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Abstract
The purpose of this work is threefold. First, we explore some relationships between re-
tractability and some lattices of classes of modules. Secondly, we weaken the hypothesis
of a result of Ohtake characterizing rings over which all radicals are left exact. In the last
section of this work, we introduce a binary relation between modules that produce a Galois
connection between the lattice of natural classes and the lattice of conatural classes, and
we obtain some results about it.
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1. Introduction
In this work R denotes an associative ring with 1 and R-Mod denotes the category of

left unitary R-modules. Unless otherwise stated, all modules are left R-modules and all
classes are closed under taking isomorphic copies of their members. Depending on the
context, “quotient” may refer to an actual quotient or to a homomorphic image.

We say that a module M is retractable if HomR(M, N) 6= 0 for each nonzero submodule
N of M . When all left R-modules are retractable, we say that R is a left mod-retractable
ring. It is known that R is a left mod-retractable ring if and only if each torsion class is
hereditary.

The main subject of this paper is retractability and its relationships with some lattices
associated to a ring. Considered here are the big lattice of torsion theories, the lattice of
hereditary torsion theories, the lattices of natural classes and of conatural classes, and the
big lattice of preradicals.

Natural classes were introduced and studied by Dauns and Zhou (see [8]). These are
classes of modules closed under taking submodules, direct sums and injective hulls. A nat-
ural class can be seen also as a pseudocomplement in the big lattice of hereditary classes.
∗Corresponding Author.

Email addresses: cucumeto@ciencias.unam.mx (R. Domínguez-López), oagj@ciencias.unam.mx (O.A.
Garrido-Jiménez), hurincon@gmail.com (H.A. Rincón-Mejía), mgzn@hotmail.com (M.G. Zorrilla-Noriega)
Received: 25.09.2020; Accepted: 24.02.2021

https://orcid.org/0000-0003-3053-4786
https://orcid.org/0000-0001-6748-9857
https://orcid.org/0000-0002-1527-8879
https://orcid.org/0000-0001-7461-1806


1080 R. Domínguez-López et al.

This situation can be dualized, producing conatural classes, defined as the pseudocom-
plements in the big lattice of cohereditary classes.† Like natural classes, conatural classes
conform a Boolean lattice.

In [2], the concepts of a simple parainjective module (that is, if S is a simple submodule
of some module M , then S is a quotient of M) and of a simple paraprojective module (that
is, if S is a simple quotient of some module M , then S embeds in M) were introduced. It
is easy to see that if a ring is mod-retractable then every simple module is parainjective.
If in addition, a ring fulfills that every simple module is paraprojective, then the converse
holds (as will be shown in this paper).

We will show that if every simple module is parainjective, then the ring is left max
(that is, every proper submodule is contained in a maximal submodule) and that if every
simple module is paraprojective, then the ring is left semiartinian.

In [3] it is shown that every conatural class is a hereditary torsion class if and only if
every simple module is parainjective and that every natural class is cohereditary if and
only if every simple module is paraprojective.

In [12] Ohtake’s Theorem states that, for a commutative ring R, R being semiartinian
and regular is equivalent to all radicals over R being left exact. In the second part of this
work we extend this result for left duo rings.

We say that a module M is strongly retractable if HomR(N ′, M ′) 6= 0 for each nonzero
quotient N ′ of M and each nonzero submodule M ′ of M . We call a ring strongly left mod-
retractable if each left R-module is strongly retractable. In the third part of this work,
we characterize this kind of rings. In the development process of this characterization,
we obtain a Galois connection between the lattice of natural classes and the lattice of
conatural classes.

2. Retractability and some lattices of module classes
Definition 2.1. A module M is retractable if Hom(M, N) 6= 0 for each nonzero N ≤ M .
A ring R is left mod-retractable (or simply mod-retractable, if there is no risk of ambiguity)
if each R-module is retractable.

Definition 2.2. A module M is a parainjective module if for each module N , when-
ever there is some monomorphism f ∈ Hom(M, N) there exists an epimorphism g ∈
Hom(N, M). A module M is a paraprojective module if for each N , whenever there is
some epimorphism f ∈ Hom(N, M) there exists a monomorphism g ∈ Hom(M, N).

Recall that a module is said to be semiartinian if each of its nonzero quotients contains a
simple submodule. A module M is coatomic if each of its proper submodules is contained in
a maximal submodule of M. A ring R is left semiartinian if every R-module is semiartinian.
A ring R is left max if every R-module is coatomic.

It is easy to see that a ring R is left semiartinian if and only if RR is a semiartinian
module. Also, R is left semiartinian if and only if each nonzero R-module contains a
simple submodule. Correspondingly, R is left max if and only if each nonzero R-module
has a simple quotient.

Remark 2.3. The following statements hold.
(1) If each simple module is paraprojective, then the ring is a left semiartinian ring.
(2) If each simple module is parainjective, then the ring is left max.
(3) Over any mod-retractable ring, each simple module is parainjective.

†A cohereditary class is a class of modules closed under taking quotients.
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Proof.
(1) If M is a nonzero module, take a cyclic nonzero submodule of M , say Rx. This

cyclic module has a simple quotient S, which, being paraprojective, embeds in Rx.
Thus M has a simple submodule.

(2) If M is a nonzero module, take a nonzero cyclic submodule Rx and take a simple
quotient S of Rx. Composing with the inclusion of S in its injective hull E(S),
we have a nonzero homomorphism from Rx to E(S), which extends to a nonzero
homomorphism f : M → E(S). As S is an essential submodule of its injective
hull, we have that S embeds in f(M). As S is parainjective, then S is a quotient
of f(M) and thus also of M.
(Or, since S is a quotient of a submodule of M , a push-out shows that S embeds
in a quotient of M , so, by parainjectivity, S is a quotient of M .)

(3) If S is a simple submodule of M , then there exists a nonzero homomorphism from
M to S, which is necessarily an epimorphism.

�
Recall that a left V-ring is a ring over which every simple module is injective.

Example 2.4. The following examples show that the converses of the statements in
Remark 2.3 do not hold.

(1) Consider the ring (Z2)N and let R be the subring spanned by (Z2)(N) and 1, that
is, R consists of all eventually constant sequences of 0’s and 1’s. We have that
R is a commutative ring and soc(R) = (Z2)(N) is a maximal and essential ideal
of R. Then, S = R/soc(R) is a simple singular R-module. Since all semisimple
modules are semiartinian, and since the class of semiartinian modules is closed
under extensions, the short exact sequence 0 → soc(R) → R → S → 0 shows that
R is semiartinian. Besides, soc(R) =

⊕
i∈N

Rei where ei ∈ R has 1 at the ith place

and 0 elsewhere, each Rei being a simple direct summand of R, so that soc(R) is
projective semisimple. We know that any one simple module is either projective
or singular, so, soc(R) being essential in R, R is necessarily a nonsingular ring.
Therefore, Hom(S, R) = 0. It follows that S is not a paraprojective module.

(2) Let R be the ring of all matrices of the form
(

a b
0 c

)
, with a, b, c ∈ Z2. R is

a semiprimary ring, whence it is a left and right perfect ring. Then, being left

perfect, R is a left max ring. The matrices of the form
(

a 0
0 0

)
, with a ∈ Z2, are

the elements of a simple projective module S which is not injective (it is a direct

summand of R and it is essential in the left R-module
{(

a 0
d 0

)
| a, d ∈ Z2

}
).

Suppose there is a nonzero R-homomorphism f ∈ Hom(E(S), S), so that S ∼=
E(S)/ ker(f). Since S is not injective, necessarily ker(f) 6= 0. It follows that
ker(f) is essential in E(S), and thence that E(S)/ ker(f) is a singular module.
This is a contradiction because a simple module cannot be both singular and
projective. As S embeds in E(S) but it is not one of its quotients, then S is not a
parainjective module.

(3) Let R denote Cozzens’ domain of differential polynomials, described in [7] (and
also in [5, Example B.3]). Those sources provide that R is a left V-ring and a
left and right principal ideal domain. As R is a left V-ring, each simple module is
injective, so each simple module is parainjective. Note that, as any left principal
ideal domain is clearly left hereditary (since, for 0 6= a ∈ R, R ∼= Ra), R is a
left and right hereditary ring, and thus any quotient of an injective module is
injective. We claim that R is not left injective. Indeed, recall the general notion of
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divisibility: over an arbitrary ring S, a module M is divisible if sM = M for each
nonzero-divisor s. Since R is a domain, every nonzero element of R is a nonzero-
divisor. Take any polynomial g ∈ R of degree greater than 0. As 1 /∈ gR, gR 6= R,
so that RR is not divisible. Therefore, according to [14, Chap. I, §6, Example 4],
RR is not injective. If there was 0 6= f ∈ Hom(E(R), R) then 0 6= Im(f) would be
a proper direct summand of R, but this is impossible because R, being a domain, is
directly indecomposable (indeed, for idempotent e ∈ R, e(1−e) = 0, so that either
e = 0 or e = 1). Hence Hom(E(R), R) = 0, thus R is not left mod-retractable.

Definition 2.5. We say that a ring R satisfies condition (HH) if for each two R-modules
M, N

Hom(M, N) 6= 0 ⇔ Hom(N, M) 6= 0

holds.

Example 2.6. Any semisimple ring satisfies (HH).

Recall that a ring R is said to be left local if there is only one isomorphism class of
simple R-modules (that is, if every two simple R-modules are isomorphic).

Example 2.7. A non-semisimple ring satisfying (HH). By Theorem 2.18 below, an
example of a non-semisimple left local and left and right perfect ring suffices to this end.
Just let us take the commutative local and artinian ring R = Zpn , where p is a prime
number and n > 1 is a natural number. R is not semisimple because rad(R) 6= 0, writing
rad for Jacobson’s radical. Note also that the simple ideal for this ring gives us an example
of a parainjective module (because of (HH)) which is not injective. (If it was injective,
R would be a V-ring. Equivalently, rad would be the zero preradical, but we know this is
not the case.)

Remark 2.8. Let R be a ring satisfying (HH). Then, every simple R-module is parain-
jective and paraprojective, so that R is left max and left semiartinian. Also, R is mod-
retractable.

Recall that a class T of modules is a torsion class if it is closed under quotients, ex-
tensions and direct sums. A class F of modules is a torsion-free class if it is closed under
submodules, direct products and extensions. The pair (T,F) is called a torsion theory
if T = {M ∈ R-Mod | Hom(M, N) = 0 for each N ∈ F} and F = {N ∈ R-Mod |
Hom(M, N) = 0 for each M ∈ T} (which implies that T is a torsion class and F is a
torsion-free class). If T is an hereditary class, or equivalently, if F is closed under taking
injective hulls, we say that (T,F) is an hereditary torsion theory. We denote as R-TORS
the big lattice of torsion theories and the lattice of hereditary torsion theories by R-tors.

The following theorem can be consulted in [11, Theorem 3.5].

Theorem 2.9. A ring is left mod-retractable if and only if R-TORS ⊆ R-tors.

We have the following corollary.

Corollary 2.10. If R is a ring that satisfies (HH) then R-TORS ⊆ R-tors.

Lemma 2.11. If R is a ring that satisfies (HH) then every torsion-free class F is closed
under quotients.

Proof. Assume that M ∈ F and f : M � N is an epimorphism. Let T be the module
class such that (T,F) is a torsion theory. If N /∈ F, then t(N) 6= 0, where t(N) is the
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largest submodule of N belonging to T. Then we have the following commutative diagram

M
f // // N

f−1(t(N))
?�

OO

fb // t(N).
?�

OO

As f | 6= 0, then by the (HH) condition, there exists a nonzero homomorphism g ∈
Hom(t(N), f−1(t(N))). Thus g(t(N)) ⊆ t(f−1(t(N))) ⊆ t(M) = 0, a contradiction. Hence
N ∈ F. �

A conatural class is a pseudocomplement in the big lattice R-quot of nonempty cohered-
itary classes in R-Mod. R-conat denotes the lattice of conatural classes (see [1]).

A module class C satisfies the condition (CN) if whenever each nonzero quotient of an
arbitrary module M shares a nonzero quotient with some element of C, it happens that
M belongs to C.

In [1, Theorem 23] the following result is proved.

Theorem 2.12. The following conditions are equivalent for a class of modules C.
(1) C ∈ R-conat.
(2) C satisfies (CN).
(3) C ∈ R-quot and C = (C⊥R-quot)⊥R-quot.

Theorem 2.13. If R is a ring that satisfies (HH), then every torsion class is a conatural
class.

Proof. Let C be a torsion class. Then there is some module class FC such that (C,FC)
is a torsion theory. Write tC for the preradical associated to (C,FC). We shall show
that C satisfies condition (CN). Assume that M ∈ R-Mod is such that for each nonzero
epimorphism M � N there exists a nonzero epimorphism N � K with K ∈ C.

If M /∈ C, then 0 6= M/tC(M) ∈ FC. As M/tC(M) is a nonzero quotient of M , then
by hypothesis there exists a nonzero epimorphism f : M/tC(M) � K, with K ∈ C. As
R satisfies (HH), there exists 0 6= g ∈ Hom(K, M/tC(M)), and so g(K) = g(tC(K)) ⊆
tC(M/tC(M)) = 0, a contradiction. Hence, M ∈ C. �

The following result is part of [3, Proposition 2.11].

Proposition 2.14. The following conditions are equivalent for a ring R.
(1) Each simple module is a parainjective module.
(2) Every conatural class is an hereditary torsion class.

Write Π1 : R-TORS → {T | T is a torsion class of R-modules} for the corresponding
projection, which we know is surjective. Thus, Π1(R-TORS) is the big lattice of torsion
classes, and Π1(R-tors) is the lattice of hereditary torsion classes.

Theorem 2.15. If R is a ring that satisfies (HH), then

Π1(R-TORS) = R-conat = Π1(R-tors).

Proof. It follows from Theorem 2.13, Remark 2.8 and Proposition 2.14, and from the fact
that R-tors ⊆ R-TORS. �
Definition 2.16. We say that a ring R is a BKN -ring if Hom(M, N) 6= 0 for each nonzero
R-modules M and N .
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Lemma 2.17. The following conditions are equivalent for a ring R.
(1) R is a BKN -ring.
(2) R satisfies (HH) and it is a left local ring.

Proof. (1) ⇒ (2) It is clear that R satisfies (HH). As there are nonzero homomorphisms
between any two simple modules, all simple modules are isomorphic.

(2) ⇒ (1) Let M and N are two nonzero modules. Since by Remark 2.8, R is left
semiartinian, there is a simple submodule S (resp. T ) of M (resp. N). As R is left local,
S ∼= T . Because of condition (HH), there is a nonzero homomorphism f : M → S. The
composition M

f
� S ∼= T ↪→ N is a nonzero homomorphism from M to N . �

It is worth noting that, as R-nat and R-conat are complete lattices of module classes,
for an arbitrary module M there is a least member of each of those lattices to which
M belongs. We denote as ξnat(M) the least natural class having M as an element and
as ξconat(M) the least conatural class having M as an element. We have the following
descriptions of the classes generated by M (see [8] and [13]):

ξnat(M) = {U ∈ R-Mod : each nonzero submodule of U

shares a nonzero submodule with M}
and

ξconat(M) = {U ∈ R-Mod : each nonzero quotient of U

shares a nonzero quotient with M}.

Theorem 2.18. The following statements are equivalent for a ring R.
(1) R satisfies the (HH) condition.
(2) R is mod-retractable and every simple module is paraprojective.
(3) Every simple R-module is parainjective and paraprojective.
(4) R-nat = R-conat.
(5) R-nat = R-conat = Π1(R-tors).
(6) R = R1 × R2 × · · · × Rn where each Ri is a BKN -ring.
(7) R = R1 × R2 × · · · × Rn where each Ri is a left local and left and right perfect ring.
(8) R = R1 × R2 × · · · × Rn where each Ri is a full matrix ring over a local left and

right perfect ring.

Proof. (1) ⇒ (2) It follows from Remark 2.8.
(2) ⇒ (3) It follows from Remark 2.3.
(3) ⇒ (1) Let M, N ∈ R-Mod and 0 6= f ∈ Hom(M, N). By Remark 2.3 R is left
semiartinian, so there exists some simple module S ≤ Im(f).

M
f // N

f−1(S)
?�

ι1

OO

f [ // S
?�

ι2

OO

Since S is paraprojective, there exist a monomorphism g : S −→ f−1(S). On the other
hand, S being embedded in N and S being parainjective imply that there exists a epimor-
phism h : N −→ S. Therefore ι1 ◦ g ◦ h : N −→ M is a nonzero homomorphism.
(3) ⇔ (5) ⇔ (6) ⇔ (7) ⇔ (8) They follow from [2, Theorem 4.7].
For (4) ⇒ (3) note that if the lattices R-nat and R-conat coincide, given an arbitrary
module M the natural class generated by M is the same class as the conatural class gen-
erated by M . Thus, if S is a simple submodule of M , then S ∈ ξnat(M) = ξconat(M).
By the description given above, we have that S is a quotient of M . Therefore, S is a
parainjective module. Symmetrically, if S is a simple quotient of M , then S belongs to
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ξnat(M), so that S embeds in M . This means that S is a paraprojective module.
(5) ⇒ (4) This is clear. �

3. Left duo rings and left exact radicals
We shall denote as R-ler the set of left exact radicals in R-Mod, and as R-rad the class

of all radicals in R-Mod. For any two modules M, N , set

ρM (N) =
∩

{L ≤ N | N/L embeds in a product of copies of M}.

Clearly, ρM (N) is the least submodule of N producing a quotient of N embeddable in a
product of copies of M . We include the following known lemma for the reader’s conve-
nience.

Lemma 3.1. For M ∈ R-Mod, ρM is a preradical.

Proof. We show that if f : A −→ B then f (ρM (A)) ≤ ρM (B) , or equivalently, that
ρ (A) ≤ f−1 (ρM (B)) . We have a commutative diagram

A/f−1 (ρM (B)) // f̄ // B/ρM (B)

A
f //

OOOO

B

OOOO

f−1 (ρM (B))
f� //

?�

OO

ρM (B) ,
?�

OO

where f̄ is a monomorphism. As B/ρM (B) embeds in a product of copies of M, the
same occurs for A/f−1 (ρM (B)) . Thus ρM (A) ≤ f−1 (ρM (B)) . �

It is clear that ρM (N) = 0 if and only if N embeds in a product of copies of M . From
this it is readily verified that ρM is a radical. and that it is the greatest preradical r having
M ∈ Fr. In particular, each submodule of M belongs to FρM .

Remark 3.2. For Y ∈ R-Mod, consider the preradical ωY
0 , defined in [9] through

ωY
0 (X) =

∩
{ker(f) | f ∈ Hom(X, Y ) }

for X ∈ R-Mod. It happens that
ρY = ωY

0 .

Proof. For each module X, both of ρY (X) and ωY
0 (X) are the least submodule of X

producing a quotient of X cogenerated by Y .
(Also, both of ρY and ωY

0 are the greatest preradical r such that r(Y ) = 0.) �

Lemma 3.3. For an injective module E, ρE is a left exact radical.

Proof. Write tχ(E) for the left exact radical corresponding to χ(E), the hereditary torsion
theory cogenerated by E (see [10]). For any module M ,

M ∈ Ftχ(E) ⇐⇒ M ∈ Fχ(E)

⇐⇒ M embeds in a product of copies of E

⇐⇒ M ∈ FρE .

Thus, Ftχ(E) = FρE . But then, tχ(E) = ρE , as both are radicals.
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(The result can also be obtained using Remark 3.2 and verifying that, whenever N ≤
M ∈ R-Mod,

{ker(f) | f ∈ Hom(N, E) } ⊆ {ker(g ◦ ι) | g ∈ Hom(M, E) }
= {N ∩ ker(g) | g ∈ Hom(M, E) },

where N
ι

↪→ M is the inclusion map, so that

N ∩ ρE(M) = N ∩
∩

{ker(g) | g ∈ Hom(M, E) }

=
∩

{N ∩ ker(g) | g ∈ Hom(M, E) }

≤
∩

{ker(f) | f ∈ Hom(N, E) }
= ρE(N).)

�

Lemma 3.4. Let us consider the following assertions for a ring R.
(1) ρM ∈ R-ler for each M ∈ R-Mod.
(2) R-rad ⊆ R-ler.
(3) R is a left V-ring.

Then (1) ⇔ (2) ⇒ (3) hold. If R is a left semiartinian ring, then (3) ⇒ (1).

Proof. (1) ⇒ (2) From [9, Proposition 2.1 (2)], and applying Remark 3.2, it follows that
for each radical ρ,

ρ =
∧

M∈Fρ

ρM .

Thus, (1) implies that each radical is left exact.

(2) ⇒ (1) Clear.
(2) ⇒ (3) We show that rad is the zero preradical. Let us assume that there exists

a module M such that rad(M) 6= 0. Take 0 6= m ∈ rad(M). Since rad is left exact, it
is idempotent and Trad is an hereditary class. We have that Rm ≤ rad(M) ∈ Trad, so
that Rm ∈ Trad. This means that rad(Rm) = Rm, that is, Rm does not have maximal
submodules, a contradiction. Therefore, rad is the zero preradical, which is equivalent to
R being a left V-ring.

Now, let us assume that R is a left semiartinian ring.
(3) ⇒ (1) By (3) and by Lemma 3.3, ρS is left exact for every simple module S. We shall
show that for each M ∈ R-Mod,

ρM =
∧

{ ρS | S ∈ R-simp and S embeds in M}.

Let S be a simple module embedding in M . As S embeds in M , ρM (S) = 0, that
is, S ∈ FρM . As ρS is the largest preradical r such that S ∈ Fr, ρM ≤ ρS . Hence
ρM ≤

∧
{ ρS | S ∈ R-simp and S embeds in M}. To prove the converse inequality it

suffices (R-rad being closed under meets) to prove that

FρM ⊆ F∧
{ρS | S∈R-simp, ∃S�M}.

Take N ∈ FρM . Then there is a monomorphism N � MX for some set X. If ∧
S∈R-simp

∃S�M

ρS

 (N) 6= 0,
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as R is left semiartinian there exists a simple submodule

T ≤

 ∧
S∈R-simp

∃S�M

ρS

 (N) ≤ N.

As N embeds in a product of copies of M , T must embed in M . But then,

T ≤

 ∧
S∈R-simp

∃S�M

ρS

 (N) =
∩

S∈R-simp
∃S�M

ρS(N) ≤ ρT (N).

As ρT is left exact, ρT (T ) = T ∩ ρT (N) = T , a contradiction.
Then ρM is left exact, being the meet of a family of left exact preradicals. �

Example 3.5. A non-left-semiartinian ring for which the conditions of the previous lemma
are not equivalent.
Let R denote Cozzens’ domain mentioned in Example 2.4. As we have noticed, R is a left
V-ring and Hom(E(R), R) = 0, so that E(R) ∈ TρR . Now, ρR is not a left exact radical,
because otherwise, we would have that 0 = ρR(R) = R ∩ ρR (E(R)) = R ∩ E(R) = R, a
contradiction. Therefore, we have that R satisfies (3) but does not satisfy (1).

Recall that a ring R is said to be left duo if each one of its left ideals is two-sided. Also,
R is strongly regular if for each x ∈ R, there exists a ∈ R such that x = ax2. In what
follows, “regular” will mean “regular in the sense of Von Neumann”.

The following is part of a theorem which can be consulted in [6].

Theorem 3.6. The following conditions are equivalent for a ring R.
(1) R is strongly regular.
(2) R is regular and left duo.
(3) R is left duo and a left V-ring.

Lemma 3.7. Let M be a left R-module and write S for its endomorphism ring, End(RM).
If ρM is a left exact radical and S is a regular ring, then M contains an injective nonzero
submodule.

Proof. Consult [12, Lemma 4], keeping in mind Remark 3.2. �
Theorem 3.8. The following conditions are equivalent for a left duo ring R.

(1) ρM ∈ R-ler, for each left R-module M .
(2) R is regular and for each left ideal I of R and each left (R/I)-module M , ρM ∈

(R/I)-ler.
(3) R is regular and for each left ideal I of R, R/I contains a nonzero injective left

ideal.
(4) R is regular and left semiartinian.

Proof. (1) ⇒ (2) By Lemma 3.4 and Theorem 3.6 we have that R is regular. Let I be a
left ideal of R and let M be an (R/I)-module.

Note that M is also an R-module. We shall denote as F′
ρM

the ρM -torsion free (R/I)-
module class, where ρM is the radical associated to M as an (R/I)-module, and as FρM the
ρM -torsion free R-module class, where ρM is the radical associated to M as an R-module.

Note that F′
ρM

⊆ FρM . Indeed, take an (R/I)-module N ∈ F′
ρM

. Then 0 = ρM (N) =
∩{ker(f) : f ∈ HomR/I(N, M)}. Now, HomR/I(N, M) = HomR(N, M) as N and M are
both (R/I)-modules. Hence, ρM (N) = ρM (N) = 0, so that N ∈ FρM .

On the other hand, if U ∈ FρM is an R-module satisfying IU = 0 then U is an (R/I)-
module, which gives us that U ∈ F′

ρM
.
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Since ρM is a radical, in order to prove that it is left exact it will suffice to show that
its associated torsion free class, F′

ρM
, is closed under taking injective hulls.

Take N ∈ F′
ρM

. Let us write E′(N) for the injective hull of R/IN and E(N) for the
injective hull of RN .

As we have noted above, N ∈ FρM . As ρM is left exact, it follows that E(N) ∈ FρM .
Over a regular ring, every left or right module is flat. Thus, (R/I)R is flat, and then

[12, Lemma 5] provides that RE′(N) is injective. It follows that E′(N) = E(N) ∈ FρM .
Hence, E′(N) ∈ F′

ρM
.

(Alternatively, it is readily verified that E′(N) = {x ∈ E(N)|Ix = 0}. Thus, we are
going to show that IE(N) = 0 for concluding that E′(N) = E(N) as (R/I)-modules, from
which we will obtain that E′(N) ∈ F′

ρM
.

If IE(N) 6= 0, then N ∩ IE(N) 6= 0. Let us take 0 6= n ∈ N ∩ IE(N). As (R/I)R is
flat, from the inclusion N

ι
↪→ E(N) we obtain the monomorphism of R-modules

(R/I) ⊗R N
1⊗ι // (R/I) ⊗R E(N).

Then we have, in view of [14, Ch. I, §8, Example 1], that

N
∼= // N/IN

∼= // (R/I) ⊗R N // 1⊗ι // (R/I) ⊗R E(N)
∼= // E(N)/IE(N).

This composite sends n 7−→ n + IE(N), so that n + IE(N) 6= 0, contradicting that
n ∈ IE(N).

Thus, IE(N) = 0, whence it follows that E′(N) = E(N).)
(2) ⇒ (3) As R is a regular ring, then each one of its quotient rings is also regular. So,

the endomorphism ring End(R/IR/I) is regular because End(R/IR/I) is antiisomorphic‡

to R/I.
By hypothesis, ρR/I is a left exact radical over R/I. Using Lemma 3.7 we have that

R/I contains a nonzero injective left ideal.
(3) ⇒ (4) By Theorem 3.6, the ring R is strongly regular, being left duo and regu-

lar. Then the idempotent elements of R are central (see [14, Ch. I, Lemma 12.2 and
Prop. 12.3]). From this point, the proof can continue as 4) ⇒ 5) in [12, Theorem 7].

(4) ⇒ (1) As R is left duo and regular, by Theorem 3.6 we have that R is a left V-
ring. By Lemma 3.4 and since R is left semiartinian, ρM is left exact radical for each
M ∈ R-Mod. �

4. A Galois connection between R-nat and R-conat
Definition 4.1. Let M and N be two R-modules. We write M Ret N if for each nonzero
submodule M ′ ≤ M and for each nonzero quotient N ′ of N , Hom(N ′, M ′) 6= 0.

We represent this situation in the diagram

M N

M ′?�
∀

OO

N ′.

����
∀

∃6=0oo_ _ _

Definition 4.2. We say that a module M is strongly retractable if M Ret M , and we say
that a ring R is strongly left mod-retractable if each R-module is strongly retractable.

Remark 4.3. Note that every strongly retractable module is retractable and that every
strongly left mod-retractable ring is left mod-retractable.

‡Here, “antiisomorphic to” means “isomorphic to the opposite ring of”.
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Example 4.4. Let us take the ring R = Zpn ×Zqm , where p and q are two different primes
and n, m are two natural numbers greater than 1. By Theorem 2.18(7), we have that R
is mod-retractable. On the other hand, Zpn embeds in R and Zqm is a quotient of R, but
Hom(Zqm ,Zpn) = 0, thus R is not strongly mod-retractable.

We define two classes of modules for each M, N ∈ R-Mod, as follows:
Ret(M) = {N | M Ret N} and Ret−1(N) = {M | M Ret N}.

Proposition 4.5. For each M, N ∈ R-Mod we have that Ret(M) is a conatural class and
Ret−1(N) is a natural class.

Proof. We prove that Ret(M) is a conatural class showing that Ret(M) satisfies the
(CN)-condition. Let us suppose that N ∈ R-Mod is such that for each of its nonzero
quotients N ′, there exist some nonzero K ∈ R-Mod and some N ′′ ∈ Ret(M) such that K
is a quotient of both N ′ and N ′′. As N ′′ ∈ Ret(M) then Hom(K, M ′) 6= 0 for each nonzero
submodule M ′ of M . It follows that Hom(N ′, M ′) 6= 0. Hence N ∈ Ret(M). Therefore,
Ret(M) is a conatural class.

Now, take M ∈ Ret−1(N) and let M ′ be a submodule of M . If M ′′ is a nonzero sub-
module of M ′, then it is also a submodule of M , and thus Hom(N ′, M ′′) 6= 0 for each
nonzero quotient N ′ of N. This proves that M ′ ∈ Ret−1(N). Thus Ret−1(N) is closed
under taking submodules.
Now we show that Ret−1(N) is closed under taking injective hulls. Take a nonzero sub-
module H of E(M) with M ∈ Ret−1(N). As M ≤e E(M), then H ∩ M 6= 0. Thus for
any nonzero quotient N ′ of N , Hom(N ′, H ∩ M) 6= 0. It follows that Hom(N ′, H) 6= 0. To
complete the proof, we first show that Ret−1(N) is closed under extensions. Let us take
a short exact sequence with A, C ∈ Ret−1(N)

0 // A
f // B

g // C // 0.

B′?
�

OO

?�

OO

?�

OO

?�

OO

We can assume that f is an inclusion. Let B′ be a nonzero submodule of B. Let us take
a nonzero quotient N ′ of N. If B′ ∩ A 6= 0 then, as A ∈ Ret−1(N), there exists a nonzero
homomorphism h : N ′ −→ B′ ∩ A, which can be extended to a homomorphism from N ′

to B′. If B′ ∩ A = 0, then B′ embeds in C. As C ∈ Ret−1(N) then there is a nonzero
homomorphism from N ′ to B′. This shows that Ret−1(N) is closed under extensions, so
in particular, it is closed under taking finite direct sums.

Now, let {Mi}i∈I be a family of modules in Ret−1(N), let U be a nonzero submodule of⊕
i∈I

Mi and let N ′ be a nonzero quotient of N . If 0 6= x ∈ U then x = mi1 +mi2 + · · ·+min

with 0 6= mij ∈ Mij , for j ∈ {i, . . . , n}. As we have already established that the finite

direct sum
n⊕

j=1
Mij ∈ Ret−1 N , then there exists a nonzero homomorphism h : N ′ −→ Rx,

which extends to U. �
Corollary 4.6. For a class A of modules, the following statements hold.

Ret−1(A) = {M ∈ R-Mod | M Ret N for every N ∈ A } ∈ R-nat
and

Ret(A) = {N ∈ R-Mod | M Ret N for every M ∈ A } ∈ R-conat.

Note that for module classes A,B, if A ⊆ B, then Ret(B) ⊆ Ret(A) and Ret−1(B) ⊆
Ret−1(A).

Lemma 4.7. If A is a class of modules then A ⊆ Ret(Ret−1(A)) and A ⊆ Ret−1(Ret(A)).
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Proof. It suffices to note that

Ret−1(Ret(A)) = {M | M Ret N for all N such that K Ret N for all K ∈ A}

and that

Ret(Ret−1(A)) = {N | M Ret N for all M such that M Ret K for all K ∈ A}

�

As a consequence we obtain the following Galois connection (see [14, Ch. III, §8] for the
definition).

Theorem 4.8. The following diagram §

P(R-Mod)
Ret

,,
P(R-Mod)

Ret−1
l l

is a Galois connection with closed classes belonging to R-conat and to R-nat respectively.

Proposition 4.9. For A,B ∈ R-nat it happens that

Ret(A ∨nat B) = Ret(A) ∧conat Ret(B).

Proof. As A,B ⊆ A ∨nat B, Ret(A ∨nat B) ⊆ Ret(A) ∧conat Ret(B). For the converse
inclusion, it suffices to recall (see [8, Corollary 6.1.7]) that

A ∨nat B = {M | ∃L ≤ M such that L ∈ A and M/L ∈ B }

and to observe that

Ret(A)∧conatRet(B) = {N | M ′ Ret N and M ′′ Ret N for all M ′ ∈ A and for all M ′′ ∈ B }.

Then, use that for each module X, the class Ret−1(X) is natural and thus closed under
extensions. �

Lemma 4.10. If M, N ∈ R-Mod then

Ret(M) = Ret(ξnat(M)) and Ret−1(N) = Ret−1(ξconat(N)).

Proof. As {M} ⊆ ξnat(M), we have that Ret(ξnat(M)) ⊆ Ret(M). Now take N ∈ Ret(M)
and W ∈ ξnat(M). We have that for each nonzero submodule W ′ of W there exists a
nonzero submodule W ′′ of W ′ such that W ′′ embeds in M . Then Hom(N ′, W ′′) 6= 0
for each nonzero quotient N ′ of N , which implies Hom(N ′, W ′) 6= 0. Hence Ret(M) =
Ret(ξnat(M)). The other equality is proved similarly. �

Corollary 4.11. If A is a class of modules then

Ret(A) = Ret(ξnat(A)) and Ret−1(A) = Ret−1(ξconat(A)).

Recall that any natural class generated by a simple module is an atom in R-nat (see
[15, Proposition 1.3]).

Proposition 4.12. Let A ∈ R-nat be an atom generated by a simple module, then Ret(A)
is an atom in R-conat.

§Let us write P(R-Mod) for the big lattice of classes of R-modules, even though R-Mod is, of course, not
a set.
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Proof. Let S ∈ R-simp be such that A = ξnat(S). Then
Ret(A) = Ret(ξnat(S))

= Ret(S)
= {N | S Ret N }
= {N | ∀N � N ′ 6= 0, ∃ N ′ 6=0−→ S }
= ξconat(S).

Now, any conatural class generated by a simple module is an atom in R-conat (see
[1, Corollary 40]). �

Dually, it can be shown that the image under Ret−1 of atoms generated by simple
modules in R-conat provides atoms in R-nat.

Remark 4.13. The natural class generated by Z is an atom in Z-nat (Z being uniform),
but Ret(Z) = {0}. (Indeed, take 0 6= M ∈ Z-Mod. Write d for the divisible part and t
for the usual torsion part. If M is divisible, then M ∈ Td. If M is not divisible, then
nM � M for some n > 1, so that 0 6= M/nM ∈ Tt. Either way, seeing as Z ∈ Fd ∩ Ft, it
cannot be that ZRet M .) Thus the image under Ret of an atom does not need to be an
atom.

Theorem 4.14. If R is a noetherian ring and A ∈ R-nat is an atom not generated by a
simple module then Ret(A) = {0}.

Proof. Assume that there exists a nonzero module N ∈ Ret(A). As A is an atom in R-
nat, if M ∈ A is nonzero, then ξnat(M) = A. Thus, Ret(A) = Ret(M), so that M Ret N .
Hence Hom(N, Rm) 6= 0 for each nonzero m ∈ M . As Rm is noetherian, N has a nonzero
finitely generated quotient. Hence N has a simple quotient S. But S ∈ Ret(A), because
Ret(A) is a conatural class; thus M Ret S. From this we have that S embeds in M , thus
ξnat(S) = A. This constitutes a contradiction. �
Theorem 4.15. The following conditions are equivalent for a ring R.

(1) R is a left local and left max ring.
(2) Ret−1(R-Mod) 6= {0}.

Proof. (2) ⇒ (1) Assume that Ret−1(R-Mod) 6= {0} and take 0 6= M ∈ Ret−1(R-Mod).
Then M Ret N for each R-module N . In particular, M Ret S for each S ∈ R-simp. Thus S
embeds in each nonzero submodule of M . If S′ is another simple module, then S′ embeds
in S, but this is possible only if S and S′ are isomorphic. Thus all simple modules are
isomorphic. As S ≤ M and Ret−1(R-Mod) ∈ R-nat, S ∈ Ret−1(R-Mod). Hence, S Ret N
for each R-module N . Therefore, each nonzero module has a simple quotient.
(1) ⇒ (2) If R is a left local and left max ring, then for each R-module N S Ret N , where
S is any simple module. Thus 0 6= S ∈ Ret−1(R-Mod). �

We omit the analogous proof of the following result.

Theorem 4.16. The following conditions are equivalent for a ring R.
(1) R is a left local and left semiartinian ring.
(2) Ret(R-Mod) 6= {0}.

Proposition 4.17. Let M, N ∈ R-Mod and S ∈ R-simp. If M Ret S and S Ret N, then
M Ret N.

Proof. Let M ′ be a nonzero submodule of M and let N ′ be a nonzero quotient of N. By
hypothesis Hom(S, M ′) 6= 0 and Hom(N ′, S) 6= 0, whence Hom(N ′, M ′) 6= 0. This means
that M Ret N. �
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Theorem 4.18. The following conditions are equivalent for a ring R.
(1) R is a left local and left semiartinian ring.
(2) There exists S ∈ R-simp such that Ret−1(S) = R-Mod.

Proof. (1) ⇒ (2) Let S ∈ R-simp. As R is left semiartinian, we have that Hom(S, M) 6= 0
for each nonzero R-module M. Hence Ret−1(S) = R-Mod.
(2) ⇒ (1) If S ∈ R-simp is such that Ret−1(S) = R-Mod, then for each nonzero R-module
M we have that M Ret S and thus that Hom(S, M) 6= 0. Hence R is left semiartinian.
Now, if S′ ∈ R-simp, as Hom(S, S′) 6= 0, we have that S and S′ are isomorphic. Thus, R
is left local. �

Dually, the following theorem is easily proved, and we omit the proof.

Theorem 4.19. The following assertions are equivalent for a ring R.
(1) R is a left local, left max ring.
(2) There exists S ∈ R-simp such that Ret(S) = R-Mod.

Corollary 4.20. The following assertions are equivalent for a ring R.
(1) R is a left local, left semiartinian and left max ring.
(2) There exists S ∈ R-simp such that Ret−1(S) = R-Mod = Ret(S).

We end this work with a characterization of strongly left mod-retractable rings.

Theorem 4.21. The following assertions are equivalent for a ring R.
(1) R is a strongly left mod-retractable ring.
(2) R is a BKN -ring.
(3) R satisfies (HH) and it is a left local ring.
(4) R is a left local, left semiartinian and left max ring.
(5) R is left local, left and right perfect ring.
(6) There exists S ∈ R-simp such that Ret(S) = R-Mod = Ret−1(S).
(7) R is isomorphic to a full matrix ring over a local left and right perfect ring.

Proof. (1) ⇒ (4) As R is strongly left mod-retractable, every simple R-module is parain-
jective and paraprojective, so that, by Remark 2.3, R is a left semiartinian and left max
ring. Now, RR is a strongly retractable module, so that any simple module embeds in any
nonzero submodule of RR. This implies that there is just one isomorphism type of simple
modules.
(4) ⇒ (5) As R is left local and left semiartinian, then it is a right perfect ring (see
[5, Theorem V.3.4]). Now, every right perfect ring is semilocal, and every semilocal left
max ring is left perfect (see, for example, [4, Theorem 28.4]).
(5) ⇒ (4) Every left perfect ring is left max, and every right perfect ring is left semiar-
tinian (see, for example, [4, Theorem 28.4]).
(4) ⇒ (2) As R is left local, all simple modules are isomorphic. As R is left semiartinian,
each simple module embeds in each nonzero module. As the ring is left max, each simple
module is a quotient of each nonzero module. If M, N are two nonzero modules, taking an
epimorphism from M to a simple module S and composing with a monomorphism from
S to N , we obtain a nonzero homomorphism from M to N .
(2) ⇒ (4) Any two simple modules are isomorphic, because for each pair S, S′ of simple
R-modules, Hom(S, S′) 6= 0, thus R is left local. As there are nonzero homomorphisms
from each simple module to each nonzero module, the ring is left semiartinian. Also, as
there are nonzero homomorphisms from each nonzero module to each simple module, then
the ring is left max.
(4) ⇔ (6) This is the preceding corollary.
(6) ⇒ (1) It follows from Proposition 4.17.
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(2) ⇔ (3) This is Lemma 2.17.
Finally, (2) ⇔ (7) is a part of [5, Proposition VI.2.3]. �
Acknowledgment. The authors would like to express their profound gratitude to the
referee for the time and attention they devoted to our work. Their pertinent and insightful
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