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 Privacy preserving data mining is a substantial research area that aims at protecting the privacy 

of individuals while enabling to perform data mining techniques. In this study, we propose a 

secure protocol that fulfils the privacy restriction by combining homomorphic encryption with 

differential privacy and integrate this protocol into Holte’s One Rule which is a simple, but 
accurate and efficient classification algorithm. The proposed method allows a researcher to get 

the answers of his/her queries to build One Rule classifier by processing the encrypted training 

dataset under Paillier’s cryptosystem and also applies differential privacy to minimize the 

privacy leakage of individuals as much as possible in this training dataset. Therefore, both of 
security and privacy of the individuals in the training dataset for classification are provided 

thanks to our proposed method; since neither the parties, nor the researcher attain any 

information about the individuals in the database. Besides the One Rule classifier, we apply our 

proposed privacy preservation model to Naïve Bayes classification algorithm for the 
performance comparison, and show the efficiency of the proposed method through experiments 

on real data from UCI repository. 
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1. Introduction 

Data mining is the process of discovering beneficial 

information from big quantity of data. The extracted 

information can be patterns, rules, clusters or a 

classification model. Throughout the data mining process, 

sensitive information of individuals are subject to several 

parties such as data collectors, data miners and users of 

data mining operations. Consequently, privacy preserving 

data mining has emerged as a significant sub-field of the 

data mining to protect sensitive personal information 

from various data mining parties. Privacy preserving data 

mining is interested in maintaining data mining 

techniques without disclosing the privacy of individual 

data or sensitive information [1].  

In this study, we propose a privacy preserving version 

of Holte’s One Rule (1R) [2] algorithm, which is a simple 

and short, but efficient and accurate classifier. We 

combine 1R algorithm with homomorphic encryption and 

differential privacy which are the two most popular 

privacy preservation techniques to develop privacy 

preserving 1R classification algorithm. Homomorphic 

encryption is a variant of encryption, which enables 

making calculations on ciphertext domain and produces 

an encrypted result, such that the obtained encrypted 

results match with the result of the computations as if 

these computations were fulfilled on the plaintext 

domain. Differential privacy, which is a strong privacy 

guarantee, has been proposed to perform data mining 

algorithms over data that contain sensitive information. 

Differential privacy determines the rate of private 

information leakage by using an ϵ parameter. Differential 

privacy perturbs the results of queries that run on the 

sensitive data by adding a noise (such as Laplace), and 

http://www.dergipark.org.tr/ijamec
https://doi.org/10.18100/ijamec.801157
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-0974-7584
https://orcid.org/0000-0001-9201-6349


Ezgi Zorarpacı et al., International Journal of Applied Mathematics Electronics and Computers 08(04): 138-147, 2020 

- 139 - 

 

the amount of noise to be added is determined by the size 

of the ϵ parameter.  There is an inverse proportion 

between the amount of noise added and the size of the ϵ 

parameter. The lower values of ϵ parameter increases the 

noise, therefore lower classification accuracy values are 

observed with higher privacy levels. On the other hand, 

the higher the values of ϵ parameter are, the higher 

classification accuracy results are obtained but with the 

less privacy.   

1R is a classification model induction algorithm that 

finds the most informative attribute in the data and 

classifies instances with the values of this single attribute. 

1R generates very few classification rules that are very 

easy to interpret for humans [2]. During the construction 

of 1R classifier, frequencies of predictors (i.e., attributes) 

for each class in the database are needed. Despite this 

necessity, the individuals in the database are concerned 

that their confidential information may be disclosed, 

misused or abused. Therefore, we propose a privacy 

preserving data mining approach which employs a 

combination of homomorphic encryption (i.e., Paillier’s 

cryptosystem) [3] and differential privacy [4, 5, 6] to 

extract the classification rules by using 1R algorithm in 

this study. In our approach, the training data for 

classification is kept in an encrypted database to provide 

data confidentiality, and by the help of both 

homomorphic encryption and differential privacy, 

frequencies of attribute values (i.e., results of count 

queries) are computed from this encrypted database 

without seeing the original data. As we employ two 

parties (i.e., homomorphic encryption and differential 

privacy) at the same time for the computation of the 

attribute value frequencies, even if a malicious user 

disrupts one of these parties, he/she will not see the 

original data and will not know the actual frequency 

values since differential privacy adds some noise on the 

results of count queries used for finding the frequencies.  

Basically, our proposed method supports the following 

two vital aspects of security:  

i) Data privacy. The training dataset for classification 

task is securely stored by employing Paillier’s 

cryptosystem. Thanks to the two-party computation, the 

confidentiality of the training data is maintained even if 

one of the parties is hacked.  

ii) Output privacy. Differential privacy provides a 

strong privacy guarantee by perturbing the actual query 

result while maintaining the utility of the result. Thanks 

to the proposed two-party computation, neither the parties 

nor the researcher won’t learn the actual query results as 

long as these two parties cooperate.  

In the literature, the differentially private 

implementations of well-known classification algorithms 

such as decision trees, random forests, random trees, 

Naïve Bayes, and k-NN have been proposed. However, 

any implementation of private Holte’s 1R classifier [2] 

which is a simple and short, but efficient and accurate 

algorithm has not been studied so far to our best 

knowledge. To cover this gap, we propose to develop a 

private 1R algorithm. At the same time, none of the 

existing techniques take into account of data privacy 

while ensuring output privacy.  

The contributions of this study can be given briefly as 

follows: We present a privacy preserving protocol for 

building of 1R classification algorithm. This protocol 

combines two most popular privacy preservation 

techniques that are homomorphic encryption and 

differential privacy. Our proposed method ensures the 

data privacy and output privacy simultaneously for 

classification task unlike existing private algorithms in 

the literature. To our best knowledge, the proposed 

method is the first study to perform a private 1R 

classification algorithm by using homomorphic 

encryption and differential privacy together.  

Our proposed privacy protocol is also incorporated into 

Naïve Bayes classification algorithm as well to evaluate 

the classification performance of the proposed 1R 

classifier, since Naïve Bayes is a baseline differentially 

private classifier in the literature and requires attribute 

value frequencies (i.e., count queries) to calculate the 

class probabilities during construction of the classifier. 

Through the experiments, we demonstrate the 

effectiveness and applicability of our proposed approach 

in terms of classification accuracy, run-time complexity, 

and storage requirement.  

The rest of the paper is organized as follows: the 

previous studies in the related fields are summarized in 

Section 2, the basic concepts of Paillier’s homomorphic 

cryptosystem, differential privacy, and 1R classification 

algorithm are given in Section 3. In Section 4, the 

proposed method is explained in detail. In Section 5, the 

experimental results including the security analysis and 

run-time analysis of the proposed method are presented; 

also the storage requirements of the method for the 

encryption of training data for classification are given. 

Finally, the paper is concluded in Section 6.   

2. Related works  

2.1. Securely computing count queries  

One of the most prevalent obligation in data mining is 

querying the number of instances in the dataset that 

satisfy the condition given by the data miners (i.e., 

researchers). Accordingly, it becomes a necessity to 

obtain such knowledge from data without revealing the 

confidential information of individuals. One of the 

earliest method to answer such count queries securely 

without seeing the data of individuals in a database of 

DNA sequences has been proposed by Kantarcioglu et al. 

[7], which is based on a cryptographic model. In this 

study, two parties are considered to compute frequencies 
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(i.e., count queries). One party (i.e., data storage site) is 

liable for storing encrypted data acquired from various 

data sources and then operating the queries requested by 

a researcher on this encrypted data; while another party  

(i.e.,  key holder site) is in charge of keys made use of 

encryption and decryption. This key holder site decrypts 

the encrypted values obtained from data storage site to 

get the result of a count query and sends this result to the 

researcher. This protocol enables a strong privacy such 

that any malevolent user can never see the encrypted 

information of individuals unless two parties disagree. 

Canim et al. [8] have proposed a protocol to securely 

store, share, and query clinical genomics data using 

secure cryptographic hardware. This protocol utilizes 

tamper-resistant cryptographic hardware to simplify 

secure genomic data storage and processing by removing 

the necessity of multiple parties. According to this study, 

all the encrypted records taken from multiple sources are 

kept in data storage site. This site can securely operate 

queries on this encrypted data by using the secure co-

processor settled in the data storage site. The proposed 

method in [8] uses an encryption method that can only 

support count queries unlike this new solution which can 

directly promote any algorithm in which the intermediate 

outcomes could be stored in the memory of the co-

processor.  

Faramarzi et al. [9] have proposed a privacy preserving 

solution for the bipartite ranking problem. The RIMARC 

(Ranking Instances by Maximizing Area under the ROC 

curve) algorithm is used as a solution in this study. As a 

part of this model, the frequencies (i.e., count queries) are 

required to weight each feature by analyzing the area 

under the ROC curve. According to the study, each 

categorical value of each feature is encrypted by Paillier’s 

cryptosystem and the frequencies are computed over this 

encrypted data. 

Hasan et al. [10] have proposed a secure and efficient 

method for outsourcing genomic data. The proposed 

method builds an index tree from the different sources of 

genomic data and then outsources it to the third party 

cloud server. By using a secure protocol, the cloud server 

can traverse the nodes of this index tree and answer the 

count queries. Besides, Bloom filter [11] is added to each 

node of this index tree. The underlying idea is to utilize a 

structure similar to Bloomfilter search tree [12], which 

eases searching process over the index tree. 

2.2. Classification with differential privacy 

Data mining is the process of discovering the useful 

information from the data. Privacy preserving data 

mining is an important research area in data mining. The 

goal of the privacy preserving data mining is to ensure 

the privacy of individuals while enabling to perform data 

mining techniques. Many privacy preserving techniques 

such as privacy preserving association rule mining, 

privacy preserving clustering [13, 14, 15, 16], privacy 

preserving classification relying on a number of data 

mining algorithms such as SVM, k-NN etc. [17, 18] have 

been studied. However, differential privacy has recently 

been proposed method to guarantee strong privacy and it 

has been used for privacy preserving classification. 

Therefore, differential privacy has been implemented 

with some data mining algorithms in the literature. A 

differentially private logistic regression algorithm has 

been proposed by [19]. In 2010, a differentially private 

version of ID3 tree, where the information gain is 

estimated with the utilization of noisy counts obtained by 

adding noise drawn from Laplace distribution, has been 

proposed [20]. After that, Jagannathan et al. has 

demonstrated that construction of such a differentially 

private ID3 tree with the usage of low-level queries 

cannot ensure both good privacy and accuracy meanwhile 

[21]. Hence, they have presented a private ensemble 

method attributed to random decision trees. They 

observed that this algorithm performs better than the 

differentially private ID3 tree in terms of accuracy values 

even for small datasets. In 2013, they have proposed a 

variant of the differentially private random tree ensemble 

in [22]. In this study, a semi-supervised method which 

modifies the random decision tree approach to be used 

with the unlabelled data has been performed. This hybrid 

technique increases the accuracy values of the previous 

study [21] without decreasing the privacy [22].  

Vaidya et al. [23] performed differential privacy on 

Naïve Bayes classification algorithm. Fletcher and Islam 

[24] have developed a differentially private decision 

forest approach which employs Gini index to construct a 

decision tree. The proposed approach has been compared 

with differentially private ID3 of [20] and non-private 

random forest algorithms. It has been demonstrated that 

the proposed method has very close accuracy values to 

those of classical random forest algorithm [24]. At the 

same time, Bojarski et al. [25] have presented three 

variants of differentially private random decision trees 

with majority voting, threshold averaging, and 

probabilistic averaging mechanism to classify instances. 

Su et al. [26] has developed a differentially private k-

means clustering algorithm. Gursoy et al. [27] has 

conducted a differentially private nearest neighbor 

classification method by using k-NN.  

According to the literature, any private version of 1R 

classification algorithm does not exist and there are only 

a few studies to operate count queries (i.e., frequencies) 

over a database securely. However, the security protocol 

proposed by Kantarcioglu et al. [7] insures strong 

confidentiality thanks to two-party computation such that 

even if one of the parties disrupts, obtaining of original 

data will not be possible unless another party disrupts 

simultaneously as well. Therefore, in our proposed 

model, we adopted a security protocol which is similar to 
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the secure count protocol used for the computation of 

frequencies of DNA sequences in the study of 

Kantarcioglu et al. [7].  

In our proposed method, squared Euclidean distances 

of the records to a given query are used in the data 

storage site before the aggregation of the decrypted 

outcomes unlike [7], and our data encryption scheme 

utilizes the categorical index values of the attributes 

while a mapping is used for the encryption of nucleotides 

in [7]. Moreover, differential privacy is applied to the 

actual result of count queries (i.e., frequencies) in private 

key holder site as well. The other difference of our 

proposed security protocol from the method used in [7] is 

that, in our study the count queries are received as batch 

from the researcher, who builds 1R classifier, and then 

these queries are permuted in data storage site, and count 

queries are run in this changed order. Thus, a malicious 

user will not distinguish which result belongs to which 

query, in other words, actual result of a query cannot be 

obtained even if he/she disrupts any of the parties. We 

use Paillier’s cryptosystem similarly to other existing 

studies in the literature, which operates count queries 

securely. 

3. Background 

3.1. Paillier’s homomorphic encryption 

    Paillier’s Encryption [3] is a partially homomorphic 

encryption layout where a single type of computation is 

possible unlike fully homomorphic encryption where 

different types of computation are allowed. It is simple 

and applicable to the real world applications (e.g. secure 

e-voting). Paillier’s cryptosystem provides the addition as 

a computation in ciphertext domain as defined in 

Equation (1). 

𝐸(𝑚1 + 𝑚2) = 𝐸(𝑚1). 𝐸(𝑚2)  (1) 

 

where 𝐸(𝑚1)  and 𝐸(𝑚2)  are encrypted plaintexts (i.e., 

ciphertexts) using the same public key 𝑝𝑘 . Additionally, a 

ciphertext  𝐸(𝑐. 𝑚)  can be computed as 𝐸(𝑚)𝑐  with 

Paillier’s additive homomorphic property. Furthermore, 

the encryption of a plaintext and the decryption of a 

ciphertext in Paillier’s cryptosystem can be described as 

follows:  

Let 𝑝 and 𝑞 are large prime numbers with the same bit 

length, public key 𝑝𝑘  is set to 𝑛 = 𝑝. 𝑞, and private key 

𝑝𝑟 is (𝛾, 𝑛), and 𝛾 be the lowest  common multiplier of 

( 𝑝 − 1)  and (𝑞 − 1 ). Given 𝑛 , the plaintext 𝑚 , and a 

random number 𝑟 between 1 to 𝑛 − 1; the encryption of a 

plaintext 𝑚 is equal to 𝐸(𝑚) = (𝑛 + 1)𝑚𝑟𝑛 mod 𝑛2. On 

the other hand, given 𝑛 and the ciphertext 𝑐 = 𝐸(𝑚), the 

decryption of  𝑐 can be computed as follows: 

 

𝐷(𝑐) = 𝑚 = [((𝑐𝛾𝑚𝑜𝑑 𝑛2) − 1)/𝑛]. 𝛾−1 𝑚𝑜𝑑 𝑛                  (2)  

where 𝛾−1 is the inverse of modulo 𝑛. 

3.2. Differential privacy 

     Differential privacy [4], which is a strong privacy 

guarantee, has been proposed to perform data mining 

algorithms over databases which contain sensitive 

information. It determines privacy leakage ratio by an ϵ 

parameter, and enables individuals’ data to be taken 

safely in a database [4, 5, 6]. Differential privacy asserts 

that the output of a function does not entirely depend on 

any instance in the database. It claims that yielding of the 

same output is highly probable even if an instance is or 

not in the database. 

Definition 1 (Neighbor databases) D and D' are two 

neighbor databases which differ from each other with a 

single instance, |D' ∆ D|=1.  

Definition 2 (ϵ-differential privacy) A randomized 

mechanism A (such as Laplace mechanism) is ϵ-

differentially private if all subsets S of the outputs of the 

algorithm A for all neighbor databases D' and D satisfy 

the following condition: And 

 

S ⊆ Range(A)  𝐴𝑁𝐷  Pr[𝐴(𝐷) ∈ 𝑆] ≤ 𝑒ϵ × Pr[𝐴(𝐷′) ∈ 𝑆]  (3)                    

 

  

where  Pr[𝐴(𝐷) ∈ 𝑆]  is the probability of  𝐴(𝐷)  of  

being an element of S, 𝐴(𝐷) and 𝐴(𝐷′) are the outputs of 

the randomness algorithm 𝐴  for the databases 𝐷 and 𝐷′ 

respectively, and ϵ is used to check out how much a 

malicious client can recognize the difference between the 

databases 𝐷′ and D, and 𝑅𝑎𝑛𝑔𝑒(𝐴) represents the range 

of the outputs which can be generated by randomized 

mechanism 𝐴. 

Definition 3 (Sensitivity) Let 𝑓(𝐷) ∶ 𝐷 → ℝ  be a 

function mapping a database 𝐷  into real numbers. The 

sensitivity for 𝑓(D) is determined by  

 

∆𝑓 ∶= 𝑚𝑎𝑥𝐷,𝐷′ || 𝑓(𝐷) − 𝑓(𝐷′)||                                       (4)                                   

 

where ∆𝑓 := 1, ||. ||  is the 𝐿1 norm and the sensitivity is 

equal to 1 for all neighbor databases 𝐷  and 𝐷′ . The 

sensitivity of a function f represents the maximum 

magnitude in which the record of only one individual can 

alter the value of f for the worst case. In other words, the 

sensitivity for a function grants a maximum bound on 

how much its output must be perturbed to provide 

differential privacy [4, 5, 6].  

Definition 4 (Laplace mechanism) Let 𝐿𝑎𝑝(𝛾) be the 

Laplace distribution by mean 0 and standard deviation 𝛾. 

For the function 𝑓(𝐷) ∶ 𝐷 → ℝ , the randomized 

algorithm A represents Laplace mechanism and responds 

𝑓(𝐷) as follows: 

 

𝐴(𝑓(𝐷)) =  𝑓(𝐷) + 𝑉                                                       (5)                     

                                                 

where 𝑉  is an independent and identically distributed 
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random variable drawn from 𝐿𝑎𝑝(𝛾), and provided that  

𝛾 ≥ ∆𝑓/ϵ  , then the algorithm A is ϵ-differentially 

private. Therefore, Laplace mechanism is ϵ-differentially 

private [4, 5].  

    In this study, we need only frequency queries (i.e., 

count queries) of each predictor for each class to build 

1R classifier. Considering the definitions of differential 

privacy given above, a count query can be represented as 

a function. If its actual query result is 𝛿, the differentially 

private result (i.e., noisy result) is 𝛿 + 𝑏 , where 𝑏  is 

drawn from Laplace distribution with mean 0 and 

standard deviation 
∆𝑓

ϵ
, such that ∆𝑓 is the sensitivity of 

count query and is equal to 1, and ϵ  is the privacy 

parameter of which smaller values mean much more 

privacy.  

3.3. 1R classification algorithm 

    1R [2] is a simple and efficient rule-based classifier, 

which finds the most informative attribute in the data and 

classifies instances with the values of this single attribute. 

As it uses only one attribute for classification task, it is 

called “One Rule”. It generates very few rules that are 

very easy to interpret for humans. The pseudo-code of 

building 1R classifier is given in Algorithm 1. 

 

Algorithm 1. 1R classification algorithm 

Input: Database D 

Output: The IF-THEN rules of 1R classifier 

Begin 

      for each  attribute Aj in D do 

            for each attribute value vi in Aj  

                   Count how often vi appears in each class, 

and set this value to 𝑛𝑗𝑖 

            end for 

             Detect the most frequent class of vi by using  

𝑛𝑗𝑖 values 

             Make an IF-THEN rule with consequent as the 

most frequent class label and the antecedent as Aj=  vi 

            Calculate the total classification error of the 

rules of Aj 

      end for   

      Choose the best attribute Abest of which IF-THEN 

rules that have the smallest  total error among all Aj 

      return The IF-THEN rules of Abest; 

end 

4. The proposed privacy preserving classifier 

    In this paper, we propose a privacy preserving 

classification approach that employs homomorphic 

encryption and differential privacy while building the 1R 

classifier. Our proposed privacy preserving classification 

model operates as the scheme given in Fig. 1. This 

approach considers two parties for security requirements 

such that it is impossible to see the data and to have the 

actual query result unless both of these two parties do not 

cooperate. Consequently, there exists more than one point 

for data security thanks to the proposed privacy model 

and in this way, if a malicious user seizes one of the 

parties, the user cannot get any information about the 

individuals in the encrypted database and the actual 

frequency value (i.e., count query) requested by the 

researcher. 

 
Fig. 1. Scheme of the proposed privacy model to build 

1R classifier. 

 

    According to Fig. 1, encrypted versions of the database 

records obtained by Paillier’s cryptosystem are held in a 

party which is called Data Storage (DS). The storage 

fulfills the frequency queries requested by the researcher, 

who builds 1R classifier, without decrypting any records 

in the data. Query results are dispatched to another party 

(i.e., Private Key Holder (PKH)) that decrypts and 

accumulates the results (i.e., How many records meet the 

condition given by the requested query). After that, this 

party applies differential privacy to the actual query result 

and returns the noisy result to DS again. Then, DS returns 

the differentially private frequency query result to the 

researcher (1R classifier).   

4.1. Security structure       

    In this section, we describe how cryptographic 

properties are used to query the encrypted training data 

for the classification task. According to, Fig.1, the 

following steps form the security infrastructure of our 

proposed method.  

    Step 1 (Key generation): For the first step of the 

proposed protocol, PKH sends a public key to data owner.  

    Step 2 (Data encryption): When data owner demands 

to locate the training data to the DS, then DS sends the 

public key to the data owner. After that, the data owner 

encrypts the training data with the public key and 

dispatches this encrypted training data to DS. It is DS in 

which the encrypted training data is kept securely, and 

the queries requested by the researcher who builds 1R 

classifier are answered. Note that, we suppose only 

authorized data owner can locate her/his data to DS for 

the construction of 1R classifier on top of available 
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authentication and access mechanisms.  

    Step 3 (Query submission and processing): Queries 

are submitted by the researcher in a batch form, and they 

are shuffled before processed by the PKH.  The order of 

the queries are changed by the DS. For a query, DS 

computes the squared Euclidean distances between the 

query and each encrypted record from the training data 

and dispatches these intermediate encrypted results to 

PKH. Then, PKH decrypts these intermediate results and 

obtains the aggregated result of the query. After obtaining 

the final result, PKH injects some Laplace noise with 

respect to an 𝜖 parameter to provide differential privacy 

guarantee, and then sends this perturbed count query 

result to DS. Finally, after all queries are operated by DS, 

the perturbed query results are sent by DS to the 

researcher in the order that the researcher requests.  

    Since training data for classification task kept in DS is 

semantically secure, the DS will know the content  of the 

encrypted training data only if it possesses the private key. 

However, the DS does not get the private key since PKH 

keeps it private. The PKH only publishes DS the public 

key and the training data kept in DS is naturally private 

against DS and the researcher. However, the count 

queries are taken from the researcher, who builds the 1R 

classifier, as batch form; and these queries are permuted 

among themselves in DS, and the queries are run in this 

permuted order. Thus, a malevolent user cannot 

distinguish which result belongs to which query even if a 

hacker breaks one of the security parties. At the same 

time, the query results are perturbed by adding some 

Laplace noise, and its’ amount is determined by the 

differential privacy mechanism. Thus, the actual query 

results of the queries are not disclosed as long as DS and 

PKH collaborate. 

4.2. Data encryption 

    In our approach, the training dataset for classification 

is settled in a database. Our classification datasets consist 

of only categorical attributes. Table 1 shows how the 

categorical attribute values of a feature are encrypted. 

Table 1. Encryption of the categorical values of attribute 

“age” 
Categorical attribute value of feature “age” 

Original attribute 

values  

Encrypted attribute 

values  

Encrypted square 

of attribute values 
young E(0) E(02) 

middle E(1) E(12) 

old E(2) E(22) 

    

    According to Table 1, we assume that we have a 

feature “age” in the training dataset and this feature has 3 

values that are “young”, “middle”, and “old”. We keep 

the categorical index values of this feature that are 0, 1, 

and 2 in the database and encrypt these values as given in 

the second column of Table 1. All feature values 

including class labels in the training dataset are encrypted 

with the public key of Paillier’s cryptosystem in the same 

way. In our encrypted database, we also keep the square 

of the attribute values in the encrypted form in the data 

storage, since squared Euclidean distance is used for the 

computation of how many records are provided by a 

given query. 

4.3. Computation of distance between a query and an 
encrypted database record 

    In our proposed method, square of the Euclidean 

distance between the attributes values in the query and 

the encrypted attribute values in a database record is 

utilized to calculate the frequency (i.e., count query) by 

taking advantage of additive homomorphic property of 

Paillier’s cryptosystem. In this study, we measure the 

total distance between the categorical attribute values of 

related features in the query and an encrypted database 

record by using square of the Euclidean distance. The 

square Euclidean distance is given in Equation (6). 

 

𝑑2 = ∑ (𝑟𝑖 − 𝑞𝑖)2𝑚
𝑖=1                                                                   (6) 

 

where 𝑑  is the Euclidean distance, 𝑟𝑖  is the categorical 

attribute value of feature 𝑖  in a training instance (i.e., 

record),  𝑞𝑖 is the categorical attribute value of feature 𝑖 in 

the query, and m is the number of features in the query. 

On the other hand, the encrypted version of 𝑑2  is 

computed as in Equation (7).  

 

𝐸(𝑑2) = ∏ 𝐸(𝑟𝑖
2). 𝐸(𝑞𝑖

2). 𝐸(−2𝑟𝑖 . 𝑞𝑖) 𝑚
𝑖=1                                 (7)                 

 

where 𝐸(𝑑2) , 𝐸(𝑟𝑖
2) , 𝐸(𝑞𝑖

2) , and 𝐸(−2𝑟𝑖. 𝑞𝑖)  are the 

encrypted versions of 𝑑2 ,  𝑟𝑖  ,  𝑞𝑖  , and −2𝑟𝑖. 𝑞𝑖 

respectively. In Equation (7), 𝐸(−2𝑟𝑖. 𝑞𝑖) =   𝐸(𝑟𝑖)
−2𝑞𝑖  

since 𝐸(𝑚. 𝑎 𝑚𝑜𝑑 𝑛)  is equal to   𝐸(𝑚)𝑎 𝑚𝑜𝑑 𝑛2 . To 

compute Equation (7), DS encrypts the squares of the 

categorical attribute values in the query with public key 

of Paillier’s cryptosystem. This encryption is performed 

as described in Data Encryption Section above. For 

instance, considering the “age” example in Table1 we 

assume that a count query 𝑞1 sent by the researcher to DS 

is Select Count (*) from Table where age=”old”. In this 

case, the encrypted versions of the 𝑞1 and 𝑞1
2 are equal to 

𝐸(2)  and 𝐸(22)  respectively. For the simplicity and 

limited space in this paper, we illustrate the encryption of 

a query for a single attribute. However, the encryption of 

all categorical attribute values including class attribute 

values in the query are discharged in similar way. 

4.4. The proposed securely count query 

    Frequencies (i.e., count queries) of each categorical 

attribute values for each class are required to build 1R 

classifier. However, count queries were not performed 

over homomorphically encrypted data. Therefore, we 

propose a protocol which securely computes these 
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frequencies without decrypting the encrypted data. Our 

security protocol is based on the secure count protocol 

used for the computation of frequencies of DNA 

sequences in the studies of Kantarcioglu et al. [7]. 

However Euclidean distance is used in DS side and our 

data encryption scheme utilizes the categorical index 

values of the attributes while a mapping is used for the 

encryption of nucleotides in [7]. Moreover, differential 

privacy is applied to the frequency values in PKH side. In 

our DS protocol, the squared Euclidean distance of each 

encrypted record to the count query requested by the 

researcher is computed. On the other hand, PKH 

computes the result of the query by decrypting these 

distances calculated by DS and Laplace noise is added to 

this actual query result to provide differential privacy in 

our PKH protocol.  At the same time, the protocols for 

DS and PKH are given in Protocol 1 and 2 respectively.  

 

Protocol 1. DS-Computation of distance between a 

query and an encrypted database record. 

Input: A count query q, encrypted database D 

      for each  record r in D do 

            𝑑𝑟 ← ∏ 𝐸(𝑟𝑖
2).  𝑚

𝑖=1 𝐸(𝑞𝑖
2). 𝐸(𝑟𝑖)

−2𝑞𝑖                    

            end  

      𝑑 ← 𝜋(𝑑1, 𝑑2, … , 𝑑𝑛) , where 𝜋  is a random 

permutation, n is the # of records in D  

      Send 𝑑 to PKH. 

   

Protocol 2. PKH-Differentially private query result 

Input:  d from DS,  Differential privacy parameter ϵ 

      𝜖′:= 
𝜖

𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟×∑ ∑ 1𝑖
𝑛
𝑗=1

 

      𝛾:= ∆𝑓/𝜖′ 

      count← 0; 

      for each  distance 𝑑𝑖 in d do 

            if 𝐷𝑒𝑐𝑟𝑦𝑝𝑡(𝑑𝑖) == 0 then  

                  count← 𝑐𝑜𝑢𝑛𝑡 + 1;  

            end if 

      end for  

      count← 𝑐𝑜𝑢𝑛𝑡 + 𝐿𝑎𝑝(0, 𝛾); 

      Send 𝑐𝑜𝑢𝑛𝑡 to DS. 

     

      In the first protocol, Euclidean distances between 

each record in the database and a given count query are 

calculated and these distances are sent to PKH after 

applying a random permutation π to be processed by the 

second protocol. In the second protocol, these encrypted 

distances are decrypted, and checked whether they are 

equal to 0 or not. If the Euclidean distance is equal to 0, 

count is incremented by 1 which means the query 

matches with the encrypted data record. After all 

distances are decrypted and checked, we obtain the result 

of the given count query (i.e., frequency). Following this, 

Laplace noise is added to the result of the count query to 

provide differential privacy guarantee. Moreover, the 

count queries dispatched by the researcher to DS are sent 

to PKH with a random permutation as well. Thus, a 

malicious user will not distinguish which result belongs 

to which query even if he/she disrupts the second party 

(i.e., PKH).  

    In Protocol 2, the number of count queries required to 

build an 1R classifier is equal to 𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟 × ∑ ∑ 1𝑖
𝑛
𝑗=1 , 

where n represents the number of attributes in the training 

dataset, j is the jth attribute (i.e., predictor) of this dataset, 

and i is the ith  value of the attribute j. On the other hand, 

sensitivity of a count query, ∆𝑓,  is equal to 1. ϵ is the 

total budget to guarantee differential privacy. ϵ′  is the 

budget per each count query and is equal to 
ϵ

𝑐𝑙𝑎𝑠𝑠𝑛𝑢𝑚𝑏𝑒𝑟×∑ ∑ 1𝑖
𝑛
𝑗=1

. 𝐿𝑎𝑝(0, 𝛾) represents the noise drawn 

from Laplace distribution with mean 0 and standard 

deviation 𝛾 where 𝛾= 
∆𝑓

ϵ′ .  

5. Experimental results 

    In the experiments, we use 4 UCI datasets that are 

Congressional votes, Mushroom, Nursery, and Spect-h. 

According to Table 2, number of classes for the datasets 

changes from 2 to 5, and number of attributes ranges 

from 8 to 23. 

Table 2. Description of the datasets 

Dataset # of Attributes # of Classes # of Instances 

Cong. votes 16 2 435 

Mushroom 22 2 8124 

Nursery 8 5 12960 

Spect-h 23 2 267 

        

Table 3. Average classification accuracies of private 1R 

Dataset 
Epsilon Value (ϵ) 

∞ 3 2 1 0.5 0.25 0.1 

Cong.  0.956 

 

0.886 

 

 

0.800 

 

0.739 

 

0.625 

 

 

0.558 

 

 

0.570 

 

Mush. 

 

0.950 

 

0.968 

 

0.946 

 

 

0.862 

 

0.760 0.641 

 

0.560 

 

Nursery 

 

0.709 

 

 

0.709 

 

 

0.709 

 

 

0.707 

 

 

0.691 

 

 

0.545 

 

 

0.347 

 

Spect-h 

 

0.723 

 

 

0.571 

 

 

0.564 

 

 

0.526 

 

 

0.510 

 

 

0.504 

 

 

0.515 

 

Table 4. Average classification accuracies of private 

Naive Bayes 
Dataset Epsilon Value (ϵ) 

∞ 3 2 1 0.5 0.25 0.1 

Cong.  0.901 

 

0.893 

 

 

0.886 

 

 

0.866 

 

0.799 

 

0.701 

 

 

0.603 

 

Mush. 0.957 0.929 

 

0.926 

 

 

0.911 

 

0.873 0.803 

 

0.688 

 

Nursery 

 

0.902 

 

 

0.895 

 

 

0.886 

 

0.854 

 

0.740 

 

 

0.549 

 

 

0.386 

 

Spect-h 0.681 

 

0.619 

 

0.605 0.568 0.512 0.515 0.484 
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In the experimental results, we present the 

performance of the proposed private 1R classifier for the 

different values of privacy parameter 𝜖 which is applied 

in the second party (i.e., PKH). According to these 

results, the lower the values of 𝜖 parameter are, the lower 

classification accuracies are observed but the more 

privacy is provided; while the higher the values of 𝜖 

parameter are, the higher classification accuracies are 

obtained but having less privacy as in other differentially 

private classifiers in the literature [20, 21, 22, 23, 24, 25, 

27].  

    We analyze the classification performance of the 

proposed private 1R classification algorithm for the 

various ϵ parameter values that are 0.1, 0.25, 0.5, 1, 2, 

and 3. We run the classifier 100 times. For each time, 90% 

of the whole dataset is determined as training dataset and 

the encrypted version of this training data is settled in the 

first party (i.e., DS). 10% of the dataset is used to test the 

private 1R algorithm. We give the average classification 

accuracy values for each 𝜖 parameter value at the end of 

100 runs in Table 3. At the same time, we also use our 

privacy model to perform privacy preserving Naïve 

Bayes classification algorithm since Naïve Bayes 

classification algorithm is a baseline classifier in the 

literature [23, 27] to utilize differential privacy, and it 

also requires frequencies of attribute values (i.e., count 

queries) to build the classifier. The average classification 

accuracies of Naïve Bayes are presented in Table 4 as 

well.  

    According to Table 3 and Table 4, ϵ = ∞  means 

differentially privacy is not applied in PKH. When ϵ=∞, 

1R outperforms Naïve Bayes for the datasets 

Congressional votes and Spect-heart. On the other hand, 

Naïve Bayes achieves 0.957 average accuracy values for 

the dataset Mushroom and 1R reaches slightly lower 

accuracies with 0.950 for this dataset. When ϵ=3 , 1R 

performs better than Naïve Bayes for the dataset 

Mushroom. 0.893 accuracy value is obtained by Naïve 

Bayes while 0.886 is attained by 1R for the dataset 

Congressional votes. The difference between these 

accuracy values is only 0.007 which is quite low. When 

ϵ = 2 , 1R outperforms Naïve Bayes for the dataset 

Mushroom. For the dataset Spect-h, 0.605 accuracy value 

is observed for Naïve Bayes while 0.564 accuracy value 

is observed for 1R which is only 0.041 lower than that of 

Naïve Bayes. On the other hand, 1R achieves 0.800 

accuracy while Naïve Bayes reaches 0.886 accuracy for 

the dataset Congressional votes. When ϵ<2, Naïve Bayes 

performs better than 1R classifier in general. But, the 

differences between the accuracy values of Naïve Bayes 

and 1R are quite close to each other for the datasets 

Mushroom and Spect-h. However, Naïve Bayes 

outperforms 1R classifier for the dataset Congressional 

votes when ϵ ≤ 1 . When examined the classification 

performances of 1R and Naïve Bayes over the dataset 

Nursery, we infer from the tables that Naïve Bayes is 

more successful than 1R for all values of ϵ. At the same 

time, Naïve Bayes attains 0.740, 0.549, and 0.386 

accuracy values for ϵ<1 while 1R figures out at 0.691, 

0.545, and 0.347 accuracy values. The differences 

between these accuracy values are only 0.049, 0.004, and 

0.039.  

    When a general classification performance assessment 

is made for privacy preserving 1R and Naïve Bayes 

algorithms, it can be inferred that 1R and Naïve Bayes 

algorithms show similar performances to each other 

when  ϵ ≥ 2  over the datasets that are Congressional 

votes, Mushroom, and Spect-heart. However, Naïve 

Bayes is superior to 1R for these datasets when ϵ < 2. 

Besides, Naïve Bayes performs better than 1R for all 

values of ϵ  over the dataset Nursery. But, the average 

classification accuracies of Naïve Bayes are slightly 

higher than those of 1R when ϵ<1. 

5.1. Security analysis 

    In this section, we investigate the security of data when 

our proposed method is applied in terms of secure multi-

party computation. In our proposed protocol, the result of 

a query requested by the researcher, which is sent from 

DS to PKH, includes encryptions of either 0’s or other 

values in ciphertext domain. Consequently, it can be 

demonstrated that only PKH knows the query result (i.e., 

# of encrypted 0’s). However, something else about 

encrypted data kept in DS are not learned by PKH. 

    Considering the proposed privacy protocol, two parties 

(i.e., DS and PKH) are utilized to compute the result of a 

count query. In the first party (i.e., DS), Euclidean 

distance of each record to the given query is computed 

over the encrypted training data, and then these distances 

are permuted such that d←π (𝑑1, 𝑑2, … , 𝑑𝑛) where π is 

a random permutation, are sent to the second party for the 

decryption. Let d←π (𝑑1, 𝑑2, … , 𝑑𝑛 ) and d'←π (𝑑1,

𝑑2, … , 𝑑𝑛 ) be two permutated vectors in ciphertext 

domain. According to polynomial-time sampling 

theorem, d and d' are computationally indistinguishable 

[7, 28]. Therefore, the researcher asks for queries in the 

batch form and a random permutation, π, is also used to 

compute the results of these requested queries in our 

privacy protocol. Thus, we prevent if a malicious user 

disrupts any of the parties, he/she cannot differentiate 

which result belongs to which query.  

5.2. Computational complexity and storage requirement 

The storage requirement of our proposed scheme is 8 

bytes for each feature value in the original form of data, 

and 128 bytes for each feature value in the encrypted 

form of data, since the bit length is determined as 512 bits 

for encryption. As for run-time analysis of the proposed 

privacy approach, it is clear that the time complexity of 

the computation of Euclidean distances between records 
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and a given query under encryption depends on the 

number of records in the training data and the number of 

features in the query, and it can be given as O(m.n) in Big 

O notation where m represents the # of features in the 

query and n is the # of records in the data. 

6. Conclusion 

In this study, we propose a privacy preserving protocol 

to build Holte’s 1R classifier. In our proposed protocol, 

we perform the combination of Paillier’s cryptosystem 

and differential privacy that are the two most popular 

confidentiality techniques. Our protocol consists of two 

parties which are called DS and PKH to provide more 

strong privacy guarantee. In DS, we keep the encrypted 

training data and a Euclidean distance based scheme is 

proposed to compute the frequencies of attribute values 

over this homomorphically encrypted data to build 1R 

classifier, while the actual results of these frequency 

values are obtained and differential privacy is applied to 

these results in PKH to minimize the privacy leakage as 

much as possible. According to this study, count queries 

are performed without decrypting the training data for the 

classification and having the actual results of these count 

queries are quite complex thanks to random permutation 

applied during the communication of two parties (i.e., DS 

and PKH) and differential privacy in PKH. To compare 

the classification performance of our proposed 1R 

classifier, the proposed privacy preserving model is also 

applied to Naïve Bayes classification algorithm which is 

a baseline technique used for the performance 

comparisons of the differentially private algorithms in the 

literature. According to the experimental results, the 

proposed method can be efficiently used for privacy 

preserving classification. 
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