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1. Introduction  

Multidimensional dynamical systems which occur in sciences and engineering are modeled in 

partial differential equations (PDEs), especially the convection-diffusion equation occur in several areas 

of engineering such as chemical engineering, mechanical engineering, and petroleum engineering. 

Scientific investigation of phenomena and mathematical models are enormous tools for quantitative 

description and derivation of numerical conclusions. These models are in most cases in form of partial 

differential equations (PDEs) and therefore the solution to these kinds of equations is of great importance 

to scientists, engineers, researchers, and other concerned individuals. Partial differential equations are 

often used to describe multidimensional dynamical systems in engineering and mathematical physics 

and for obtaining solutions to problems of derivative displacement, velocity, concentration, mass 

diffusivity, and others. PDEs describe a relation between a multivariable function and its partial 

derivatives [1]. In thermodynamics study, convection-diffusion equation is one of the most important 

partial differential equations occurs which is used to describe heat transfer in air conditional unit, water 

transfer in soil, the spread of solute in a liquid flowing through a tube, dispersion of tracers in porous 

media, dispersion of dissolved salts in groundwater and long-range transport of pollutants in the 

atmosphere [2].   
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The convection-diffusion equation describes a phenomenon that arises when physical quantities 

are transferred inside the heat chamber due to diffusion and convection/advection reactions [3].  

In this paper, we consider a nonlinear one-dimensional convection-diffusion equation with 

constant coefficients of the form: 

              
𝜕𝑢

𝜕𝑡
+ 𝛼 (

𝜕𝑢

𝜕𝑥
)
2

− 𝛽
𝜕2𝑢

𝜕𝑥2
= 0.                  𝛼, 𝛽 > 0                                                                                 (1) 

with initial condition 

             𝑢(𝑥, 0) = 𝑓(𝑥).                                                                                                                                         (2) 

where 𝛼 and 𝛽 are velocity components of the fluid in the directions of the axes at the point (𝑥) 

at time 𝑡, 𝛼 =
𝑘

𝜌 𝐷𝜌
 here 𝑘 is the constant of thermal conductivity, 𝜌 and 𝐷𝜌 are density and specific heat 

of the fluid at constant pressure respectively. The first derivative 
𝜕

𝜕𝑡
 describes the motion of the fluid and 

𝑢(𝑥, 𝑡) denotes the concentration at time 𝑡 of position 𝑥 and 𝑓(𝑥) is a known function. 

Obtaining analytical and numerical solutions to this evolution problem by setting suitable initial 

conditions is useful to examine the time and position at which the constant coefficients behave which 

eventually use to determine 𝑢(𝑥, 𝑡). The basic analytical technique to solve equation (1) involves 

reducing the equation to diffusion equation by eliminating the convection term by introducing some 

moving coordinates has been a very serious setback especially when initial and boundary conditions are 

introduced [4]–[6].  

Computational and numerical techniques play a major role in understanding the physical 

phenomenon in many areas of applied mathematics because of the longstanding challenges facing in 

obtaining analytical solutions [7]. Accordingly, numerical techniques are implored to obtain 

approximate/analytical solutions of the ordinary differential equation (ODE) and partial differential 

equation (PDE). Author [3] presented numerical solutions of the 1D/2D advection-diffusion equation 

using the method of inverse differential operators (MIDO) and [2] used a new finite difference equations 

couple with a numerical scheme to solve and analyze the advection-diffusion equation with constant and 

variable coefficients.  

In recent years, several numerical techniques have been developed by many authors such as the 

adomian decomposition method (ADM), variational iterative method (VIM), differential transform 

method (DTM), homotopy perturbation method (HPM), new iterative method (NIM), change of variable 

and integral transform technique (CVIT), exponential variable transformation (EVT), a two-step scheme 

(TSS), a stabilized finite element formulation (SFEM), A multiscale/stabilized finite element method 

(MSFEM) and just to mention a few [9]–[17]. The main objective of this paper is to formulate a fast and 

efficient algorithm to solve the nonlinear convection-diffusion equation with constant coefficients and 

while a reduction in time and computational length involve are reduce. We hereby propose five steps 

algorithm using Maple 18 software for the numerical solutions of Eq.(1) 

This paper concerns the usage of NIA to investigate the convection-diffusion heat equation 

presented in Eq.(1) with conditions (2). Section 2, we present a new iterative method (NIM) and 

formulated a new iterative algorithm, section 3 presents the numerical examples using the NIM to solve 

the Eq.(1) with initial condition (2), results and its discussion are presented in section 4, finally, the 

conclusion is presented in section 5.   
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2. The New Iterative Method (NIM) 

New iterative method (NIM) as a numerical technique for solving the non-linear functional 

equation of the form [9]. 

𝑢(𝑥̅) = 𝑓(𝑥̅) + 𝑁(𝑢(𝑥̅)).                                                                                                            (3) 

where 𝑁 a nonlinear operator from a Banach space 𝐵 → 𝐵, 𝑓(𝑥̅) is a known function, and 𝑥̅ =
(𝑥1, 𝑥2,  𝑥3, … , 𝑥𝑛). 

In order to obtain solution for Eq.(3), we have series solution of the form 

𝑢(𝑥̅) =∑𝑢𝑖(𝑥̅).

∞

𝑖=0

                                                                                                                      (4) 

Consider a nonlinear operator of the right-hand side of Eq.(3) can be decomposed as follows 

𝑁(∑𝑢𝑖(𝑥̅)

∞

𝑛=0

) = 𝑁(𝑢0) +∑{𝑁(∑𝑢𝑗

𝑖

𝑗=0

) − 𝑁(∑𝑢𝑗

𝑖−1

𝑗=0

)} .                                          (5)

∞

𝑖=1

 

Substitute Eq. (4) and Eq. (5) into the Eq. (3) leads to 

∑𝑢𝑖(𝑥̅) = 𝑓(𝑥̅) + 𝑁(𝑢0) + ∑{𝑁(∑𝑢𝑗

𝑖

𝑗=0

)− 𝑁(∑𝑢𝑗

𝑖−1

𝑗=0

)}.                                    (6)

∞

𝑖=1

∞

𝑖=0

 

Recurrence relation is given by 

{
 
 

 
 

𝑢0 = 𝑓
𝑢1 = 𝑁(𝑢0)

⋮
𝑢𝑚+1 = 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚) − 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚−1).

𝑚 = 1,2,3,… 

                                     (7) 

Then;  

(𝑢1 + 𝑢2 +⋯+ 𝑢𝑚+1) = 𝑁(𝑢0 + 𝑢1 +⋯+ 𝑢𝑚),             𝑚 = 0,1,2,3,… , 𝑝 .       (8) 

and  

∑𝑢𝑖 = 𝑓 + 𝑁(∑𝑢𝑖

𝑝

𝑖=0

).                                                                           (9)

𝑝

𝑖=0

 

The 𝑝 −term approximate solution Eq.(3) is given as 

𝑢 = 𝑢0 + 𝑢1 +⋯+ 𝑢𝑝−1.                                                                                          (10) 

2.1. Formulation of five steps New Iterative Algorithm (NIA)  

In order to formulate five steps algorithm, we consider Eq.(1) and Eq.(2) couple with Eq.(3)-

Eq.(10) as follows: 
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restart:  

Step 1: 

𝐷𝑖𝑔𝑖𝑡𝑠 ≔ ℝ; 
𝛼 ≔ ℝ; 
𝛽 ≔ ℝ; 
𝑁 ≔ ℝ; 
𝑢[0] ≔ 𝑓(𝑥); 
Step 2: 

𝒇𝒐𝒓 𝒏 𝒇𝒓𝒐𝒎 𝟎 𝒕𝒐 𝟎 𝒅𝒐   

𝑢[𝑛 + 1] ≔ 𝑣𝑎𝑙𝑢𝑒(𝑖𝑛𝑡(𝛽 ∗ 𝑑𝑖𝑓𝑓(𝑢[𝑛], 𝑥, 𝑥) − 𝛼 ∗ (𝑑𝑖𝑓𝑓(𝑢[𝑛], 𝑥))2, 𝑡 = 0. . 𝑡));                     (11) 

end do 

Step 3: 

𝑓𝑜𝑟 𝑛 𝑓𝑟𝑜𝑚 0 𝑡𝑜 𝑁 + 1  𝑑𝑜 𝑢[𝑛] ≔ 𝑢[𝑛]; 𝑒𝑛𝑑 𝑑𝑜   

𝑆𝑢𝑚 𝑈 ≔ 𝑠𝑢𝑚(𝑢[𝑗]), 𝑗 = 0…𝑁 + 1;                                                                 
𝑆𝑖𝑚𝑝𝑈 ≔ 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝑠𝑢𝑚𝑈); 
𝑈 ≔ 𝑒𝑣𝑎𝑙𝑓(𝑠𝑖𝑚𝑝𝑈); 
𝒆𝒏𝒅 𝒅𝒐   

Step 4: 

𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0, 𝑡 = 0]);  
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.1, 𝑡 = 0.1]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.2, 𝑡 = 0.2]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.3, 𝑡 = 0.3]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.4, 𝑡 = 0.4]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.5, 𝑡 = 0.5]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.6, 𝑡 = 0.6]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.7, 𝑡 = 0.7]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.8, 𝑡 = 0.8]); 
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 0.9, 𝑡 = 0.9]);  
𝑒𝑣𝑎𝑙(𝑈, [𝑥 = 1.0, 𝑡 = 1.0]); 

 

Step 5: 

𝑝𝑙𝑜𝑡3𝑑(𝑈, 𝑡 = 𝑈, 𝑡 = −3𝜋…3𝜋, 𝑥 = −3𝜋…3𝜋, 𝑔𝑟𝑖𝑑 = [100,100], 𝑐𝑜𝑙𝑜𝑟); 
𝐿 ≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 0); 𝑅 ≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 1.0); 𝑆 ≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 2.0); 𝑇 ≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 3.0); 𝑉

≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 4.0);𝑊 ≔ 𝑒𝑣𝑎𝑙(𝑈, 𝑡 = 5.0); 
 

 

𝑃𝑙𝑜𝑡([𝐿, 𝑅, 𝑆, 𝑇, 𝑉,𝑊]); 
t=-3𝜋 …3𝜋,color=[red,black,purple,blue,yellow,green],axes=BOXED,title=Cases); 
Output: Table 1 and Figure1, Figure 2, Figure 3, Figure 4, Figure 5 and Figure 6. 

where N is the computational length and ℝ is positive integer. 

 

2.2. Absolute error (𝑬𝒕) 

To determine the error involved in the new iterative algorithm, we consider absolute error as 

follows: 

𝐸𝑡 = |u(𝑥, t)𝑒𝑥𝑎𝑐𝑡 − u(𝑥, t)𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙|.                                                                (12)                                                
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3. Computational experiment 

In this section, we apply a new iterative algorithm formulated in section 2.1 to solve and examine 

the behavior of advection-diffusion coefficients of heat equation of the form: 

 

𝜕𝑢

𝜕𝑡
+ 𝛼 (

𝜕𝑢

𝜕𝑥
)
2

− 𝛽
𝜕2𝑢

𝜕𝑥2
= 0 ,                                                                                    (13) 

 

           with initial condition: 

 

𝑢(𝑥, 0) = 𝑓(𝑥).                 0 ≤ 𝑥 ≤ 1                                                                       (14) 
 

            where  𝑓(𝑥) = exp (−
1

8
(𝑥 − 2)2) and  𝛼 = 0.8, 𝛽 = 0.1     [8] 

3.1. Numerical solutions 

Numerical results for  α > β,   α < β   and  α = β are presented in Table 1. 

 

Table 1. Numerical results when  α > β,   α < β   and  α = β      

u(x, t) Solutions 
𝛂 = 𝟎. 𝟖, 𝛃 = 𝟎. 𝟏 

𝛂 > 𝛃 

𝛂 = 𝟎. 𝟏, 𝛃 = 𝟎. 𝟖 

𝛂 < 𝛃 

𝛂 = 𝟎. 𝟖, 𝛃 = 𝟎. 𝟖 

𝛂 = 𝛃 

(0,0) Exact 0.60653065971263342360 0.60653065971263342360 0.60653065971263342360 

NIA 0.60653065971263342360 0.60653065971263342360 0.60653065971263342360 

DTM 0.60653065971263342360 0.60653065971263342360 0.60653065971263342360 

NIA𝐸𝑡 0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 

DTM𝐸𝑡  0.00000000000000000000 0.00000000000000000000 0.00000000000000000000 

(0.1,0.1) Exact 0.62939081883340116421 0.63451806527151677927 0.62835938510286210442 

NIA 0.62939081883340116329 0.63451806527151677832 0.62835938510286210344 

DTM 0.62939081883340116337 0.63451806527151677830 0.62835938510286210343 

NIA𝐸𝑡 0.00000000000000000092 0.00000000000000000095 0.00000000000000000099 

DTM𝐸𝑡  0.00000000000000000094 0.00000000000000000097 0.00000000000000000010 

(0.2,0.2) Exact 0.65207164215207057373 0.65967834907904235756 0.64797098393231306458 

NIA 0.65207164215207057291 0.65967834907904235670 0.64797098393231306368 

DTM 0.65207164215207057294 0.65967834907904235669 0.64797098393231306364 

NIA𝐸𝑡 0.00000000000000000082 0.00000000000000000086 0.00000000000000000090 

DTM𝐸𝑡  0.00000000000000000084 0.00000000000000000087 0.00000000000000000094 

(0.3,0.3) Exact 0.67462305112988452502 0.68205392686874213353 0.66541186559110849090 

NIA 0.67462305112988452442 0.68205392686874213290 0.66541186559110849021 

DTM 0.67462305112988452440 0.68205392686874213286 0.66541186559110849020 

NIA𝐸𝑡 0.00000000000000000060 0.00000000000000000063 0.00000000000000000069 

DTM𝐸𝑡  0.00000000000000000058 0.00000000000000000067 0.00000000000000000070 

(0.4,0.4) Exact 0.69707673326327307456 0.70170941422582969372 0.68067156308602757967 

NIA 0.69707673326327307401 0.70170941422582969315 0.68067156308602757905 

DTM 0.69707673326327307400 0.70170941422582969313 0.68067156308602757903 

NIA𝐸𝑡 0.00000000000000000055 0.00000000000000000057 0.00000000000000000062 

DTM𝐸𝑡
 0.00000000000000000056 0.00000000000000000059 0.00000000000000000060 
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Table 1. continued 

(0.5,0.5) Exact 0.71943675747359916324 0.71871949819843862207 0.69370630455972661309 

NIA 0.71943675747359916289 0.71871949819843862170 0.69370630455972661267 

DTM 0.71943675747359916287 0.71871949819843862168 0.69370630455972661265 

NIA𝐸𝑡 0.00000000000000000033 0.00000000000000000037 0.00000000000000000042 

DTM𝐸𝑡  0.00000000000000000035 0.00000000000000000039 0.00000000000000000044 

(0.6,0.6) Exact 0.74167226603122097657 0.73315908521491595694 0.70447662969211101240 

NIA 0.74167226603122097625 0.73315908521491595660 0.70447662969211101212 

DTM 0.74167226603122097624 0.73315908521491595659 0.70447662969211101210 

NIA𝐸𝑡 0.00000000000000000032 0.00000000000000000034 0.00000000000000000038 

DTM𝐸𝑡
 0.00000000000000000033 0.00000000000000000035 0.00000000000000000040 

(0.7,0.7) Exact 0.76371288467368716254 0.74509607179104746658 0.71299349576292573991 

NIA 0.76371288467368716226 0.74509607179104746627 0.71299349576292573955 

DTM 0.76371288467368716225 0.74509607179104746628 0.71299349576292573957 

NIA𝐸𝑡 0.00000000000000000028 0.00000000000000000031 0.00000000000000000036 

DTM𝐸𝑡
 0.00000000000000000029 0.00000000000000000033 0.00000000000000000038 

(0.8,0.8) Exact 0.78544698891154179220 0.75458681710980188921 0.71936470465768928581 

NIA 0.78544698891154179195 0.75458681710980188895 0.71936470465768928564 

DTM 0.78544698891154179195 0.75458681710980188896 0.71936470465768928565 

NIA𝐸𝑡 0.00000000000000000025 0.00000000000000000026 0.00000000000000000027 

DTM𝐸𝑡  0.00000000000000000025 0.00000000000000000027 0.00000000000000000028 

(0.9,0.9) Exact 0.80672244981892401518 0.76167416913697207089 0.72383206904870742665 

NIA 0.80672244981892401497 0.76167416913697207065 0.72383206904870742638 

DTM 0.80672244981892401497 0.76167416913697207066 0.72383206904870742640 

NIA𝐸𝑡 0.00000000000000000021 0.00000000000000000024 0.00000000000000000027 

DTM𝐸𝑡  0.00000000000000000021 0.00000000000000000023 0.00000000000000000025 

(1.0,1.0) Exact 0.82734908472124433329 0.76638773317667365521 0.72678998055516529030 

NIA 0.82734908472124433312 0.76638773317667365504 0.72678998055516529009 

DTM 0.82734908472124433311 0.76638773317667365502 0.72678998055516529009 

NIA𝐸𝑡 0.00000000000000000019 0.00000000000000000021 0.00000000000000000021 

DTM𝐸𝑡  0.00000000000000000018 0.00000000000000000019 0.00000000000000000021 

 

Where  NIA𝐸𝑡  Absolute error obtained for New Iterative Algorithm (NIA). 

              DTM𝐸𝑡 Absolute error obtained for Differential Transformation Method (DTM). 

 

3.2. Plot representation 

The graphical results obtained for the different cases of α , β and logarithm of absolute errors are 

presented in Fig 1-9. 



Middle East Journal of Science    (2021) 7(1): 11-23                    https://doi.org/10.51477/mejs.801367 

17 

 

 
Figure 1: Logarithm of Absolute Errors for NIA and DTM for case 1 

 

 

 

 

 
Figure 2.  3D-plot profiles when convection term is greater than diffusion term case 1 𝛼 > 𝛽 
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Figure 3.  2D-plot for time distribution profiles from initial time 0 𝑠𝑒𝑐 to 5 𝑠𝑒𝑐 when convection term 

is greater than diffusion term case 1 𝛼 > 𝛽 

 

 

 
Figure 4:  Logarithm of Absolute Errors for NIA and DTM for case 2 
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Figure 5.  3D-plot profiles when convection term is less than diffusion term case 2 𝛼 < 𝛽. 

 

 
Figure 6.  2D-plot for time distribution profiles from initial time 0 𝑠𝑒𝑐 to 5 𝑠𝑒𝑐 when convection term 

is less than diffusion term case 2   𝛼 < 𝛽 
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Figure 7:  Logarithm of Absolute Errors for NIA and DTM for case 3 

 

 
Figure 8.  3D-plot profiles when convection term is equal to diffusion term case 3 𝛼 = 𝛽. 
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Figure 9.  2D-plot for time distribution profiles from initial time 0 𝑠𝑒𝑐 to 5 𝑠𝑒𝑐 when convection term 

is equal to diffusion term case 3  𝛼 = 𝛽. 

4. Discussion  

In this paper, we examine the numerical relationship and effect of convection 𝛼 and diffusion 𝛽 

constant coefficients which serve as velocity components of the fluid in the directions of the axes at the 

point (𝑥) at time 𝑡 of Eq.(3).  Table 1 shows numerical solutions obtained for three experimental cases 

considered (when convection constant is greater than diffusion constant 𝛼 > 𝛽, convection constant is 

less than diffusion constant 𝜶 < 𝜷 and convection constant are equal to diffusion constant 𝜶 = 𝜷). From 

computational solutions obtained, we observe the following: 

i. Increases in numerical solutions 𝑢(𝑥, 𝑡) are obtained when the convection constant is greater than 

diffusion constant 𝛼 > 𝛽. 

ii. Less numerical solutions 𝑢(𝑥, 𝑡) were obtained when the convection constant is equal to diffusion 

constant 𝜶 = 𝜷. 

Furthermore, Figures 1,4 and 7 depict the pertain of absolute errors in logarithm when compare 

the two numerical techniques presented (NIA and DTM) with exact solutions while figures 2, 5, and 8 

show the 3D-plots of heat distribution solution for the two constant coefficients 𝜶 and 𝜷 and the Figures 

3,6 and 9 show 2D-plots that depict the time distributions profiles from initial time 0 𝑠𝑒𝑐 ≤ 𝑡 ≤ 5 𝑠𝑒𝑐 

and the following observations are deduced: 

i. Reverse time distribution profiles were obtained at 𝜶 > 𝜷 (0 𝑠𝑒𝑐 ≤ 𝑡 ≤ 5 𝑠𝑒𝑐). 

ii. Oscillating and hypergeometric distribution occurred at 5 𝑠𝑒𝑐 (green) when 𝜶 < 𝜷 and 𝜶 = 𝜷. 

iii. Minimum heat distribution occurred at 5 𝑠𝑒𝑐 (green) when 𝜶 > 𝜷. 

iv. Non-uniform distribution heat profiles occurred at 𝟏 𝒔𝒆𝒄 ≤ 𝒕 ≤ 𝟒 𝒔𝒆𝒄  (black, purple, blue, and 

yellow). 

5. Conclusion 

The formulated algorithm was successfully applied to solve nonlinear convection and diffusion 

heat equations with constant coefficients. Three test cases (prototype) are considered to demonstrate the 

feasibility and efficiency of the proposed algorithm. From the computational point of view, the new 



Middle East Journal of Science    (2021) 7(1): 11-23                    https://doi.org/10.51477/mejs.801367 

22 

 

iterative algorithm (NIA) obtained fewer errors compared to the differential transformation method 

(DTM). Moreover, the main advantage of NIA is its simplicity with small computational costs and faster 

convergence. The present approach is very reliable, simple, fast, and convenient. Thus, we hereby 

suggest NIA as a good numerical technique to solve similar problems in applied mathematics and 

engineering sciences. 
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