

HA(m,η)
n,µ (p, q, r;B; α)un

n!
. (3.7)

The other results for the G3I3VHMAP HA
(m,η)
n,µ (p, q, r;B; α) are given in Table 2, where

DP = Dp√
mB

and bn,k is the (n, k)th entry of the Riordan array
(

1
g(t) , t

)
.

S. No. Results Expressions
I Operational Representation HA

(m,η)
n,µ (p, q, r;B; α)

=
(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ {
An(p

√
mB)

}
II Series Representation HA

(m,η)
n,µ (p, q, r;B; α) =

∑n
k=0 bn,kH

(m,η)
k,µ (p, q, r;B; α)

III Multiplicative Operator Φ+
GHA := p

√
mB + mq(

√
mB)−(m−1) ∂m

∂α∂pm−1

−ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1 − g′(DP )
g(DP )

IV Derivative Operator Φ−
GHA := DP

V Differential Equation
({

p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

−g′(DP )
g(DP )

}
DP − n

)
HA

(m,η)
n,µ (p, q, r;B; α) = 0

Table 2. Results for G3I3VHMAP HA
(m,η)
n,µ (p, q, r;B; α).

In view of (1.4) and considering the fact that cn = n! for Appell polynomials An(p),
the determinant form of Sheffer polynomials Sn(p) reduces to that of Appell polynomials
An(p) for:

an,k =
[

tn

n!

]
g(t) tk

k!
= n!

k!
[tn−k]g(t) =

(
n

k

)
gn−k. (3.8)

Consequently by making the same substitution in the determinant form (2.23) and
(2.24), we find that the G3I3VHMAP HA

(m,η)
n,µ (p, q, r;B; α) are defined by means of the

following determinant:

HA
(m,η)
0,µ (p, q, r;B; α) = 1

g0
H

(m,η)
0,µ (p, q, r;B; α), (3.9)
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HA(m,η)
n,µ (p, q, r;B; α) = (−1)n

g0n+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0 H1 H2 · · · Hn−1 Hn

g0 g1 g2 · · · gn−1 gn

0 g0
(2

1
)
g1 · · ·

(n−1
1
)
gn−2

(n
1
)
gn−1

0 0 g0 · · ·
(n−1

2
)
gn−3

(n
2
)
gn−2

...
...

... . . . ...
...

0 0 0 · · · g0
( n

n−1
)
g1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (3.10)

where Hn = H
(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).

4. Illustrative examples
In order to give applications of the results derived above, we consider illustrative exam-

ples of certain members belonging to the class of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α).

Example 4.1. The Sheffer polynomials Sn(p) for the pair (g(t), f(t)) given by

g(t) = 2
1 +

√
1 − t2

and f(t) = − t

1 +
√

1 − t2
, (4.1)

reduce to the Chebyshev polynomials Un(p) of the second kind [1, Pg. 778]. Consequently
taking these values of (g(t), f(t)) and

f−1(t) = − 2t

1 + t2 and g(f−1(t)) = 1 + t2 (4.2)

in the generating function (2.5) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), reduce it to the

generalized three index three variable Hermite matrix based Chebyshev polynomials
(G3I3VHMCP) HU

(m,η)
n,µ (p, q, r;B; α) of the second kind which are defined by the following

generating function:

exp
(
−p 2u

1+u2

√
mB

)
(1 + u2)

(
α + q(− 2u

1+u2 )mI − r(− 2u
1+u2 )ηI

)µ =
∞∑

n=0
HU (m,η)

n,µ (p, q, r;B; α)un

n!
. (4.3)

The explicit series representation (2.10) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces

to that of G3I3VHMCP HU
(m,η)
n,µ (p, q, r;B; α) for bn,k, where bn,k is the (n, k)th entry of

the Riordan array
(

1
1+t2 , −2t

1+t2

)
(see (4.2)). So, in view of (1.4) and considering the fact

that cn = (−1)n for this case, bn,k is given by

bn,k =
{

0, n − k odd,

(−1)n−k(−2)k
(−k−1

n−k
2

)
, n − k even.

(4.4)

Therefore we have

HU (m,η)
n,µ (p, q, r;B; α) =

[ n
2 ]∑

k=0

(
−n + 2k − 1

k

)
(−2)n−2kH

(m,η)
n−2k,µ(p, q, r;B; α). (4.5)

The other results for the G3I3VHMCP HU
(m,η)
n,µ (p, q, r;B; α) are given in Table 3, where

DP = Dp√
mB

.
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S. No. Results Expressions
I Operational Representation HU

(m,η)
n,µ (p, q, r;B; α)

=
(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ {
Un(p

√
mB)

}
II Multiplicative Operator Φ+

GHC :=
(
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1)

∂η

∂α∂pη−1 − DP

1−(DP )2+
√

1−(DP )2

)(
−1 + (DP )2 −

√
1 − (DP )2

)
III Derivative Operator Φ−

GHC := − DP

1+
√

1−DP
2

IV Differential Equation
({

p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

− DP

1−(DP )2+
√

1−(DP )2

}(
DP

√
1 − (DP )2

)
− n

)
HU

(m,η)
n,µ (p, q, r;B; α) = 0

Table 3. Results for G3I3VHMCP HU
(m,η)
n,µ (p, q, r;B; α).

The determinant form (2.23) and (2.24) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces

to that of G3I3VHMCP HU
(m,η)
n,µ (p, q, r;B; α) for an,k, where an,k is the (n, k)th entry of

the Riordan array
(

2
1+

√
1−t2 , − t

1+
√

1−t2

)
. In view of (1.4), an,k is given by

an,k =
{ 0, n − k odd,

(−1)n−k (−1)k

2n
1+k
1+n

(1+n
n−k

2

)
, n − k even.

(4.6)

In particular, an,n =
(
−1

2

)n
. Therefore, for an even n, we have

HC
(m,η)
0,µ (p, q, r;B; α) = H

(m,η)
0,µ (p, q, r;B; α), (4.7)

HC(m,η)
n,µ (p, q, r;B; α) = (−1)

n(n+3)
2 2

n(n+1)
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0 H1 H2 · · · Hn−1 Hn

1 0 1
4 · · · 0 1

2n
1

1+n

(1+n
n
2

)
0 −1

2 0 · · · −1
2n−1

2
n

( n
n−2

2

)
0

0 0 1
4 · · · 0 1

2n
3

1+n

(1+n
n−2

2

)
...

...
... . . . ...

...
0 0 0 · · · −

(
1
2

)n−1
0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

(4.8)
where Hn = H

(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).

Example 4.2. The Sheffer polynomials Sn(p) for the pair (g(t), f(t)) given by

g(t) = 1 and f(t) = log(1 + t), (4.9)

reduce to the exponential polynomials ϕn(p) [14, Pg. 63]. Consequently taking these
values of (g(t), f(t)) and

f−1(t) = et − 1 and g(f−1(t)) = 1 (4.10)

in the generating function (2.5) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), reduce it to the

generalized three index three variable Hermite matrix based exponential polynomials
(G3I3VHMExP) Hϕ

(m,η)
n,µ (p, q, r;B; α) which are defined by the following generating func-

tion:
exp

(
p(eu − 1)

√
mB

)
(α + q(eu − 1)mI − r(eu − 1)ηI)µ =

∞∑
n=0

Hϕ(m,η)
n,µ (p, q, r;B; α)un

n!
. (4.11)

The explicit series representation (2.10) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces

to that of G3I3VHMExP Hϕ
(m,η)
n,µ (p, q, r;B; α) for bn,k, where bn,k is the (n, k)th entry of
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the Riordan array
(
1, et − 1

)
(see (4.10)). So, in view of (1.4) and considering the fact

that cn = n! for this case, bn,k is given by

bn,k =
[

tn

n!

] (et − 1)k

k!
= S(n, k), (4.12)

where S(n, k) are the the Stirling numbers of the second kind [3, Pg. 206]. Therefore we
have

Hϕ(m,η)
n,µ (p, q, r;B; α) =

n∑
k=0

S(n, k)H(m,η)
k,µ (p, q, r;B; α). (4.13)

The other results for the G3I3VHMExP Hϕ
(m,η)
n,µ (p, q, r;B; α) are given in Table 4, where

DP = Dp√
mB

.

S. No. Results Expressions
I Operational Representation Hϕ

(m,η)
n,µ (p, q, r;B; α)

=
(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ {
ϕn(p

√
mB)

}
II Multiplicative Operator Φ+

GHEX :=
(
p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1

−ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

)
(1 + DP )

III Derivative Operator Φ−
GHEX := log(1 + DP )

IV Differential Equation
({

p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

}
(1 + DP ) log (1 + DP ) − n

)
Hϕ

(m,η)
n,µ (p, q, r;B; α) = 0

Table 4. Results for G3I3VHMExP Hϕ
(m,η)
n,µ (p, q, r;B; α).

The determinant form (2.23) and (2.24) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces to

that of G3I3VHMExP Hϕ
(m,η)
n,µ (p, q, r;B; α) when an,k is the (n, k)th entry of the Riordan

array (1, log(1 + t)). In view of (1.4), an,k is given by

an,k =
[

tn

n!

] (log(1 + t))k

k!
= s(n, k) , (4.14)

where s(n, k) are the the Stirling numbers of the first kind [3, Pg. 212].
In particular, an,n = 1 (n = 0, 1, 2, · · · ) and an,0 = 0 (n = 1, 2, 3, · · · ). Therefore, we

have
Hϕ

(m,η)
0,µ (p, q, r;B; α) = H

(m,η)
0,µ (p, q, r;B; α), (4.15)

Hϕ(m,η)
n,µ (p, q, r;B; α) = (−1)n+1

∣∣∣∣∣∣∣∣∣∣∣∣

H1 H2 · · · Hn−1 Hn

1 s(2, 1) · · · s(n − 1, 1) s(n, 1)
0 1 · · · s(n − 1, 2) s(n, 2)
...

... . . . ...
...

0 0 · · · 1 s(n, n − 1)

∣∣∣∣∣∣∣∣∣∣∣∣
, (4.16)

where Hn = H
(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).

Example 4.3. The Sheffer polynomials Sn(p) for the pair (g(t), f(t)) given by

g(t) = et + 1
2

and f(t) = t, (4.17)

reduce to the Euler polynomials En(p) [14, Pg. 100]. Consequently taking these values of
(g(t), f(t)) and

f−1(t) = t and g(f−1(t)) = et + 1
2

(4.18)
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in the generating function (2.5) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), reduce it to the gen-

eralized three index three variable Hermite matrix based Euler polynomials (G3I3VHMEP)
HE

(m,η)
n,µ (p, q, r;B; α) which are defined by the following generating function:

2 exp
(
pu

√
mB

)
(eu + 1) (α + qumI − ruηI)µ =

∞∑
n=0

HE(m,η)
n,µ (p, q, r;B; α)un

n!
. (4.19)

The explicit series representation (2.10) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces

to that of G3I3VHMEP HE
(m,η)
n,µ (p, q, r;B; α) for bn,k, where bn,k is the (n, k)th entry of

the Riordan array
(

2
et+1 , t

)
(see (4.18)). So, in view of (1.9), bn,k is given by

bn,k =
(

n

k

)
En−k. (4.20)

Therefore we have

HE(m,η)
n,µ (p, q, r;B; α) =

n∑
k=0

(
n

k

)
En−kH

(m,η)
k,µ (p, q, r;B; α). (4.21)

The other results for the G3I3VHMEP HE
(m,η)
n,µ (p, q, r;B; α) are given in Table 5, where

DP = Dp√
mB

.

S. No. Results Expressions
I Operational Representation HE

(m,η)
n,µ (p, q, r;B; α)

=
(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ {
En(p

√
mB)

}
II Multiplicative Operator Φ+

GHE := p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1)

∂η

∂α∂pη−1 − exp(DP )
1+exp(DP )

III Derivative Operator Φ−
GHE := DP

IV Differential Equation
({

p
√

mB + mq(
√

mB)−(m−1) ∂m

∂α∂pm−1 − ηr(
√

mB)−(η−1) ∂η

∂α∂pη−1

− exp(DP )
1+exp(DP )

}
DP − n

)
HE

(m,η)
n,µ (p, q, r;B; α) = 0

Table 5. Results for G3I3VHMEP HE
(m,η)
n,µ (p, q, r;B; α).

The determinant form (2.23) and (2.24) of G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) reduces

to that of G3I3VHMEP HE
(m,η)
n,µ (p, q, r;B; α) for an,k, where an,k is the (n, k)th entry of

the Riordan array
(

et+1
2 , t

)
. In view of (1.4) and considering the fact that cn = n! for this

case, an,k is given by

an,k = n!
k!

[
tn−k

] et + 1
2

=
{

1, n = k,
1
2
(n

k

)
, n ̸= k.

(4.22)

Therefore, we have

HE
(m,η)
0,µ (p, q, r;B; α) = H

(m,η)
0,µ (p, q, r;B; α), (4.23)

HE(m,η)
n,µ (p, q, r;B; α) =

(
−1

2

)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H0 H1 H2 · · · Hn−1 Hn

2 1 1 · · · 1 1
0 2

(2
1
)

· · ·
(n−1

1
) (n

1
)

0 0 2 · · ·
(n−1

2
) (n

2
)

...
...

... . . . ...
...

0 0 0 · · · 2
( n

n−1
)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (4.24)

where Hn = H
(m,η)
n,µ (p, q, r;B; α) are the G3I3VHMP defined by (2.9).



1694 G. Yasmin, H. Islahi

5. Conclusion
In several cases, the solution of a given problem in engineering mathematics or physics

requires the estimation of infinite sums involving special matrix polynomials. This leads
to an increase in demand for solving problems by means of identities, functional equa-
tions, and formulas in research fields like classical and quantum optics. These identities,
functional equations and formulas arise in combinatorial contexts and they lead systemat-
ically to well defined classes of functions. The summation formula of hybrid special matrix
polynomials of several variables often appears in applications ranging from combinatorics
to electromagnetic processes.

Theorem 5.1. For the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), the following explicit summa-

tion formula in terms of the G3I3VHMASP Hs
(m,η)
n,µ (p, q, r;B; α) and Sheffer polynomials

Sn(p) holds true:

HS(m,η)
n,µ (p, q, r;B; α) =

n∑
k=0

(
n

k

)
Hs

(m,η)
k,µ (0, q, r;B; α)Sn−k(p

√
mB). (5.1)

Proof. Consider the product of generating functions (1.1) and (3.2) in the following form:

exp
(
pf−1(t)

√
mB

)
g(f−1(t)) (α + q(f−1(t))mI − r(f−1(t))ηI)µ

=
∞∑

k=0
Hs

(m,η)
k,µ (0, q, r;B; α) tk

k!

∞∑
n=0

Sn(p
√

mB) tn

n!
. (5.2)

In view of generating function (2.5) on l.h.s. and Cauchy product rule on r.h.s. gives
∞∑

n=0
HS(m,η)

n,µ (p, q, r;B; α) tn

n!
=

∞∑
n=0

n∑
k=0

(
n

k

)
Hs

(m,η)
k,µ (0, q, r;B; α)Sn−k(p

√
mB) tn

n!
, (5.3)

which on comparing coefficients of t gives (5.1). □

Several identities involving members of Sheffer polynomials are known. The operational
formalism developed in the previous section can be used to obtain the corresponding
identities involving the G3I3VHMSP HS

(m,η)
n,µ (p, q, r;B; α). To achieve this, we perform

the following operation:
Ψ: Replacing p by p

√
mB and operating

(
α + q(

√
mB)−m ∂m

∂pm − r(
√

mB)−η ∂η

∂pη

)−µ
.

Consider the following functional equations involving Bernoulli polynomials Bn(p) [9,
Pg. 26] and Euler polynomials En(p) [9, Pg. 30]:

Bn(p + 1) − Bn(p) = npn−1, n = 0, 1, 2, · · · , (5.4)

n−1∑
m=0

(
n

m

)
Bm(p) = npn−1, n = 2, 3, 4, · · · , (5.5)

En(p + 1) + En(p) = 2pn, (5.6)

En(mp) = mn
m−1∑
k=0

(−1)kEn

(
p + k

m

)
, n = 0, 1, 2, · · · ; m odd. (5.7)

Performing operation Ψ on above equations and using operational rules (2.1) and (2.9)
(corresponding to the Bernoulli and Euler polynomials), we obtain the following identities
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involving generalized three index three variable Hermite matrix based Bernoulli polynomi-
als HB

(m,η)
n,µ (p, q, r;B; α) and generalized three index three variable Hermite matrix based

Euler polynomials HE
(m,η)
n,µ (p, q, r;B; α):

HB(m,η)
n,µ (p + 1, q, r;B; α) − HB(m,η)

n,µ (p, q, r;B; α) = nH
(m,η)
n−1,µ(p, q, r;B; α),

n = 0, 1, 2, · · · , (5.8)

n−1∑
m=0

(
n

m

)
HB(m,η)

m,µ (p, q, r;B; α) = nH
(m,η)
n−1,µ(p, q, r;B; α), n = 2, 3, 4, · · · , (5.9)

HE(m,η)
n,µ (p + 1, q, r;B; α) + HE(m,η)

n,µ (p, q, r;B; α) = 2H(m,η)
n,µ (p, q, r;B; α), (5.10)

HE(m,η)
n,µ (mp, q, r;B; α) = mn

m−1∑
k=0

(−1)k
HE(m,η)

n,µ

(
p + k

m
, q, r;B; α

)
,

n = 0, 1, 2, · · · ; m odd. (5.11)
The above examples illustrate that by using the operational correspondence between

the Sheffer polynomials and G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α), the corresponding results

for the G3I3VHMSP HS
(m,η)
n,µ (p, q, r;B; α) can be obtained. Operational methods is a

widely exploited tool in analysis to simplify the derivation of the properties associated with
ordinary and generalized special matrix functions and to define new families of functions.

The use of operational method combining with the fractional order operators are shown
to be an effective means, providing a fairly unexhausted source of tool to strengthen the
computational capabilities. The operational techniques can also be used for a more general
insight into the theory of hybrid special matrix polynomials to represent its determinant
form via Riordan array. The Riordan matrices naturally appear in a formulation of the
umbral calculus. The Riordan group also appears in the new domain of combinatorial
quantum physics, namely in the problem of the normal ordering of boson strings. The
appropriate combination of methods relevant to generalized operational calculus and spe-
cial matrix functions can be a very useful tool to treat a large body of problems both in
physics and mathematics. Thus, we conclude that the formalism we have envisaged can
be exploited to deal with the possibilities to frame different families of the hybrid special
matrix polynomials and to establish their properties.
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