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Abstract
We introduce the notion of conformal-twisted product submanifolds of the form f MT ×bM

θ

and f M θ ×b MT , where MT is a holomorphic submanifold and M θ is a proper slant sub-
manifold of M in a globally conformal Kaehler manifold and f and b are conformal factor
and twisting function, respectively. We give necessary and sufficient conditions for proper
semi-slant submanifold to be a locally conformal-twisted product for such submanifolds of
the form f MT ×b M θ and f M θ ×b MT . We establish a general inequality for the squared
norm of second fundamental form of these types of submanifolds.
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1. Introduction
In differential geometry, one of the most intensively research areas is the theory of

submanifolds. Actually, there are well-known classes of submanifolds such as holomor-
phic(invariant), totally real(anti-invariant) [29], CR- [1], semi-invariant [2], slant [6], semi-
slant [17], etc. All classes are determined by the behavior of the almost complex or almost
product structure of the ambient manifold.

Bishop and O Neill [3] introduced the notion of warped product of Riemannian mani-
folds to construct a large class of complete manifolds of negative curvature. This concept
is also a generalization of the usual product of Riemannian manifolds. The theory of
warped product submanifolds has been becoming a popular research area since Chen [7]
studied the warped product CR-submanifolds in Kaehler manifolds. Most of the studies
related to the theory of warped product submanifolds can be found in Chen’s book[8].

Unlike the warped product submanifolds, the doubly warped product submanifolds
have not been a so active research area. Perhaps this is because some well-known struc-
tures such as Kaehler, nearly Kaehler, locally product Riemannian and trans-Sasakian
∗Corresponding Author.

Email addresses: sibel.gerdan@istanbul.edu.tr (S. Gerdan Aydın), hakmete@istanbul.edu.tr (H. M.
Taştan)
Received: 29.09.2020; Accepted: 17.02.2021

https://orcid.org/0000-0001-5278-6066
https://orcid.org/0000-0002-0773-9305


Conformal-twisted product semi-slant submanifolds 1029

do not allow non-trivial doubly warped product submanifolds whose factors are holomor-
phic(invariant), totally real(anti-invariant) submanifolds (see, [16, 20, 22, 24]). However,
doubly warped product CR-submanifolds were studied in locally conformal Kaehler man-
ifolds in [15].

The non-existence of non-trivial warped product semi-slant submanifolds in Kaehlerian
manifolds was proved by Şahin [19]. Indeed, there do not exist warped product semi-slant
submanifolds in Kaehlerian manifolds in the form M θ ×f MT and MT ×f M θ, where MT

is a holomorphic and M θ is a proper slant submanifold of the Kaehlerian manifold[19].
Moreover, Şahin [21] defined and studied warped product semi-slant submanifolds in the
form M θ ×f MT in locally product Riemannian manifolds contrary to Kaehlerian case,
where MT is an invariant submanifold of the locally product Riemannian manifold. It
was proved the non-existence of non-trivial warped product semi-slant submanifolds of
the form MT ×f M θ in a locally product Riemannian manifold in the same paper [21].

In [22], we defined two classes of doubly twisted products under the names of nearly
doubly twisted products of type 1 and type 2. In this article, we rename the nearly doubly
twisted product of type 2 as conformal-twisted products.

Recently, Taştan and Tripathi [23] studied semi-slant submanifolds of locally conformal
Kaehler manifolds. On the other hand, Matsumoto studied warped product semi-slant
submanifolds in the forms M θ ×f MT and MT ×f M θ in locally conformal Kaehler mani-
folds in [13,14]. Inspired by these papers, we consider and study conformal-twisted product
semi-slant submanifolds in globally conformal Kaehler manifolds and we give non-trivial
examples for a conformal-twisted product proper semi-slant submanifold in globally con-
formal Kaehler manifold. We obtain some necessary and sufficient conditions for proper
semi-slant submanifold to be locally conformal-twisted product for such submanifolds of
the form f MT ×b M θ and f M θ ×b MT . Moreover, we establish a general inequality for
the squared norm of the second fundamental form of these types of submanifolds.

2. Preliminiaries
In this section, we recall the fundamental definitions and notions needed further study.

Actually, in subsection 2.1, we give the definitions of doubly twisted and conformal-twisted
products and in subsection 2.2, we will recall the definitions of locally and globally confor-
mal Kaehler manifolds. The basic background for submanifolds of Riemannian manifolds
will be presented in subsection 2.3.

2.1. Conformal-twisted products
Let M1 and M2 be Riemannian manifolds endowed with metric tensors g1 and g2,

respectively and let f and b are positive smooth functions defined on M1 × M2. Then the
doubly twisted product manifold [18] f M1 ×b M2 is the product manifold M̄ = M1 × M2
equipped with metric g given by

g = f2g1 + b2g2.

Each function f and b is called a twisting function of the doubly twisted product (f M1 ×b

M2, g).

If the twisting functions f and b only depend only on the points of M1 and M2 respec-
tively, then (f M1 ×b M2, g) is called doubly warped product manifold [25]. In which case,
f and b are called warping functions of doubly warped product.
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Let (f M1 ×b M2, g) be a doubly twisted product manifold. If f = 1, then we get twisted
product [5] M1 ×b M2 with twisting function b.

In addition, if the twisting function b only depends only on the point of M1, then
M1 ×b M2 is called warped product [3] of (M1, g1) and (M2, g2) and the function b is called
warping function. If b is a constant, then we get direct product manifold [8].

Let (M1, g1) and (M2, g2) be Riemannian manifolds and also let f : M1 → (0, ∞) and
b : M1 × M2 → (0, ∞) be smooth functions. The conformal-twisted product [22] is the
product manifold M1 × M2 equipped with the metric tensor g defined by

g = (f ◦ π1)2π∗
1(g1) + (b ◦ π2)2π∗

2(g2), (2.1)
where π1 and π2 are canonical projections of M1 × M2 onto M1 and M2, respectively.

For brevity in notation, we denote this Riemannian manifold (M, g) by f M1 ×b M2. For
a conformal-twisted product manifold, f is called a conformal factor. In either case, the
function b is called a twisting function.

Let (f M1 ×b M2, g) be a conformal-twisted product manifold with the Levi-Civita con-
nection ∇̄ and ∇i denote the Levi-Civita connection of f M1 ×b M2 and Mi for i ∈ {1, 2},
respectively. By usual convenience, we denote the set of lifts of vector fields on Mi by
L(Mi) and use the same notation for a vector field and for its lift. On the other hand, π1 is
an isometry and π2 is a (positive) homothety, so they preserve the Levi-Civita connection.
Thus, there is no confusion using the same notation for a connection on Mi and for its
pullback via πi. Then, we have

∇̄XY = ∇1
XY + X(ln f)Y + Y (ln f)X − g(X, Y )∇̄ ln f , (2.2)

∇̄V X = ∇̄XV = X(ln b)V , (2.3)

∇̄U V = ∇2
U V + U(ln b)V + V (ln b)U − g(U, V )∇̄ ln b. (2.4)

for any X, Y ∈ L(M1) and U, V ∈ L(M2). The manifold (M2, g2) is called a fiber
of the conformal-twisted product and the manifold (M1, g1) is called a base manifold of
(f M1 ×b M2, g). It is seen that, the base manifold is totally geodesic from (2.2) while the
fiber is totally umbilic from (2.4).

Remark 2.1. As seen from the definitions of doubly twisted product and conformal-
twisted product, the conformal-twisted product case is a special case of doubly twisted
product. Indeed, in the case of conformal-twisted product, the covariant derivatives for-
mulas (2.2)∼(2.4) are simpler than the case of doubly twisted product, see Lemma 2.1 of
[11].

2.2. Locally and globally conformal Kaehler manifolds
Let (M̄, J, g) be a Hermitian manifold of dimension 2m. Then it is called a locally

conformal Kaehler manifold (briefly l.c.K. manifold) [10], if each point of p ∈ M̄ has an
open neighborhood U with smooth function σ : U → R such that g̃ = e−σg|U is a Kaehler
metric on U. If one choose U = M̄ , then (M̄, J, g) is called a globally conformal Kaehler
manifold (briefly g.c.K. manifold).

Theorem 2.2 ([10]). Let (M̄, J, g) be a Hermitian manifold and let Ω be a 2− form defined
by Ω(X̄, Ȳ ) = g(X̄, JȲ ) for all vector fields X̄ and Ȳ in M̄. Then (M̄, J, g) is a l.c.K.
manifold if and only if there exists a globally defined 1− form ω such that

dΩ = ω ∧ Ω and dω = 0 . (2.5)
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The closed 1− form ω is called the Lee form of the l.c.K. manifold (M̄, J, g). In addition,
the manifold (M̄, J, g) is g.c.K., if its Lee form ω is also exact. In this case, we have ω = dσ
[26]. The Lee vector field B is defined by

ω(X̄) = g(B, X̄) , (2.6)

for any vector fields X̄ on M̄. One can see that, the globally conformal Kaehler case is
a special case of the locally conformal Kaehler case. We denote by ∇̃ (resp. ∇̄) the
Levi-Civita connection on M̄ with respect to g̃ = e−σg (resp. g). Then we have [10]

∇̃X̄ Ȳ = ∇̄X̄ Ȳ − 1
2

{
ω(X̄)Ȳ + ω(Ȳ )X̄ − g(X̄, Ȳ )B

}
, (2.7)

for any vector fields X̄ and Ȳ on M̄ . The connection ∇̃ is a torsionless linear connection
on M̄ which is called the Weyl connection of g. It is easy to see that the Weyl connection
∇̃ satisfies the condition

∇̃J = 0 . (2.8)
For examples and more details on l.c.K. and g.c.K. manifolds we refer to [10].

Remark 2.3. Throughout this paper, we denote by (M̄, J, ω, g) the g.c.K. manifold with
the Lee form ω.

2.3. Submanifolds of Riemannian manifolds
Let M be an isometrically immersed submanifold in a Riemannian manifold (M̄, g). Let

∇̄ is the Levi-Civita connection of M̄ with respect to the metric g and let ∇ and ∇⊥ be the
induced, and induced normal connection on M , respectively. Then, for all X, Y ∈ Γ(TM)
and Z ∈ Γ(T ⊥M), the Gauss and Weingarten formulas are given respectively by

∇̄XY = ∇XY + h(X, Y ) , (2.9)

∇̄XZ = −AZX + ∇⊥
XZ , (2.10)

where TM is the tangent bundle and T ⊥M is the normal bundle of M in M̄ . Additionally,
h is the second fundamental form of M and AZ is the Weingarten endomorphism associated
with Z. The second fundamental form h and the shape operator A are related by

g(h(X, Y ), Z) = g(AZX, Y ) . (2.11)

The mean curvature vector field H of M is given by H = 1
m(trace h), where dim(M) = m.

We say that the submanifold M is totally geodesic in M̄ if h = 0, and minimal if H = 0. The
submanifold M is called totally umbilical if h(X, Y ) = g(X, Y )H for all X, Y ∈ Γ(TM).

Let M be any submanifold of a g.c.K. manifold (M̄, J, ω, g). Then the Gauss and
Weingarten formulas with respect to ∇̃ are given by

∇̃XY = ∇̂XY + h̃(X, Y ) , (2.12)

∇̃XZ = −ÃZX + ∇̃⊥
XZ , (2.13)

for X, Y ∈ Γ(TM) and Z ∈ Γ(T ⊥M). Thus, using (2.7), (2.9)∼(2.13), we have the
following relations.

∇̂XY = ∇XY − 1
2

{
ω(X)Y + ω(Y )X − g(X, Y )BT

}
, (2.14)

h̃(X, Y ) = h(X, Y ) + 1
2g(X, Y )BN , (2.15)

ÃZX = AZX + 1
2ω(Z)X , (2.16)

where X, Y ∈ Γ(TM) and Z ∈ Γ(T ⊥M), where BT and BN are the tangential and the
normal part of B, respectively.
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3. Semi-slant submanifolds of a g.c.K. manifold
In this section, we recall some fundamental properties of semi-slant submanifolds of a

g.c.K. manifold given in [23] and give some auxiliary results to prove our main theorem.

Let (M̄, J, g) be an almost Hermitian manifold and let M be a Riemannian manifold
isometrically immersed in M̄ . A distribution D on M is called a slant distribution if for
V ∈ Dp, the angle θ between JV and Dp is constant, i.e., independent of p ∈ M and
V ∈ Dp. The constant angle θ is called the slant angle of the slant distribution D. We
know that holomorphic and totally real distributions on M are slant distributions with
θ = 0 and θ = π

2 , respectively. A slant distribution is called proper if it is neither holo-
morphic nor totally real. A submanifold M of M̄ is said to be a slant submanifold [6] if
the tangent bundle TM of M is slant. For examples and more details, (see [6]).

A semi-slant submanifold M [17] of a g.c.K. manifold (M̄, J, ω, g) is a submanifold
such that its tangent bundle TM admits two orthogonal complementary holomorphic
distribution DT and slant distribution Dθ, i.e., we have

TM = DT ⊕ Dθ . (3.1)

We say that a semi-slant submanifold M is proper if dim(DT ) ̸= {0} and θ ̸= 0, π
2 .

For any X ∈ TM we write
JX = PX + FX , (3.2)

where PX is the tangential part of JX, and FX is the normal part of JX. Then the
normal bundle T ⊥M of M is decomposed as

T ⊥M = FDθ ⊕ D , (3.3)

where D is the orthogonal complementary distribution of FDθ in T ⊥M and it is invariant
subbundle of T ⊥M with respect to J. For a semi-slant submanifold [21], we have

P 2V = − cos2θV , (3.4)

g(PU, PV ) = cos2θg(U, V ) and g(FU, FV ) = sin2θg(U, V ) (3.5)
for U, V ∈ Γ(Dθ).

Lemma 3.1. Let M be a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g). Then
we have

g(∇XY, V ) = csc2θ

{
g

(
AF V JY − AF P V Y, X

)
+ 1

2ω(FV )g(JY, X)

−1
2ω(FPV )g(X, Y )

}
− 1

2ω(V )g(X, Y ),

for any X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ).

Proof. Let X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ), since (M̄, J, ω, g̃ = e−σg) is a Kaehler manifold,
using (2.8), (2.12), (2.13) and (3.2), we have

g̃(∇̂XY, V ) = g̃(∇̃XY, V ) = g̃(∇̃XJY, JV )
= g̃(∇̃XJY, PV ) + g̃(∇̃XJY, FV )
= −g̃(∇̃XY, JPV ) + g̃(ÃF V X, JY )
= −g̃(∇̃XY, P 2V ) − g̃(∇̃XY, FPV ) + g̃(ÃF V X, JY )
= cos2θg̃(∇̂XY, V ) + g̃(ÃF V JY, X) − g̃(ÃF P V Y, X).

Hence, it follows that
g̃(∇̂XY, V ) = csc2θg̃(ÃF V JY, X) − g̃(ÃF P V Y, X) .

Now, by using (2.6), (2.14) and (2.16), we derive the conclusion. �
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Using the above Lemma, we have the following result.

Theorem 3.2. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then the holomorphic distribution DT is totally geodesic if and only if

g(AF V JY − AF P V Y, X) = 1
2

{(
sin2θω(V ) + ω(FPV )

)
g(Y, X) − ω(FV )g(JY, X)

}
(3.6)

for X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ).

Lemma 3.3. Let M be a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g). Then
we have

g(∇U V, X) = − csc2θg

(
AF V JX − AF P V X, U

)
− 1

2ω(X)g(U, V ) , (3.7)

for any X ∈ Γ(DT ) and U, V ∈ Γ(Dθ).

Proof. Let X ∈ Γ(DT ) and U, V ∈ Γ(Dθ), since (M̄, J, ω, g̃ = e−σg) is a Kaehler manifold,
using (2.8), (2.12), (2.13) and (3.2), we have

g̃(∇̂U V, X) = g̃(∇̃U V, X) = g̃(∇̃U JV, JX)
= g̃(∇̃U PV, JX) + g̃(∇̃U FV, JX)
= −g̃(∇̃U JPV, X) − g̃(ÃF V JX, U)
= −g̃(∇̃U P 2V, X) − g̃(∇̃U FPV, X) − g̃(ÃF V JX, U)
= cos2θg̃(∇̂U V, X) + g̃(ÃF P V X, U) − g̃(ÃF V JX, U).

Hence, it follows that
g̃(∇̂U V, X) = − csc2θg̃(ÃF V JX − ÃF P V X, U) .

Now, by using (2.6), (2.14) and (2.16), we derive the conclusion. �
By using (3.7), we obtain the following result.

Theorem 3.4. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then the slant distribution Dθ is integrable if and only if

g(AF V JX − AF P V X, U) = g(AF U JX − AF P U X, V ) (3.8)

for X ∈ Γ(DT ) and U, V ∈ Γ(Dθ).

Now, we give totally geodesicness condition of Dθ and integrability condition of DT ,
respectively.

Theorem 3.5. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then the slant distribution Dθ is totally geodesic if and only if

g(AF V JX − AF P V X, U) = −1
2 sin2θω(X)g(U, V ) (3.9)

for X ∈ Γ(DT ) and U, V ∈ Γ(Dθ).

Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g). The
slant distribution Dθ is totally geodesic if and only if g(∇U V, X) = 0 for any U, V ∈ Γ(Dθ)
and X ∈ Γ(DT ). From (3.7), g(∇U V, X) = 0 if and only if (3.9) holds. �
Remark 3.6. In [23], the authors gave a different condition for the totally geodesicness
of the slant distribution Dθ.

Theorem 3.7. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then the holomorphic distribution DT is integrable if and only if

g(AF V JY − AF P V Y, X) + ω(FV )g(JY, X) = g(AF V JX − AF P V X, Y ) (3.10)

for X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ).
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Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g). The
holomorphic distribution DT is integrable if and only if g([X, Y ], V ) = 0 for any X, Y ∈
Γ(DT ) and V ∈ Γ(Dθ). From (3.6), g([X, Y ], V ) = 0 if and only if (3.10) holds. �

Remark 3.8. In [23], the authors gave a different condition for the integrability of the
holomorphic distribution DT .

Remark 3.9. Throughout this paper, for a semi-slant submanifold M of a g.c.K. manifold
(M̄, J, ω, g), we write B = BT + Bθ, where BT is the tangent part of B to DT and Bθ is
the tangent part of B to Dθ.

4. Conformal-twisted product semi-slant submanifolds of a g.c.K. mani-
fold

In this section, we study conformal-twisted product semi-slant submanifolds in the
form f MT ×b M θ with conformal factor f defined on MT and twisting function b of a
g.c.K. manifold , where MT is a holomorphic and M θ is a slant submanifold of the g.c.K.
manifold. We first give an (non-trivial) example of such a submanifold in a g.c.K. manifold.

Example 4.1. Let (z1, ..., z6) be natural coordinates of the six-dimensional Euclidean
space R6 and let R̄6 = {(z1, ..., z6) ∈ R6 : z1, z2, z5 ̸= 0}. Then (R̄6, J, g0) is a Kaehler
manifold with usual Kaehler structure (J, g0). Now, we consider the Riemannian metric
g = eσg0 conformal to Kaehler metric g0 on R̄6, where eσ = (z1z2)2. Then (R̄6, J, g) is
clearly a g.c.K. manifold. Let M be a submanifold given by

z1 = x , z2 = y , z3 = u + v , z4 = −u + v , z5 = u , z6 = 0 ,

where x, y, u ̸= 0 and v > 1. Then, the local frame field of the tangent bundle TM of M
is given by

X = ∂1 , Y = ∂2 , U = 1√
3

{
∂3 − ∂4 + ∂5

}
, V = 1√

2

{
∂3 + ∂4

}
,

where ∂i = ∂
∂zi

for i ∈ {1, 2, ..., 6}. Then DT = span{X, Y } is a holomorphic and Dθ =
span{U, V } is a (proper) slant distribution with the slant angle θ = cos−1( 2√

6). Thus,
M is a proper semi-slant submanifold of (R̄6, J, g). We easily observe both DT and Dθ

are integrable. Let denote the integral submanifolds of DT and Dθ by MT and M θ,
respectively. Let gT and gθ be the induced metrics on MT and M θ with respect to the
Kaehler metric g0, respectively. We choose the conformal metric ḡθ = 1

v2 gθ on M θ. Since
x = z1 and y = z2 on M , the induced metric of M from the conformal Kaehler metric g is

ds2 = (xy)2(dx2 + dy2) + (xy)2(du2 + dv2)
= x2y2gT + x2y2gθ

= x2y2gT + x2y2v2ḡθ .

Thus, M is a conformal-twisted product of (MT , gT ) and (M θ, ḡθ). So, M is a non-trivial
conformal-twisted product proper semi-slant submanifold in the g.c.K. manifold (R̄6, J, g)
in the form f MT ×b M θ with conformal factor f = xy and twisting function b = xyv.

Moreover, the Lee form of (R̄6, J, g) is ω = 2
{ 1

x
dx + 1

y
dy

}
. Consequently, the Lee vector

field is

B = 2
(xy)2

{ 1
x

∂

∂x
+ 1

y

∂

∂y

}
which is tangent to MT .
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Lemma 4.2. Let M = f MT ×bM θ be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g). Then, for all V ∈ L(M θ), we have

ω(V ) = 0 . (4.1)

Proof. Let M = f MT ×b M θ be a conformal-twisted semi-slant submanifold of a g.c.K.
manifold (M̄, J, ω, g) and V ∈ L(M θ) and X, Y ∈ L(MT ). Then using the exterior
differentiation formula (see, [29], p. 17), we have

3dΩ(V, X, Y ) = V Ω(X, Y ) + XΩ(Y, V ) + Y Ω(V, X)
−Ω([V, X], Y ) − Ω([X, Y ], V ) − Ω([Y, V ], X)
= V g(X, JY ) − Xg(JY, V ) + Y g(V, JX)
−g([V, X], JY ) + g(J [X, Y ], V ) − g([Y, V ], JX).

Here, we know g(JY, V ) = g(V, JX) = 0, since M is a semi-slant submanifold. Also, by
(2.3), we have [V, X] = [Y, V ] = 0 and by (2.2), we have [X, Y ] = ∇T

XY − ∇T
Y X. So

J [X, Y ] ∈ L(MT ). Thus, we obtain
3dΩ(V, X, Y ) = V g(X, JY )

= g(∇V X, JY ) + g(∇V Y, JX).
Again, using (2.3), we find

3dΩ(V, X, Y ) = X(ln b)g(V, JY ) + Y (ln b)g(V, JX) = 0.

So, dΩ(V, X, Y ) = 0. On the other hand, from (2.5) we have
dΩ(V, X, Y ) = ω ∧ Ω(V, X, Y )

= ω(V )Ω(X, Y ) + ω(X)Ω(Y, V ) + ω(Y )Ω(V, X)
= ω(V )g(X, JY ) .

Since g is non-degenerate, it follows that ω(V ) = 0. �
Lemma 4.3. Let M = f MT ×bM θ be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g). Then, for all X ∈ L(MT ), we have

ω(X) = 2
3X(ln b) . (4.2)

Proof. Let M = f MT ×b M θ be a conformal-twisted product semi-slant submanifold of
a g.c.K. manifold (M̄, J, ω, g) and U, V ∈ L(M θ) and X ∈ L(MT ). Then, we have

3dΩ(X, U, V ) = XΩ(U, V ) + UΩ(V, X) + V Ω(X, U)
−Ω([X, U ], V ) − Ω([U, V ], X) − Ω([V, X], U)
= Xg(U, PV ),

since [X, V ] = [X, U ] = 0 from (2.3) and [U, V ] = ∇θ
U V −∇θ

V U ∈ L(M θ) from (2.4). After
some calculation in view of (2.3), we obtain

3dΩ(X, U, V ) = 2X(ln b)g(U, PV ) . (4.3)
On the other hand, we have

dΩ(X, U, V ) = ω ∧ Ω(X, U, V )
= ω(X)Ω(U, V ) + ω(U)Ω(V, X) + ω(V )Ω(X, U)
= ω(X)g(U, PV ) .

from (2.5). Namely,
dΩ(X, U, V ) = ω(X)g(U, PV ) . (4.4)

Thus, the assertion follows from (4.3) and (4.4). �
Remark 4.4. In Kaehlerian case, we have ω(X) = 2

3X(ln b) = 0, since ω = 0. It
follows that twisting function b depends only on the points of M θ. Then, we have gM =
f2gT ⊕b2gθ. Then, M is a locally direct product of (MT , g1) and (Mθ, g2), where g1 = f2gT

and g2 = b2gθ.
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Theorem 4.5. Let M = f MT ×b M θ be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M̄, J, ω, g). Then M is a locally direct product manifold if and
only if the Lee vector field B is normal to M .

Proof. Let M be a direct product semi-slant submanifold of and (MT , gT ) and (M θ, ḡθ),
where ḡθ = cgθ for some constant c. Then the induced metric tensor gM of M has the
form gM = gT ⊕ ḡθ, where gT and gθ are the induced metrics on MT and M θ, respec-
tively. By Lemma 4.3, for any X ∈ L(MT ), we have 2

3X(ln b) = ω(X) = 0, since b is a
constant function. With the help of (2.6), it follows that ω(X) = g(B, X) = 0. So B is
normal to MT . By this fact together with (4.1), we deduce that ω(V ) = g(B, V ) = 0, for
V ∈ L(M θ). Also, B is normal to Mθ. Thus B is normal to M .

Conversely, let B be normal to M . Then for any X ∈ L(MT ), (4.2) implies 2
3X(ln b) =

ω(X) = g(B, X) = 0. Which says us the twisting function depends only on the points
Mθ. Then the induced metric tensor gM of M has the form gM = f2gT ⊕ b2gT , where f
and g depend only on the points MT and Mθ, respectively. Hence, we conclude that M is
a locally direct product of (MT , g1) and (Mθ, g2), where g1 = f2gT and g2 = b2gθ. �

Remark 4.6 ([18, Proposition 3-b]). Let g be a pseudo Riemannian metric on the manifold
M1 × M2 and assume that the canonical foliations D1 and D2 intersect perpendicularly
everywhere. Then g is the metric of a twisted product 1M1 ×f1 M2 if and only if D1 is a
totally geodesic and D2 is a totally umbilic foliation.

Remark 4.7. Actually, twisted products and conformal-twisted products can be expressed
in terms of each other. Indeed, let (M1 ×b M2, g) be a twisted product manifold, where
g = g1 ⊕ b2g2 with twisting function b. Choosing conformal metric g1 = f2ḡ1, where
the positive smooth function f depends only on the points of M1, the metric g is of the
form g = f2ḡ1 ⊕ b2g2. So, (M1 ×b M2, g) is a conformal-twisted product of (M1, ḡ1) and
(M2, g2). On the other hand, let (f M1 ×b M2, g) be a conformal-twisted product manifold
with conformal factor f and twisting function b. Choosing conformal metric ḡ1 = f2g1,
the metric g is of the form g = ḡ1 ⊕ b2g2. Thus, (f M1 ×b M2, g) is a twisted product of
(M1, ḡ1) and (M2, g2).

Now, we are ready to prove main theorem.

Theorem 4.8. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then M is a locally conformal-twisted product submanifold of type f MT ×b M θ if and only
if for any X ∈ Γ(DT ) and V ∈ Γ(Dθ), we have

ω(V ) = 0 , (4.5)

ω(X) = X(µ) , (4.6)

AF V JX − AF P V X = 1
2

{
ω(FPV )X − ω(FV )JX

}
+ sin2θω(X)V

(4.7)

for some function µ.

Proof. Let M be a conformal-twisted product submanifold of the g.c.K. manifold (M̄, J, ω, g)
of type f MT ×b M θ. The equations (4.5) is already obtained in Lemma 4.2. On the other
hand, we have ω(X) = 2

3X(ln b) from Lemma 4.3. Thus, we get (4.6) for µ = 2
3 ln b. Now,

for any X ∈ L(MT ) and V ∈ L(M θ), we write

AF V JX − AF P V X =
(

AF V JX − AF P V X

)T

+
(

AF V JX − AF P V X

)θ

, (4.8)
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where
(

AF V JX − AF P V X

)T

is the tangent part of AF V JX − AF P V X to MT and(
AF V JX − AF P V X

)θ

is the tangent part of AF V JX − AF P V X to M θ. Hence, for

any Y ∈ L(MT ), using (2.2) and (4.1), we have

g

(
AF V JX − AF P V X, Y

)
= 1

2

{
ω(FPV )g(X, Y ) − ω(FV )g(JX, Y )

}
from (3.6). Hence, it follows that(

AF V JX − AF P V X

)T

= 1
2

{
ω(FPV )X − ω(FV )JX

}
. (4.9)

Similarly, for any U ∈ L(M θ), using (2.3) and (4.2), we have

g

(
AF V JX − AF P V X, U

)
= sin2θX(2

3 ln b)g(U, V )

from (3.7). Since U ∈ L(M θ) is arbitrary and the metric g is Riemann, it follows that(
AF V JX − AF P V X

)θ

= sin2θω(X)V . (4.10)

By using (4.8)∼(4.10), we get (4.7).

Conversely, suppose that M is a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g)
such that (4.5)∼(4.7) hold. Then, for any X ∈ Γ(DT ) and U, V ∈ Γ(Dθ), using (4.5) and
(4.7), we obtain (3.6). Thus, by Theorem 3.2, the holomorphic distribution DT is totally
geodesic. On the other hand, using (4.7), we deduce (3.8). Thus, by Theorem 3.4, the
slant distribution Dθ is integrable. Let MT and M θ be the integral manifolds of DT and
Dθ, respectively and let denote by hT and hθ the second fundamental forms of MT and
M θ in M , respectively. Then, for any X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ), using (2.9), we have

g(hT (X, Y ), V ) = g(∇XY, V ) .

Here, if we use (4.5) and (4.7), we deduce that

g(hT (X, Y ), V ) = 0

from (3.6). Which means that MT is totally geodesic in M . On the other hand, for any
X ∈ Γ(DT ) and U, V ∈ Γ(Dθ), using (2.9), we have

g(hθ(U, V ), X) = g(∇U V, X) .

Here, using (4.6) and (4.7), we obtain

g(hθ(U, V ), X) = −X(ln b)g(U, V )

from (3.7). After some calculation, we obtain

g(hθ(U, V ), X) = −g(g(U, V )∇(ln b), X) .

Hence, we conclude that

hθ(U, V ) = g(U, V )(−∇(ln b)) .

It means that M θ is totally umbilic in M with parallel mean curvature vector field
−∇(ln b). Hence, by Remark 4.6 and Remark 4.7, we know that M is conformal-twisted
product f MT ×b M θ of a holomorphic submanifold MT and a slant submanifold M θ of
M , where MT is a leaf of DT and M θ is leaf of Dθ and b is a certain twisting function. �
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5. An inequality for conformal-twisted product semi-slant submanifolds
in the form fMT ×b M θ

In this section, we shall establish an inequality for the squared norm of the second
fundamental form of a conformal-twisted product semi-slant submanifold in the form
f MT ×b M θ, where MT is a holomorphic and M θ is a slant submanifold of a g.c.K.
manifold (M̄, J, ω, g).

Lemma 5.1. Let M =f MT ×b M θ be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g) and h be the second fundamental form of M in M̄ . Then
we have

g(h(X, Y ), FV ) = −1
2g(X, Y )ω(FV ) , (5.1)

g(h(X, U), FV ) = −ω(JX)g(U, V ) − ω(X)g(U, PV ) , (5.2)
where X, Y ∈ L(MT ) and U, V ∈ L(M θ).

Proof. Let M =f MT ×b M θ be a conformal-twisted product semi-slant submanifold of
a g.c.K. manifold (M̄, J, ω, g) and let X, Y ∈ L(MT ) and V ∈ L(M θ), since (M̄, J, ω, g̃ =
e−σg) is a Kaehler manifold, using (2.12), (3.2) and (2.8), we have

g̃(h̃(X, Y ), FV ) = g̃(∇̃XY, FV )
= g̃(∇̃XY, JV ) − g̃(∇̃XY, PV )
= −g̃(∇̃XJY, V ) − g̃(∇̂XY, PV )
= −g̃(∇̂XJY, V ) − g̃(∇̂XY, PV ) .

Now, using (2.14), (2.15) and (4.1), we get (5.1). Next, let X, Y ∈ L(MT ) and V ∈ L(M θ),
since (M̄, J, ω, g̃ = e−σg) is a Kaehler manifold, using (2.12), (3.2) and (2.8), we have

g̃(h̃(X, U), FV ) = g̃(∇̃U X, FV )
= g̃(∇̃U X, JV ) − g̃(∇̃U X, PV )
= −g̃(∇̃U JX, V ) − g̃(∇̃U X, PV )
= −g̃(∇̂U JX, V ) − g̃(∇̂U X, PV ) .

Now, using (2.3), (2.14), (2.15), (4.1) and (4.2), we get (5.2). �
Let M = f MT ×bM θ be a conformal-twisted product semi-slant submanifold of a g.c.K.

manifold (M̄, J, ω, g). We choose a canonical orthonormal basis
{e1, ..., em1 , ē1, ..., ēm2 , e∗

1, ..., e∗
m2 , ê1, ..., êl} of M̄ such that {e1, ..., em1} is an orthonormal

basis of DT , {ē1, ..., ēm2} is an orthonormal basis of Dθ, {e∗
1, ..., e∗

m2} is an orthonormal
basis of FDθ and {ê1, ..., êl} is an orthonormal basis of D. Here, m1 = dim(DT ), m2 =
dim(Dθ) and l = dim(D).
Remark 5.2. Since DT is a holomorphic distribution, {Je1, ..., Jem1} is also an orthonor-
mal basis of DT . Moreover, by (3.5), we observe that
{ā1 = secθP ē2 , ā2 = − secθP ē1, ..., ā2n2−1 = secθP ē2n2 , ā2n2 = − secθP ē2n2−1} is also an
orthonormal basis of Dθ and {cscθF ē1, ..., cscθF ēm2} is also an orthonormal basis of FDθ,
where θ is the slant angle of Dθ and m2 = 2n2 = dim(M θ).

Theorem 5.3. Let M = f MT ×b M θ be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M̄, J, ω, g). Then we have
(i) The squared norm of the second fundamental form h of M satisfies

∥h∥2 ≥ 1
4

m1∥BF Dθ ∥2 + m2

(
1 + m2 cot2θ

)
∥BT ∥2 , (5.3)

where m1 = dim(MT ), m2 = dim(M θ) and BF Dθ is tangential part of B to FDθ.
(ii) If the equality sign of (5.3) holds identically, then M θ is also umbilic in the ambient
manifold M̄ .
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Proof. The squared norm of the second fundamental form h can be written as

∥h∥2 = ∥h(DT ,DT )∥2 + ∥h(DT ,Dθ)∥2 + ∥h(Dθ,Dθ)∥2.

In view of decomposition (3.3), which can be explicitly written as follows:

∥h∥2 =
m1∑

r,s=1

m2∑
i=1

g(h(er, es), e∗
i )2 +

m2∑
i,j=1

m1∑
r=1

g(h(er, ēi), e∗
j )2

+
m1∑

r,s=1

l∑
t=1

g(h(er, es), êt)2 +
m1∑
r=1

m2∑
i=1

l∑
t=1

g(h(er, ēi), êt)2

+∥h(Dθ,Dθ)∥2.

(5.4)

Hence, we have

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

g(h(er, es), e∗
i )2 +

m2∑
i,j=1

m1∑
r=1

g(h(ēi, er), e∗
j )2

.

By Remark 5.2, we obtain

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

g(h(er, es), e∗
i )2 +

m2∑
i,j=1

m1∑
r=1

g(h(ēi, er), cscθF ēj)2
.

Now, using (5.1) and (5.2), we get

∥h∥2 ≥ 1
4

m1∑
r,s=1

m2∑
i=1

g2(er, es)ω2(e∗
i )

+ csc2θ
m2∑

i,j=1

m1∑
r=1

{
ω2(Jer)g2(ēi, ēj) + ω2(er)g2(ēi, P ēj)

}
+2 csc2θ

m2∑
i,j=1

m1∑
r=1

ω(Jer)g(ēi, ēj)ω(er)g(ēi, P ēj).

Using (2.6), we obtain

∥h∥2 ≥ 1
4

m1∑
r,s=1

m2∑
i=1

g2(er, es)g2(B, e∗
i )

+ csc2θ
m2∑

i,j=1

m1∑
r=1

{
g2(B, Jer)g2(ēi, ēj) + g2(B, er)g2(ēi, P ēj)

}
+2 csc2θ

m2∑
i,j=1

m1∑
r=1

g(B, Jer)g(ēi, ēj)g(B, er)g(ēi, P ēj).

Here, the term
m2∑

i,j=1

m1∑
r=1

g(B, Jer)g(ēi, ēj)g(B, er)g(ēi, P ēj)

=
m2∑

i,j=1

m1∑
r=1

g(B, Jer)g(B, er)g(ēi, ēj)g(ēi, P ēj)

= −
m2∑

i,j=1

m1∑
r=1

g(JB, er)g(B, er)g(ēi, ēj)g(ēi, P ēj)

= −g(JBT , BT )
m2∑

i,j=1
g(ēi, ēj)g(ēi, P ēj) = 0,
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since g(JBT , BT ) = 0. Thus, we arrive at

∥h∥2 ≥ 1
4

m1∑
r,s=1

m2∑
i=1

g2(er, es)g2(B, e∗
i )

+ csc2θ
m2∑

i,j=1

m1∑
r=1

{
g2(B, Jer)g2(ēi, ēj) + g2(B, er)g2(ēi, P ēj)

}
.

Here, for i, j ∈ {1, 2, ..., m2}, we have

g(ēi, P ēj) = { cosθ if i ̸= j,
0 if i = j,

since Dθ is a slant distribution with slant angle θ.

Consequently,
m2∑

i,j=1
g2(ēi, P ēj) = m2(m2 − 1) cos2θ. Thus, by direct calculation, we obtain

the following inequality,

∥h∥2 ≥ 1
4m1∥BF Dθ ∥2 + csc2θ

{
m2∥BT ∥2 + m2(m2 − 1) cos2θ∥BT ∥2

}
.

Rearrange the last inequality, we get the inequality (5.3). If the equality sign of (5.3) holds
identically, then we have h(Dθ,Dθ) = 0 from (5.4). Namely, h vanishes on Dθ. Since Dθ

is a umbilic distribution on M , it follows that M θ is umbilic in M̄ . �

6. Conformal-twisted product semi-slant submanifolds of a g.c.K. mani-
fold in the form fM θ ×b MT

In this section, we study conformal-twisted product semi-slant submanifolds in the form
f M θ ×b MT with conformal factor f defined on M θ and twisting function b of a g.c.K.
manifold, where MT is a holomorphic and M θ is a slant submanifold of the g.c.K. manifold.
We first give an (non-trivial) example of such a submanifold in a g.c.K. manifold.

Example 6.1. Let (z1, ..., z6) be natural coordinates of the six-dimensional Euclidean
space R6 and let R̄6 = {(z1, ..., z6) ∈ R6 : z1, z2, z5 ̸= 0}. Then (R̄6, J, g0) is a Kaehler
manifold with usual Kaehler structure (J, g0). Now, we consider the Riemannian metric
g = eσg0 conformal to Kaehler metric g0 on R̄6, where eσ = (z3 + z4

2
)2. Then (R̄6, J, g) is

clearly a g.c.K. manifold. Let M be a submanifold given by

z1 = x , z2 = y , z3 = u + v , z4 = −u + v , z5 = u , z6 = 0 ,

where x > 1 and y, u, v ̸= 0. Then, the local frame field of the tangent bundle TM of M
is given by

X = ∂1 , Y = ∂2 , U = 1√
3

{
∂3 − ∂4 + ∂5

}
, V = 1√

2

{
∂3 + ∂4

}
,

where ∂i = ∂
∂zi

for i ∈ {1, 2, ..., 6}. Then DT = span{X, Y } is a holomorphic and Dθ =
span{U, V } is a (proper) slant distribution with the slant angle θ = cos−1( 2√

6). Thus,
M is a proper semi-slant submanifold of (R̄6, J, g). We easily observe both DT and Dθ

are integrable. Let denote the integral submanifolds of DT and Dθ by MT and M θ,
respectively. Let gT and gθ be the induced metrics on MT and M θ with respect to the
Kaehler metric g0, respectively. We choose the conformal metric ḡT = 1

x2 gT on MT . Since
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v = z3 + z4
2

on M , the induced metric of M from the conformal Kaehler metric g is

ds2 = v2(du2 + dv2) + v2(dx2 + dy2)
= v2gθ + v2gT

= v2gθ + v2x2ḡT .

Thus, M is a conformal-twisted product of (MT , ḡT ) and (M θ, gθ). So, M is a non-trivial
conformal-twisted product proper semi-slant submanifold in the g.c.K. manifold (R̄6, J, g)
in the form M =f M θ ×b MT with conformal factor f = v and twisting function b = xv.

Moreover, the Lee form of (R̄6, J, g) is ω = 2
{1

v
dv

}
. Consequently, the Lee vector field is

B = 2
v2

{1
v

∂

∂v

}
which is tangent to M θ.

Lemma 6.2. Let M = f M θ ×bMT be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g). Then, for all V ∈ L(M θ), we have

ω(V ) = 2
3V (ln b) . (6.1)

Proof. The proof is similar to the proof of Lemma 4.3. So, we omit it. �

Lemma 6.3. Let M = f M θ ×bMT be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g). Then, for all X ∈ L(MT ), we have

ω(X) = 0 . (6.2)

Proof. The proof is similar to the proof of Lemma 4.2. So, we omit it. �

Theorem 6.4. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g).
Then M is a locally conformal-twisted product submanifold of type f M θ ×b MT if and only
if for any X ∈ Γ(DT ) and V ∈ Γ(Dθ), we have

ω(V ) = V (µ) , (6.3)

ω(X) = 0 , (6.4)

AF V JX − AF P V X = 1
2

{
ω(FPV )X − ω(FV )JX

}
−V (µ)X sin2θ

(6.5)

for some function µ.

Proof. Let M be a conformal-twisted product submanifold of the g.c.K. manifold (M̄, J, ω, g)
of type f M θ ×b MT . The equations (6.3) is already obtained in Lemma 6.2 for µ = 2

3 ln b.
On the other hand, we have ω(X) = 0 from Lemma 6.3. Thus, we get (6.4). Now, for any
X ∈ L(MT ) and V ∈ L(M θ), we write

AF V JX − AF P V X =
(

AF V JX − AF P V X

)T

+
(

AF V JX − AF P V X

)θ

, (6.6)

where
(

AF V JX − AF P V X

)T

is the tangent part of AF V JX − AF P V X to MT and(
AF V JX − AF P V X

)θ

is the tangent part of AF V JX − AF P V X to M θ. Hence, for
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any Y ∈ L(MT ), using (2.2) and (6.1), we have

g

(
AF V JX − AF P V X, Y

)
= −ω(V )g(X, Y ) sin2θ

+1
2

{
ω(FPV )g(X, Y ) − ω(FV )g(JX, Y )

}
from (3.6). Hence, it follows that(

AF V JX − AF P V X

)T

= −ω(V ) sin2θX + 1
2

{
ω(FPV )X − ω(FV )JX

}
. (6.7)

Similarly, for any U ∈ L(M θ), using (2.3) and (6.2), we have

g

(
AF V JX − AF P V X, U

)
= −g(U, V )X(ln f)

from (3.7). Since U ∈ L(M θ) is arbitrary and f depends only on the points of M θ,
X(ln f) = 0. So (

AF V JX − AF P V X

)θ

= 0 . (6.8)

Since µ = 2
3 ln b, by using (6.6)∼(6.8), we get (6.5).

Conversely, suppose that M is a semi-slant submanifold of a g.c.K. manifold (M̄, J, ω, g)
such that (6.3)∼(6.5) hold. Then, for any X ∈ Γ(DT ) and U, V ∈ Γ(Dθ), using (6.4) and
(6.5), we obtain (3.9). Thus, by Theorem 3.5, the slant distribution Dθ is totally geodesic.
On the other hand, using (6.5), we deduce (3.10). Thus, by Theorem 3.7, the holomorphic
distribution DT is integrable. Let MT and M θ be the integral manifolds of DT and Dθ,
respectively and let denote by hT and hθ the second fundamental forms of MT and M θ

in M , respectively. Then, for any X, Y ∈ Γ(DT ) and V ∈ Γ(Dθ), using (2.9), we have

g(hT (X, Y ), V ) = g(∇XY, V ) .

Here, if we use (6.3) and (6.5), we deduce that

g(hT (X, Y ), V ) = −∇(ln b)g(X, Y )

from (3.6). It means that MT is totally umbilic in M with parallel mean curvature vector
field −∇(ln b). On the other hand, for any X ∈ Γ(DT ) and U, V ∈ Γ(Dθ), using (2.9), we
have

g(hθ(U, V ), X) = g(∇U V, X) .

Here, using (6.4) and (6.5), we obtain

g(hθ(U, V ), X) = 0

from (3.7). Hence, we conclude that

hθ(U, V ) = 0 .

Which means that M θ is totally geodesic in M . Hence, by Remark 4.6 and Remark 4.7,
we know that M is conformal-twisted product f M θ ×b MT of a holomorphic submanifold
MT and a slant submanifold M θ of M , where MT is a leaf of DT and M θ is leaf of Dθ

and b is a certain twisting function. �
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7. An inequality for conformal-twisted product semi-slant submanifolds
in the form fM θ ×b MT

In this section, we shall establish an inequality for the squared norm of the second
fundamental form of a conformal-twisted product semi-slant submanifold in the form
f M θ ×b MT , where MT is a holomorphic and M θ is a slant submanifold of a g.c.K.
manifold (M̄, J, ω, g).

Lemma 7.1. Let M =f M θ ×b MT be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M̄, J, ω, g) and h be the second fundamental form of M in M̄ . Then
we have

g(h(X, Y ), FV ) = ω(V )g(X, JY ) + ω(PV )g(X, Y ) − 1
2ω(FV )g(X, Y ) , (7.1)

g(h(X, U), FV ) = 0 , (7.2)
where X, Y ∈ L(MT ) and U, V ∈ L(M θ).
Proof. The proof is similar to the proof of Lemma 5.1. So, we omit it. �
Theorem 7.2. Let M =f M θ ×b MT be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M̄, J, ω, g) and h be the second fundamental form of M in M̄ .
If h(X, Y ) ∈ Γ(D̄) for all X, Y ∈ L(MT ) and Lee vector field B is tangent to M , then
M =f M θ ×b MT is a direct product manifold.

Proof. Let M =f M θ ×b MT be a conformal-twisted product semi-slant submanifold of a
g.c.K. manifold (M̄, J, ω, g) and h be the second fundamental form of M in M̄ . Let h ∈ D̄

and Lee vector field B is tangent to M . Then, for any X, Y ∈ L(MT ) and V ∈ L(M θ),
we find

g(h(X, Y ), FV ) = ω(V )g(X, JY ) + ω(PV )g(X, Y ) = 0 (7.3)
from (7.1), since ω(FV ) = 0. From (7.3), we find

ω(V )g(JX, Y ) = ω(PV )g(X, Y ). (7.4)
In (7.4), if we write JX instead of X, we find

− ω(V )g(X, Y ) = ω(PV )g(JX, Y ) (7.5)
and if we write PV instead of V in (7.5), we find

− ω(PV )g(X, Y ) = ω(P 2V )g(JX, Y ). (7.6)
After some calculation, we conclude that from (3.4),

cos2θω(V )g(JX, Y ) = ω(PV )g(X, Y ). (7.7)
Using (7.4) and (7.7), we have

sin2θω(V )g(JX, Y ) = 0. (7.8)
Since g(JX, Y ) ̸= 0, we find ω(V ) = 0. Using (6.1), we conclude that twisting function

b depends only on the points of MT . Then, metric tensor is of the form g = f2gθ ⊕ b2gT .
So M is direct product of (M θ, g1) and (MT , g2), where g1 = f2gθ and g2 = b2gT . �
Theorem 7.3. Let M = f M θ ×b MT be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M̄, J, ω, g) and the Lee vector field B is tangent to M . Then
we have
(i) The squared norm of the second fundamental form h of M satisfies

∥h∥2 ≥ m1(1 + cos2θ) csc2θ∥Bθ∥2 , (7.9)

where m1 = dim(MT ), m2 = dim(M θ) and Bθ is tangential part of B to Dθ.
(ii) If the equality sign of (7.9) holds identically, then M θ is also umbilic in the ambient
manifold M̄ .
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Proof. The squared norm of the second fundamental form h can be written as

∥h∥2 = ∥h(DT ,DT )∥2 + ∥h(DT ,Dθ)∥2 + ∥h(Dθ,Dθ)∥2.

In view of decomposition (3.3), which can be explicitly written as follows:

∥h∥2 =
m1∑

r,s=1

m2∑
i=1

g(h(er, es), e∗
i )2 +

m2∑
i,j=1

m1∑
r=1

g(h(er, ēi), e∗
j )2

+
m1∑

r,s=1

l∑
t=1

g(h(er, es), êt)2 +
m1∑
r=1

m2∑
i=1

l∑
t=1

g(h(er, ēi), êt)2

+∥h(Dθ,Dθ)∥2.

(7.10)

Hence, we have

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

g(h(er, es), e∗
i )2 +

m2∑
i,j=1

m1∑
r=1

g(h(ēi, er), e∗
j )2

.

By Remark 5.2 and (7.2) we obtain

∥h∥2 ≥
m1∑

r,s=1

m2∑
i=1

g(h(er, es), csc θF ēi)2
.

Since ω(FV ) = g(B, FV ) = 0, using (7.1), we get

∥h∥2 ≥ csc2θ
m1∑

r,s=1

m2∑
i=1

g2(er, Jes)ω2(ēi)

+ csc2θ
m2∑

i,j=1

m1∑
r=1

ω2(P ēi)g2(er, es)

+2 csc2θ
m2∑

i,j=1

m1∑
r=1

ω(ēi)g(er, Jes)ω(P ēi)g(er, es).

Using (2.6), we obtain

∥h∥2 ≥ csc2θ
m1∑

r,s=1

m2∑
i=1

g2(er, Jes)g2(B, ēi)

+ csc2θ
m1∑

r,s=1

m2∑
i=1

g2(B, P ēi)g2(er, es)

+2 csc2θ
m1∑

r,s=1

m2∑
i=1

g(B, ēi)g(er, Jes)g(B, P ēi)g(er, es).

Here, the term
m1∑

r,s=1

m2∑
i=1

g(B, ēi)g(er, Jes)g(B, P ēi)g(er, es)

=
m1∑

r,s=1

m2∑
i=1

g(B, ēi)g(B, P ēi)g(er, Jes)g(er, es)

= −
m1∑

r,s=1

m2∑
i=1

g(B, ēi)g(JB, ēi)g(er, Jes)g(er, es)

= −g(JB, B)
∑m1

r,s=1 g(er, Jes)g(er, es) = 0,
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since g(JB, B) = 0. Thus, we arrive at

∥h∥2 ≥ csc2θ
m1∑

r,s=1

m2∑
i=1

g2(er, Jes)g2(B, ēi)

+ csc2θ
∑m1

r,s=1

m2∑
i=1

g2(B, P ēi)g2(er, es).

Using Remark 5.2, we find

∥h∥2 ≥ csc2θ
m1∑

r,s=1

m2∑
i=1

g2(er, Jes)g2(B, ēi)

+ csc2θ cos2θ
m1∑

r,s=1

m2∑
i,j=1

g2(B, āi)g2(er, es).

Thus, by direct calculation, we obtain the following inequality,

∥h∥2 ≥ m1 cot2θ∥Bθ∥2 + m1 csc2θ∥Bθ∥2.

Rearrange the last inequality, we get the inequality (7.9). If the equality sign of (7.9) holds
identically, then we have h(Dθ,Dθ) = 0 from (7.10). Namely, h vanishes on Dθ. Since Dθ

is a umbilic distribution on M , it follows that M θ is umbilic in M̄ . �

Remark 7.4. Whether the Lee form ω is exact or not does not change all results in this
paper. Thus, these results are also hold for locally conformal Kaehler case. For recent
results on the geometry of submanifolds in locally conformal Kaehler ambient space, see
[4, 9, 12,27,28].
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