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 Let [n] = {1, 2, . . . , n} be a finite chain. Let Pn and Tn be the semigroups of 
partial and full transformations on [n], respectively. Let CPn = {α ∈ Pn : |xα-
yα| ≤ |x-y| ∀x, y ∈ dom α} and CTn = {α ∈ Tn : |xα-yα| ≤ |x - y| ∀x, y ∈ [n]}. 
Then CPn and CTn are subsemigroups of Pn  and Tn, respectively. In this 
paper, we characterize the idempotent elements and compute the number of 
idempotents of height n-1 and n-2 for the semigroups CPn and CTn, 
respectively.  
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Introduction 

Let [n] = {1, 2, . . . , n} be a finite chain, we adopt as in the literature, the notations Pn  and Tn to 

denote, partial and full transformation semigroups on [n], respectively. A map α ∈ Pn is said to be a 

contraction if and only if |xα -yα| ≤ |x - y| ∀ x, y in dom α.. Let  

CPn = {α ∈ Pn : |xα - yα| ≤ |x - y| ∀ x, y ∈ dom α} 

and  

CTn = {α ∈ Tn : |xα- yα| ≤ |x - y| ∀x, y ∈ [n]}. 

Then CPn and CTn are subsemigroups of Pn and Tn, respectively. They are known to be the 

semigroups of partial and full contraction of [n], respectively. For basic concept in semigroup theory, 

we refer the reader to Howie (1995).  

Let α be element of S, where S is any of the transformation semigroups CPn and CTn . Then dom α, 

im α , h(α) = |im α| and b(α) = |dom α| denote the domain, image, height and width of α, respectively. 

Also, let fix α = {x ∈ dom α | xα = x}, f(α) = |fix α|, shift(α) = {x ∈ dom α | xα = x}, def(α) = |shift(α)| 

= |dom α| − f(α) and Jr = {α ∈ S|h(α) = r}. For α, β ∈ S, the composition of α and β is defined as x(α ◦ 

β) = ((x)α)β for all x in dom α. Without ambiguity, we shall be using the notation αβ to denote α ◦ β. 

https://orcid.org/0000-0001-5099-5956
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The algebraic study of various semigroups of contraction were initiated recently. For example; Zhao 

and Yang (2012) characterized regularity and Green’s equivalences for the semigroup of order 

preserving partial contractions OCPn. Recently, Ali et al., (2018) extend this study to the general 

semigroup of partial contractions CPn. These semigroups were shown to be left abundant, for example 

see the work of Umar and Zubairu (Umar and Zubairu, 2018a; Umar and Zubairu, 2018b).  In another 

development, Garba et al., (2017) characterized the starred Green’s equivalences on the semigroup of 

full contraction CTn. Moreover, the ranks of the subsemigroups of order preserving or order reversing 

full contraction, ORCTn (also known as the semigroup of monotone or anti-tone full contraction 

maps) and order preserving full contractions, OCTn  (also known as the semigroup of monotone full 

contraction maps) were computed by Toker (2020). Furthermore, as an extension of the work of 

Bugay (2020); Toker (2020) computes the ranks of certain ideals of the subsemigroups ORCTn and 

OCTn, respectively. Most of these algebraic properties leads to many combinatorial problems. 

An element a in a semigroup S is said to be an idempotent if and only if a2=a. The set of all 

idempotents in any semigroup S is denoted by E(S). The cardinality of idempotents of many 

semigroups of transformation on chain have been found. For example; in 1961, Clifford and Preston 

(1961) study the idempotents in L−class and R−class of Tn and gave under Exercise 2.2(2a) the 

number of idempotents in each L−class of height r in Tn is rn-1  and that of R−class correspond to the 

product n1n2 . . . nr, where n = n1 + n2 + . . . + nr is a partition of [n]. In 1968,  similar study was carried 

out by Tainter (1968). He characterized and computes the number of idempotents of the semigroup of 

full transformations Tn. Moreover, Garba (1990), computes the number of idempotents in the 

semigroup of partial transformations Pn. In fact the number of idempotents of many subsemigroups of 

Pn and Tn were readily available in the existing literature. For example, Howie (1971) computes the 

number of idempotents in the semigroup of order preserving full transformation on [n]. Later on, 

similar question was raised by Gomes and Howie (1992) for the semigroup of order preserving partial 

transformations on [n], which was later answered by Laradji and Umar (2004). For most of these 

existing combinatorial results, we refer the reader to Umar (2014) and Gayushkin and Mazorchuk 

(2009). However, it seems like, the number of idempotents in the new semigroups of partial and full 

contractions on a chain have not been found. In this paper, we characterize the idempotents elements 

and compute the number of idempotents of height n-1 and n - 2 for the semigroups CPn and CTn, 

respectively. 

 

Idempotents and their characterizations 

In this section, we characterize the idempotent elements in CPn. At the end of this section, we give as 

a corollary that E(CPn) is not a semigroup.  
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Now let α ∈ CPn of height r (0 ≤ r ≤ n). Then dom α ⊂ [n] can always be partitioned into blocks as 

dom α = A1 ∪ A2 ∪ · · · ∪ Ar and α is expressible as  










r

r

aaa
AAA





21

21 , 

where Aiα=ai and |ai - aj| ≤ |x - y| for all x ∈ Ai and y ∈ Aj (i, j ∈ {1, 2, . . . , r}). A subset B of [n] is 

called convex if whenever a, b ∈ B with a ≤ b and a < c < b (c ∈ [n]) then c ∈ B. Now we expand this 

definition a little bit. Let ø ≠ A ⊂ [n] and let ø ≠  C ⊂ A. Then C is called convex subset of A if 

whenever a, b ∈ C with a ≤ b and a < c < b (c ∈ A) then c ∈ C. For example, B = {3, 4, 5, 6} is a 

convex subset of Howie (1995) and, for A = {1, 3, 5, 6, 7}, B = {1, 3, 5} is a convex subset of A. 

The following results are about image of a contraction. These are found in (Ali et al., 2018; 

Adeshola and Umar, 2018).  

Lemma 1 (Ali et al., 2018, Lemma 1.8). Let α ∈ CPn and let A be a convex subset of dom α. Then Aα 

is convex.  

Corollary 2 (Adeshola and Umar, 2018, Lemma 1.2). Let α ∈ CTn. Then im α is convex.  

It is well known that α ∈ E(Pn) if and only if im α =fix (α ). In particular,  

r
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r J
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is an idempotent if and only if f(α) = r, in other words the blocks Ai (1 ≤ i ≤ r) are stationary, i. e., ai ∈ 

Ai for all 1 ≤ i ≤ r. These properties also holds for the semigroup CPn ⊂ Pn. 

 

Theorem 3. If α ∈ E(CPn) with h(α) = r then fix α is a convex subset of dom α.  

Proof. Let )(
21

21
n

r

r CPE
aaa
AAA

∈







=





α . Suppose by way of contradiction that fix α is not  convex 

subset of dom α. Then there exist x, y ∈ fix α such that x ≤ y and x < z < y (z ∈ dom α) and z ∉  fix α. 

Thus there exists j ∈ {1, 2, . . . , r} with z ∈Aj . Since α is an idempotent then by definition zα ∈ fix α. 

Let t = zα and notice that the block Aj is stationary for each 1 ≤ i ≤ r . Then it follows that t ∈ Aj and 

therefore t, z ∈ Aj. Thus either t < z or t > z. Now suppose t < z. Notice that z ≤ y. Thus 

|zα - yα| = |t - y| > |z - y| 

 and similarly if we assume that z < t, and notice also that x ≤ z, then 

|zα - xα| = |t - x| > |x - z|.  

Thus the two cases contradict the fact that α is a contraction and hence the result follows.  

 

Corollary 4. If α is an idempotent in CPn of height r then fixed points of α are tied together. 
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Remark 5. As a consequence of Theorem 3, Lemma 1 and Corollary 2 we have that for all 

idempotents ε ∈ CPn, there exists a subset A of dom ε such that A is convex. 

Lemma 6. Let α, β be elements of E(CPn). If fix α ∩ fix β = ø then αβ is not necessary an idempotent. 

To see this, consider 







=

121121
654321

α and 







=

4544
6542

β  elements of CP6.  

The composition is 







=

44
52

αβ . Which is not an idempotent. 

Remark 7. Let α, β be elements in E(CPn), if fix α ∩ fix β = ø then αβ is an idempotent if and only if 

im β = {x} and there exists y ∈ dom β such that yβ = x and xα = y or there exists y ∈ dom α such that 

yα = x and xβ = y.  

 

As a consequence of Lemma 6, we readily have the following:  

Corollary 8. E(CPn) is not a semigroup. 

 

Number of Idempotents in the semigroups CPn and CTn  

In this section, we compute the number of idempotent elements of height n - 1 and n - 2 of the 

semigroups CPn and CTn, respectively. We also compute the order of idempotents of height 2 and 

width greater than or equal to n-1 in CPn and give as a corollary the order of idempotent elements in 

CTn  of height 2. At the end of the section, we give as a conjuncture, the number of idempotent 

elements in CTn of height n - 3. The method of proof used  in the results of this section were  mainly 

combinatorial arguments. 

Now let S = CPn and E(Jr) be the set of idempotents of height r in CPn. We compute the order 

of idempotents in S of height n - 1 and height n - 2 in the following theorem. 

 

Theorem 9. Let S = CPn. Then  

(i) |E(Jn-1)| = n + 4, for n ≥ 3;  

(ii) |E(Jn-2)| =
2

2872 ++ nn
, for n ≥ 5. 

Proof. (i) Let α ∈ E(Jn-1) for n ≥ 3. Then since α is a partial map, dom α ⊆ [n], and since h(α) ≤ |dom 

α| and h(α) = n - 1 then either |dom α| = n or |dom α| = n - 1. As such E(Jn-1) = {α ∈ E(Jn-1) : |dom α| = 

n} ∪ {α ∈ E(Jn-1) : |dom α| = n - 1}. 

 (a) Now suppose |dom α| = n. Then dom α is of the form dom α = {a1, a2, . . . , an} where ai < ai+1 and 

ai ∈ [n] for all i. Thus by Corollary 4, α is in of the following types: 
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where k ∈ fix α = {a1, a2, . . . , an-1}.  

If α is of the first type. Then α is a contraction if and only if k = an-1 or k = an-1 (i. e., there are only 2 

choices for k in this case) and similarly if α is of the second type, then α is a contraction if and only if k 

= a2 or k = a2 (i. e., there are only 2 choices for k in this case). Thus by sum rule we have all together a 

total of 4 idempotent elements.  

(b) Secondly, suppose |dom α| = n - 1, then there are 







−1n
n

 possible domains in [n] of order n - 1, 

which turns out to be n after simplification. For a particular case, consider dom α = {a1, a2, . . . , an-1}. 

Then to form an idempotent of height equal n - 1, we first notice Corollary 4 that the fixed points are 

tied together. Thus α is of the form 


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




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i. e., a partial identity on [n]. This can be done in only 1 way. Using product rule, there are total of 

n×1 ways of forming such idempotent elements. Hence all together from (a) and (b) we have a total of 

n + 4 idempotents.  

(ii) Let α be an idempotent of height equal n - 2 in S, for n ≥ 5. Since α is a partial map then α has 3 

possible domains, i. e.,  domain of order n, n - 1 or n - 2.  

(a) Suppose |dom α| = n. Then dom α = {a1, a2, . . . , an-2, an-1, an}. Notice that h(α) = n-2, therefore by 

Corollary 4, the n - 2 fixed point must be tied together. This can be done in three(3) ways, i. e., α is 

either 
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 where x, y ∈ fix α. 

Notice that the first type and the second type elements have the same number of choices of x and y. 

Thus we may consider 





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α . 

Thus α is a contraction if and only if x and y have the following choices, (x = an-1 = y) or (x = an-3 = y) 

or (x = an-2 and y = an-3) or (x = an-3 and y = an-2) or (x = an-3 and y = an-4). This gives five(5) 

idempotents. All together we have a total of 2 × 5 number of idempotents. Now for the third type α, 

the choices for x and y are either (x = a2 and y = an-1) or (x = a2 and y = an-2) or (x = a3 and y = an-1) or 
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(x = a3 and y = an-2), which is a total of 4 ways. Now all together we have (2 × 5 + 4) number of 

idempotent elements which simplify to 14 number of idempotent elements.  

(b) Suppose |dom α| = n - 1. Notice that there are n - 2 fixed points and by Corollary 4 these fixed 

points are tied together (i. e., convex). Thus the domain of α is of three types, each a subset of [n] = 

{a1, a2, . . . , an}. i. e.,  

Type(1): dom α is either {a1, a2, . . . , an-2, an-1} or {a2, a3, . . . , an} (i. e., a convex subsets of [n] of 

order n - 1);  

Type(2): dom α is either {a1, a2, . . . , an-2, an}, {a1, a3, a4, . . . , an} or {a1, a2, . . . , an-3, an-1, an} or {a1, 

a2, a4, . . . , an} i. e., a subset with an-1 missing in the first type, a2 missing in the second type, an-2 

missing in the third type and a3 missing in the fourth type, respectively.  

Type(3): dom α is either {a1, a2, . . . , an-r, an-r+2, . . . , an} or {a1, a2, . . . , an-r-1, an-r+1, . . . , an}, where 4 

≤ r ≤ n - 3. 

We treat each type separately: 

Subtype(1): dom α is {a1, a2, . . . , an-2, an-1} or {a2, a3, . . . , an} (i. e., a convex subset of [n] of order n 

- 1). In particular, consider dom α = {a1, a2, . . . , an-2, an-1}. Then α is either 







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 or 
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So in each case if dom α = {a1, a2, . . . , an-2, an-1} we have 4 idempotents and similarly if dom α = {a2, 

a3, . . . , an-2, an} we also have 4 idempotents, therefore we have 8 idempotents.  

Subtype(2): If (dom α = {a1, a2, . . . , an-2, an} or {a1, a3, a4, . . . , an}) and  

(dom α = {a1, a2, . . . , an-3, an-1, an} or {a1, a2, a4, . . . , an}) i. e., a subset with an-1 or a2 missing and a 

subset with an-2 or a3 missing, respectively.  

Now suppose dom α = {a1, a2, . . . , an-2, an}. Then α is either of the following forms: 



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
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. 

Thus (x = an-2) or (x = an-3) or (x = an-4) and (y = a1) or (y = a1), which gives a total of 5 idempotents, 

therefore we have all together 2 × 5 idempotents.  

Now for dom α = {a1, a2, . . . , an-3, an-1, an}, α is either of the following forms: 



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
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. 

Thus, x has only one choice, which is an-1 and y has two choices, i. e., (y = a2) or (y = a3). This gives a 

total of 3 idempotents, therefore all together we have a total of 2×3 idempotents.  

Subtype(3): If n = 5 or n = 6 anyone can check the result holds. Now suppose n≥7.  
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If dom α = {a1, a2, . . . , an-r, an-r+2, . . . , an} or dom α = {a1, a2, . . . , an-r-1, an-r+1, . . . , an} for 4 ≤ r ≤ n - 

3, it is easy to see that there are 4n-24 idempotents. 

 (c) Suppose |dom α| = n - 2. Notice that h(α) = n - 2 and α is an idempotent, then dom α = im α = fix 

α. Therefore we have 
2

)1(
2

−
=








−

nn
n

n
number of idempotents. Hence the result follows by 

summing the results of (a), (b) and (c). 

 

Corollary 10. Let S = CTn. Then  

(i) |E(Jn-1)| = 4, for n ≥ 3;  

(ii) |E(Jn-2)| = 14, for n ≥ 5.  

Proof. Since S = CTn , then |dom α| = n for all α in E(CTn ). Thus the proof follows from (ia) and (iia) 

of the proof of Theorem 9.  

Remark 11. Since J1 in Pn is the same as J1 in CPn then |E(J1)| =∑
=








n

r
r

r
n

1
)(  and if S = CTn  it is 

clear that |E(J1)| = n..  

The next lemma gives the number of idempotents in CPn of height 2 and width k greater than or equal 

to n - 1. Let us denote this number by N(E(n, 2, k ≥ n - 1)), where k is the width of α and 2 is the height 

of α. 

 

Theorem 12. For n ≥ 4, the number of idempotents in CPn of height 2 and width greater than or equal 

to n - 1 is N(E(n, 2, k ≥ n - 1)) = (n - 1)n-2 + (n - 2)22n-3. 

  

Proof. Let α be idempotent in CPn of height 2 such that |dom α| ≥ n - 1. Thus |dom α| = n - 1 or |dom 

α| = n. We treat differently the two cases:  

case 1. Suppose |dom α| = n. Then dom α = {a1, a2 . . . , an}, and we can select 2 convex images from 

this domain in (n - 1) ways. Now fixing 2 images in n space, reduce the space to n - 2. The empty n - 2 

space can be filled with one of the images or the other or both in a total of (1 + 1)n-2 = 2n-2 ways. Thus 

by product rule all together we have (n - 1)2n-2 ways.  

case 2. Now suppose |dom α| = n - 1. Notice that there are 







−1n
n

 possible combination of this type 

of domains. Two out of them are convex while the remaining with 1 gap. If the domain is convex, then 

it is of the form dom α = {a1, a2, . . . , an-1} or dom α = {a2, a3, . . . , an-2}, and by case 1 we have 2(n -

2)2n-3 
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 possibilities. And if the domain has 1-gap, then is of the form dom α = {a1, a2, . . . , an-2, an} or dom α 

= {a1, a2, . . . , an-3, an-1, an} or · · · or dom α = {a1, a3, a4, . . . , an}, which is a total of 2
1
−







−n
n

of 

such domains or simply (n - 2) of them. If we consider dom α = {a1, a3, a4, . . . , an} and we fixed a1 

and a3, then the remaining elements have to be map to only one element, which is a3, meaning that aiα 

= a3 for 4 ≤ i ≤ n, i. e., 









=

3331

431

aaaa
aaaa n





α , 

which can be done in just 1 way. Now the remaining elements {a3, a4, . . . , an} form a convex set. We 

can tie two convex images from this set in n - 3 ways. Therefore, there will be n - 3 remaining space. 

Thus the 2 images can be  map to the remaining space in 2n-3 ways. Now by sum and product rule, all 

together we have 2(n - 2)2n-3 + (n - 2)((n - 3)2n-3 + 1) idempotents. Now the result follows by summing 

all the two cases.  

As a consequence, we deduce the following corollary. 

 

Corollary 13. Let S = CTn. Then |E(J2)| = (n - 1)2n-2 for n ≥ 2.  

Proof. Let S = CTn, since |dom α| = n for all α in CTn , then we can apply case 1 of the proof of 

Theorem 12. Then the result follows. 

The order of idempotents of height r for 3 ≤ r ≤ n-3 for the semigroups CPn and CTn  remain an open 

problem. Next, we conclude this section with the following conjuncture, i. e., the number of 

idempotents of height 3 in CTn is given as the following recurrence relation. 

 

Conjecture 14. Let S = CTn . Then |E(J3)| = 2(an + (n - 4)an-1) for n ≥ 4, where  

a3 = 1 and ( ) ( ) 44
21

4
23121

4
231

−−
−








−++




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


+=
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na . 
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