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Abstract

This paper addresses the asymptotic behaviors of a linear Volterra type integro-differential equation. We study a singular Volterra integro
equation in the limiting case of a small parameter with proper choices of the unknown functions in the equation. We show the effectiveness
of the asymptotic perturbation expansions with an instructive model equation by the methods in superasymptotics. The methods used in this
study are also valid to solve some other Volterra type integral equations including linear Volterra integro-differential equations, fractional
integro-differential equations, and system of singular Volterra integral equations involving small (or large) parameters.
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1. Introduction

A systematic approach to approximation theory can find in the subject of asymptotic analysis which deals with the study of problems
in the appropriate limiting regimes. Approximations of some solutions of differential equations, usually containing a small parameter ε ,
are essential in the analysis. The subject has made tremendous growth in recent years and has a vast literature. Developed techniques
of asymptotics are successfully applied to problems including the classical long-standing problems in mathematics, physics, fluid me-
chanics, astrodynamics, engineering and many diverse fields, for instance, see [1, 2, 3, 4, 5, 6, 7]. There exists a plethora of examples
of asymptotics which includes a wide variety of problems in rich results from the very practical to the highly theoretical analysis. It
is well known that there are many problems which are not amenable to exact solutions. Thus, the only recourse is to develop methods
within the concept of asymptotic analysis to approximate their asymptotic behaviors and extract as much information as possible from
such problems that are not exactly solvable. Sometimes obtaining exact solutions of such equations may be impracticable. Numerically
accurate approximate solutions are often attainable even with the first couple of terms with the techniques in asymptotics. One may
obtain numerical solutions to specific problems which may be analytically achievable. Therefore, as it is sufficient in some cases, only
a few terms of the asymptotic expansions are sought, and usually, no attempt is performed to generate all perturbative terms of the
asymptotic expansion. To remark that, in addition to providing numerically good accuracies in limiting cases, asymptotic analysis is
also important in describing the asymptotic behaviors of the problems hidden inside that are invisible to classical asymptotics. Since
approximations are widely used, especially in the last decades, these hidden features must be included in computing the solutions of the
equations as they contain a wealth of information. Good use of the powerful techniques of asymptotics accurately provides meaningful results.

Asymptotics is a powerful tool in addressing the problems in applied mathematics and theoretical physics. It composes a large class of
approximations to the differential equations and integrals. Approximate solutions of mathematical problems may be derived in various
ways. When the methods are misapplied or unable display the hidden features, it may lead to erroneous conclusions, especially when
the Stokes phenomenon is involved. Likewise, true asymptotic behaviors and common features of most problems can be represented by
the methods in asymptotic analysis. Stirling [8] (also see [9]) who gave an asymptotic representation of the factorial (gamma) function,
Euler [10], MacLaurin [11], and Stieltjes [12] were among the firsts who used asymptotics series. However, the first rigorous foundation of
the asymptotic analysis and their interpretation was established and demonstrated by Poincaré in 1886 [13]. He suggested representing
the solution of a differential equation as a series in powers of a small parameter. The practical success of his technique depends on the
convergence of the power series representations; when his approach works, it leads to good approximations. However, when the series
representation is not convergent, his technique, unfortunately, may fail to generate a good approximation. In particular, random truncation
of a divergent series any earlier or later than the optimal truncation point may increase the truncation error due to the additional terms.
Therefore, it is notoriously inadequate with such series. However, in many physical models, the first few terms of the series expansion often
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provide satisfactory outcomes to the functions. Thence, his technique is still useful. Later, Dingle [14] observed that the Poincaré’s definition
was not unique and discovered that later order terms of the expansion occur in the same standard form, particularly, factorial divided by
power. Berry [15] is the first person truncating the divergent series optimally (near the least term). Upon truncation of the divergent series
optimally and ignoring the rest of the terms, he remarkably achieved the smallest error with an exponential accuracy and named this as
superasymptotics [15]. Later, hyperasymptotics which deals with repeated expansion(s) of the truncated remainder(s) is introduced in [16]
and exponentially small terms are extracted from these. Analysis of the exponentially small terms which may change their behaviors as
certain lines are crossed via the growing subject of asymptotics has been studied by many. For further details regarding these, we refer the
reader to see, for example, [1, 17, 18, 19, 20, 21, 22] and references therein.

In this paper, we consider a simple mathematical problem of a first-order linear ordinary Volterra type integro-differential equation whose
behavior is to be determined asymptotically in the limit ε → 0, where small parameter ε is the coefficient of the first derivative term. It is
used to illustrate some of the principles of asymptotology and to provide a cautionary example of some of the pitfalls. The type of problems
arises in many scientific and engineering problems. Deriving the exact solutions of the type of problems sometimes encounters considerable
difficulty. In such cases, asymptotic approximation techniques are essential. It is precisely this class of problems that is amenable to
asymptotic methods, for example, superasymptotics that will be discussed later. The outline of the paper is organized as follows. Section 2
introduces the type of the Volterra integro-differential equation which will be taken into consideration in the paper with arbitrarily selected
functions it involves. Asymptotic approximations usually involve power series. Hence, Section 3 is devoted to the expansion of the model
problem including the formulation of the asymptotic expansions in this sense. In Section 4, an asymptotic representation of the solution
of the equation is truncated at its least. Section 5 investigates the remainder differential equation and shows that it is exponentially small.
Finally, Section 6 discusses the conclusion.

The objective of the present study is to illustrate the asymptotic behavior of solutions of the Volterra type integro-differential equation with
the powerful tool of asymptotics. The form of the equation investigated in this paper is addressed in [23, 24]. Moreover, some asymptotic
properties of the Volterra integro-differential equation can be found in, for example, [25, 26, 27, 28]. In this paper, we are interested in the
behavior of following singularly perturbed linear Volterra type integro-differential equations for small ε in an asymptotic sense

ε
dy(z,ε)

dz
+
∫ z

0
k(z, t,ε,y(t,ε))dt = f (z,ε), (1.1)

where 0 < ε� 1 is a perturbation parameter, and it gives rise to the singular nature of the equation. The asymptotic behavior can be obtained

by assuming when the first term ε
dy(z,ε)

dz
of the equation (1.1) is not negligible. Therefore, we will be mainly concerned with the asymptotic

behavior of (1.1) as the perturbation parameter ε approaches to zero.

2. Model Problem

Herein, we briefly address the integro type singular differential equation with an expository example. To do this, we first assume the unknown
functions of the equation (1.1) as

k(z, t,ε,y(t,ε)) = ty(t,ε) and f (z,ε) = z.

These pose that a model Volterra integro-differential equation whose asymptotic properties we investigate in the next sections is

ε
dy(z,ε)

dz
+
∫ z

0
ty(t,ε)dt = z. (2.1)

Our main approaches are to generate approximation to the solution y(z,ε) of integro-differential equation by expansion and to address its
asymptotic behavior in the limiting regimes. In the following section, we expand the solution of the model equation (2.1) by the power series
representation in ε in the sense of Poincaré. This suggests using the truncated series to approximately compute the unknown quantity y(z,ε)
of the integro-differential equation.

3. The Asymptotic Expansion for the Solution

Since asymptotic approximations usually involve power series representations, we investigate the integro-differential equation with a usual
perturbation technique. We will assume the asymptotic series solution of the integro-differential equation exists in the small power series.
Once the perturbation coefficient of the expansion is known, we then can address the exact behavior of the equation. Hence, the first step
of the investigation of obtaining an accurate approximation is principally to expand y(z,ε) in powers of ε . Let us assume the asymptotic
solution of y(z,ε) we seek in (2.1) has the series representation in the limit ε → 0 as

y(z,ε)∼
∞

∑
n=0

ε
nyn(z). (3.1)

Substitution of this expansion back into (2.1) gives

∞

∑
n=0

ε
n+1 dyn(z)

dz
+
∫ z

0
t

∞

∑
n=0

ε
nyn(t)dt = z. (3.2)
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After grouping terms of like powers of ε in (3.2), we have

∞

∑
n=0

ε
n+1
(

dyn(z)
dz

+
∫ z

0
tyn+1(t)dt

)
+
∫ z

0
ty0(t)dt = z. (3.3)

Equating the coefficients of like powers of ε in (3.3), we may deduce the integral equation of the leading order term y0(z) at O(1) as
following

∫ z

0
ty0(t)dt = z. (3.4)

Likewise, we may deduce the recurrence relationship of the recursive set of successive terms at O(εn+1) from (3.3), that is,

dyn(z)
dz

+
∫ z

0
tyn+1(t)dt = 0, (3.5)

from which the perturbation coefficient yn+1(z) can be computed recursively from the preceding terms. Upon solving the integration (3.4),
we obtain the leading order solution y0(z) as

y0(z) =
1
z
. (3.6)

The leading order solution has a singularity at z = 0 which must be secured for all the terms of the expansion due to the successive relations
of the terms in (3.5). For example, the recurrence relation may write down for n = 0 as

dy0(z)
dz

+
∫ z

0
ty1(t)dt = 0.

Employing the leading order solution in (3.6) yields to the following

∫ z

0
ty1(t)dt =−dy0(z)

dz

=
1
z2 .

Solving this integration leads to the succeeding solution y1(z)

y1(z) =−
2
z4 .

Repeating this iterative process for n = 1 and n = 2 in the recurrence relation (3.5) and solving each of the equations, after doing some
computations, respectively provide

y2(z) =
40
z7 and y3(z) =−

2240
z10 .

The above successive terms of the expansion illustrate the singular behavior of the expansion of y(z,ε) at z = 0. Notice that the power of
the singularity so does the strength of the singularity at zero increases by three for each calculated term. The coefficients of an asymptotic
expansion to n terms may be calculated by using the recurrence relationship. Particularly, repeatedly doing this process for the successive
terms of the expansion via the recurrence relation in succession enables us to derive the form of the tail of the expansion such that, upon
simplification,

yn(z) = (−1)n (3n−1)!
z3n+13n−1(n−1)!

. (3.7)

Notice that it is in the nature of factorial divided by power and it is naturally divergent which can be found directly by the ratio test as n
increases. Deriving the perturbative coefficient also shows the series representation indeed appears in this nature as discussed earlier. Back
substitution of (3.7) into the naive expansion (3.1) represents the solution by the series

y(z,ε)∼
∞

∑
n=0

(−1)n
ε

n (3n−1)!
z3n+13n−1(n−1)!

. (3.8)

Hence, the model Volterra integro-differential equation (2.1) associates with this divergent sum.
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4. Truncating yn at its least

The series representation we extract from the integro-differential equation suggests the possibility of calculating the equation approximately.
As mentioned before, the traditional perturbation method works rather well with some series, but it is inadequate and misleading with
some other series. In particular, sometimes when the series representations are convergent and truncated at a random point, expansions
derives a good approximation, even with first few terms. In contrast, when the series representation is divergent or convergent but the
rate of convergence is extremely slow, randomly truncated series may not lead a good approximation. In our case, clearly, for sufficiently
small values of ε , the magnitude of the terms of the expansion at first decreases. It can be shown that first a couple of terms provides a
good approximation. However, as the number of the terms increases in the expansion, the series eventually diverges. Therefore, to the
approximation be useful, the error must be small. When the representation is divergent, the expansion must be truncated to obtain a good
approximation from the integro type differential equation. Let us truncate the expansion (3.8) after N� 1 terms and introduce the remainder,
that is,

y(z,ε) =
N−1

∑
n=0

ε
nyn(z)+RN(z,ε), (4.1)

where RN(z,ε) is the resultant remainder at O
(
εNyN(z)

)
. Once (4.1) is back substituted to (2.1), the remainder satisfies the Volterra

integro-differential equation

ε
dRN(z,ε)

dz
+
∫ z

0
tRN(t,ε)dt =−ε

N dyN−1(z)
dz

.

As for the asymptotic expansion for y(z,ε), the resultant remainder differential equation can be considered in a similar manner. Truncated
series provides a good approximation of the function. For large values of the summation index, the truncated series does not convey to a
good approximation. A random truncation of the perturbation expansion may or may not lead to a uniform approximation depending on the
type of the series. Since the asymptotic expansion is divergent, it is important to know where you truncate the divergent expansion. Having a
random number of terms in the expansion may lead to having an increased or decreased truncation error. Therefore, it is best to truncate the
expansion where it changes its direction to infinity. Taking the derivative of the resultant remainder with respect to the truncation point such
that

d
dN
|RN(z,ε)|= 0,

gives, after some computations for large N, that optimal truncation occurs at

N =
1
3

√
|z|3

ε
+a, (4.2)

where 0≤ a < 1 needs to be added in order to make sure that the truncation point is an integer. The terms in the series do not start increasing
up to this point. This is the point at which the asymptotic series begins diverging to infinity. With respect to Kruskal’s Principle of Maximal
Balance “no term should be neglected without a good reason” [29], we truncate the asymptotic expansion at its least. The accuracy of
the approximation at this point is maximum while the magnitude of the late terms is minimum for superasymptotics. In asymptotics, the
accuracy of the approximation also depends on the perturbation parameter, particularly, it becomes better as the independent variable ε , in
this case, approaches zero.

5. Remainder Analysis

Since the series expansion is truncated at its least, the resultant remainder is supposed to be exponentially small. As for the asymptotic
expansion of y(z,ε), our next step is to show this. To do so, we use useful Stirling’s approximation of factorial functions [30] that is

N!≈
√

2π
NN+ 1

2

eN . (5.1)

This provides a very accurate approximation of N! even when N is not large. To address the exponentially small behavior as ε → 0, we
employ this into the first neglected term of the expansion for sufficiently large values of N. We then find that the order of the truncation error
is asymptotic to

RN(z,ε)∼ ε
NyN(z)

= (−1)N
ε

N (3N−1)!
z3N+13N−1(N−1)!

.
(5.2)

Using the Stirling’s approximation (5.1) to factorial terms of (5.2) with the optimal truncation point in (4.2), after some computations for
sufficiently large values of N, we have

RN(z,ε)∼ (−1)N εN

z3N+1
(3N−1)3N−1/2

3N−1(N−1)N−1/2
exp(−2N)

= (−1)N εN

z3N+1 32N+1/2N2N exp(−2N).

(5.3)
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As it is convenient to use polar coordinates, we set z = |z|eiθ , where θ denotes the phase of z. Employing the optimal truncation point (4.2)
to above (5.3), we find

RN(z,ε)∼
√

3
|z|

exp

 iπ
3

√
|z|3

ε
+ iπa− iθ

exp

−2
3

√
|z|3

ε
−2a

 . (5.4)

Hence, the truncation error vanishes exponentially in the usual form as it can be seen from the right most term of (5.4) as ε → 0. Improved
accuracy is achieved by optimally including later order terms of the expansion.

6. Conclusion

In this paper, upon expanding solution of the linear Volterra type integro-differential equation in powers of ε , we obtain the asymptotic
series representation of the model differential equation via the methods of superasymptotics. Unlike the traditional asymptotic expansion,
truncation of the divergent series made sure that the truncation error is at least and the resultant remainder is exponentially small. It permitted
us to study the asymptotic behavior of the Volterra type integro-differential equations and enabled us to extract the exponentially small
behaviors which are encoded in the divergent perturbative expansion. The model example illustrates Kruskal’s Principles of Asymptotology
that no term neglected without a reason. The process of re-expansion, similarly, can be repeated within the hyperasymptotics’s framework
and refined information can be obtained.
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[6] I. Aniceto, G. Başar, R. Schiappa, A primer on resurgent transseries and their asymptotics, Phys. Rep., Vol: 809, (2019), 1 - 135.
[7] M. D. Kruskal, H. Segur, Asymptotics beyond all orders in a model of crystal growth, Stud. Appl. Math., Vol:85, No.2 (1991), 129-181.
[8] J. Stirling, Methodus Differentialis, Springer, London, 1730.
[9] I. Tweddle, James Stirling’s methodus differentialis, An annotated translation of Stirling’s text, Sources and Studies in the History of Mathematics and

Physical Sciences, Springer-Verlag London, Ltd., London, 2003.
[10] L. Euler, De solutione problematum diophanteorum per numeros integros, Comm. Acad. Sci. Imp. Petrop, Vol:6, (1738), 68-97.
[11] C. Maclaurin, A Treatise of Fluxions in Two Books, Ruddimans, Edinburgh, 1742.
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