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Abstract

We introduce the notion of conformal-twisted product submanifolds of the form M T sy M
and ¢ M %y, MT, where M7 is a holomorphic submanifold and M? is a proper slant sub-
manifold of M in a globally conformal Kaehler manifold and f and b are conformal factor
and twisting function, respectively. We give necessary and sufficient conditions for proper
semi-slant submanifold to be a locally conformal-twisted product for such submanifolds of
the form ;M T %, M? and M 9 %, MT. We establish a general inequality for the squared
norm of second fundamental form of these types of submanifolds.
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1. Introduction

In differential geometry, one of the most intensively research areas is the theory of
submanifolds. Actually, there are well-known classes of submanifolds such as holomor-
phic(invariant), totally real(anti-invariant) [29], CR- [1], semi-invariant [2], slant [6], semi-
slant [17], etc. All classes are determined by the behavior of the almost complex or almost
product structure of the ambient manifold.

Bishop and O Neill [3] introduced the notion of warped product of Riemannian mani-
folds to construct a large class of complete manifolds of negative curvature. This concept
is also a generalization of the usual product of Riemannian manifolds. The theory of
warped product submanifolds has been becoming a popular research area since Chen [7]
studied the warped product CR-submanifolds in Kaehler manifolds. Most of the studies
related to the theory of warped product submanifolds can be found in Chen’s book|[8].

Unlike the warped product submanifolds, the doubly warped product submanifolds
have not been a so active research area. Perhaps this is because some well-known struc-
tures such as Kaehler, nearly Kaehler, locally product Riemannian and trans-Sasakian
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do not allow non-trivial doubly warped product submanifolds whose factors are holomor-
phic(invariant), totally real(anti-invariant) submanifolds (see, [16, 20,22, 24]). However,
doubly warped product CR-submanifolds were studied in locally conformal Kaehler man-
ifolds in [15].

The non-existence of non-trivial warped product semi-slant submanifolds in Kaehlerian
manifolds was proved by Sahin [19]. Indeed, there do not exist warped product semi-slant
submanifolds in Kaehlerian manifolds in the form M? x M T and M7 x M  where MT
is a holomorphic and M? is a proper slant submanifold of the Kachlerian manifold[19)].
Moreover, Sahin [21] defined and studied warped product semi-slant submanifolds in the
form M? x M T in locally product Riemannian manifolds contrary to Kaehlerian case,
where M7 is an invariant submanifold of the locally product Riemannian manifold. It
was proved the non-existence of non-trivial warped product semi-slant submanifolds of
the form M7T x M % in a locally product Riemannian manifold in the same paper [21].

In [22], we defined two classes of doubly twisted products under the names of nearly
doubly twisted products of type 1 and type 2. In this article, we rename the nearly doubly
twisted product of type 2 as conformal-twisted products.

Recently, Tagtan and Tripathi [23] studied semi-slant submanifolds of locally conformal
Kaehler manifolds. On the other hand, Matsumoto studied warped product semi-slant
submanifolds in the forms M? x M T and M7T x M % in locally conformal Kaehler mani-
folds in [13,14]. Inspired by these papers, we consider and study conformal-twisted product
semi-slant submanifolds in globally conformal Kaehler manifolds and we give non-trivial
examples for a conformal-twisted product proper semi-slant submanifold in globally con-
formal Kaehler manifold. We obtain some necessary and sufficient conditions for proper
semi-slant submanifold to be locally conformal-twisted product for such submanifolds of
the form ;M T %, MY and M ¥ %, MT. Moreover, we establish a general inequality for
the squared norm of the second fundamental form of these types of submanifolds.

2. Preliminiaries

In this section, we recall the fundamental definitions and notions needed further study.
Actually, in subsection 2.1, we give the definitions of doubly twisted and conformal-twisted
products and in subsection 2.2, we will recall the definitions of locally and globally confor-
mal Kaehler manifolds. The basic background for submanifolds of Riemannian manifolds
will be presented in subsection 2.3.

2.1. Conformal-twisted products

Let M; and M, be Riemannian manifolds endowed with metric tensors ¢g; and go,
respectively and let f and b are positive smooth functions defined on M; x Ms. Then the
doubly twisted product manifold [18] My xy Ms is the product manifold M = My x M,
equipped with metric g given by

g=f*g1 +bgs.

Each function f and b is called a twisting function of the doubly twisted product (M x,
MZa g) .

If the twisting functions f and b only depend only on the points of M; and Ms respec-
tively, then (yM;y Xy, My, g) is called doubly warped product manifold [25]. In which case,
f and b are called warping functions of doubly warped product.
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Let (f My xp M3, g) be a doubly twisted product manifold. If f = 1, then we get twisted
product [5] My X, Mo with twisting function b.

In addition, if the twisting function b only depends only on the point of Mj, then
M xp My is called warped product [3] of (M, g1) and (Ma, g2) and the function b is called
warping function. If b is a constant, then we get direct product manifold [8].

Let (Mji,g1) and (M2, g2) be Riemannian manifolds and also let f : M; — (0,00) and
b: M; x My — (0,00) be smooth functions. The conformal-twisted product [22] is the
product manifold M; x Ms equipped with the metric tensor g defined by

9= (fom)*mi(g1) + (bom)*m3(g2), (2.1)

where 7 and 7o are canonical projections of My x My onto My and Ms, respectively.

For brevity in notation, we denote this Riemannian manifold (M, g) by sM; x Ms. For

a conformal-twisted product manifold, f is called a conformal factor. In either case, the
function b is called a twisting function.

Let (M xy Ma, g) be a conformal-twisted product manifold with the Levi-Civita con-
nection V and V* denote the Levi-Civita connection of # My xp Mo and M; for i € {1,2},
respectively. By usual convenience, we denote the set of lifts of vector fields on M; by
L(M;) and use the same notation for a vector field and for its lift. On the other hand, 7 is
an isometry and 7o is a (positive) homothety, so they preserve the Levi-Civita connection.
Thus, there is no confusion using the same notation for a connection on M; and for its
pullback via 7;. Then, we have

VxY =VLY + X(In f)Y +Y(In /)X — g(X,Y)VInf , (2.2)
VX =VxV =X(nb)V , (2.3)
VuV =VEV +U(nb)V + V(Inb)U — g(U, V)V Inb. (2.4)

for any X,Y € L(M;) and U,V € L(Msz). The manifold (M, gs) is called a fiber
of the conformal-twisted product and the manifold (Mj,g1) is called a base manifold of
(¢ My xp Mo, g). It is seen that, the base manifold is totally geodesic from (2.2) while the
fiber is totally umbilic from (2.4).

Remark 2.1. As seen from the definitions of doubly twisted product and conformal-
twisted product, the conformal-twisted product case is a special case of doubly twisted
product. Indeed, in the case of conformal-twisted product, the covariant derivatives for-
mulas (2.2)~(2.4) are simpler than the case of doubly twisted product, see Lemma 2.1 of
[11].

2.2. Locally and globally conformal Kaehler manifolds

Let (M,.J,g) be a Hermitian manifold of dimension 2m. Then it is called a locally
conformal Kaehler manifold (briefly I.c.K. manifold) [10], if each point of p € M has an
open neighborhood U with smooth function ¢ : U — R such that § = e 7g|y is a Kaehler
metric on U. If one choose U = M, then (M, J,g) is called a globally conformal Kaehler
manifold (briefly g.c.K. manifold).

Theorem 2.2 ([10]). Let (M, J,g) be a Hermitian manifold and let Q2 be a 2— form defined
by UX,Y) = g(X,JY) for all vector fields X and Y in M. Then (M,J,g) is a l.c.K.
manifold if and only if there exists a globally defined 1— form w such that

dQY=w AN and dw =20 . (2.5)
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The closed 1— form w is called the Lee form of the 1.c.K. manifold (M, J,g). In addition,
the manifold (M, J, g) is g.c.K., if its Lee form w is also exact. In this case, we have w = do
[26]. The Lee vector field B is defined by

w(X)=g(B,X) , (2.6)

for any vector fields X on M. One can see that, the globally conformal Kaehler case is
a special case of the locally conformal Kaehler case. We denote by V (resp. V) the
Levi-Civita connection on M with respect to § = e ?g (resp. ¢g). Then we have [10]

VAR ;{wo‘of/ +w(T)X - ¢(X, Y)B} , (2.7)

for any vector fields X and Y on M. The connection V is a torsionless linear connection
on M which is called the Weyl connection of g. It is easy to see that the Weyl connection
V satisfies the condition

VJ=0. (2.8)

For examples and more details on l.c.K. and g.c.K. manifolds we refer to [10].

Remark 2.3. Throughout this paper, we denote by (M, J,w, g) the g.c.K. manifold with
the Lee form w.

2.3. Submanifolds of Riemannian manifolds

Let M be an isometrically immersed submanifold in a Riemannian manifold (M, g). Let
V is the Levi-Civita connection of M with respect to the metric g and let V and V- be the
induced, and induced normal connection on M, respectively. Then, for all X, Y € I'(T M)
and Z € T'(T+ M), the Gauss and Weingarten formulas are given respectively by

VxY =VxY +h(X,Y) , (2.9)
VxZ=—-AzX+V%Z , (2.10)

where T'M is the tangent bundle and T M is the normal bundle of M in M. Additionally,
h is the second fundamental form of M and Az is the Weingarten endomorphism associated
with Z. The second fundamental form h and the shape operator A are related by

g(h(X,Y),Z)=9g(AzX,Y) . (2.11)

The mean curvature vector field H of M is given by H = L (trace h), where dim(M) = m.

We say that the submanifold M is totally geodesic in M if h = 0, and minimal if H = 0. The
submanifold M is called totally umbilical if h(X,Y) = g(X,Y)H for all X, Y € I'(T'M).

Let M be any submanifold of a g.c.K. manifold (M, J,w,g). Then the Gauss and
Weingarten formulas with respect to V are given by

VxY =VxY +h(X,Y) , (2.12)
VxZ=-AzX+V%Z , (2.13)

for XY € T(TM) and Z € T(T+M). Thus, using (2.7), (2.9)~(2.13), we have the
following relations.

VxY = VyxY— ;{W(X)Y +w(Y)X —g(X, Y)BT} : (2.14)
MX,Y)= h(X,Y)+ig(X,Y)BY, (2.15)
AzX = AzX +3w(2)X, (2.16)

where X,Y € T(TM) and Z € T'(T+M), where BT and BY are the tangential and the
normal part of B, respectively.
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3. Semi-slant submanifolds of a g.c.K. manifold

In this section, we recall some fundamental properties of semi-slant submanifolds of a
g.c.K. manifold given in [23] and give some auxiliary results to prove our main theorem.

Let (M, J,g) be an almost Hermitian manifold and let M be a Riemannian manifold
isometrically immersed in M. A distribution D on M is called a slant distribution if for
V € D,, the angle § between JV and D, is constant, i.e., independent of p € M and
V € D,. The constant angle ¢ is called the slant angle of the slant distribution D. We
know that holomorphic and totally real distributions on M are slant distributions with

0 = 0 and 6 = 7, respectively. A slant distribution is called proper if it is neither holo-

morphic nor totally real. A submanifold M of M is said to be a slant submanifold [6] if
the tangent bundle TM of M is slant. For examples and more details, (see [6]).

A semi-slant submanifold M [17] of a g.c.K. manifold (M,.J,w,g) is a submanifold
such that its tangent bundle T'M admits two orthogonal complementary holomorphic
distribution DT and slant distribution D?, i.e., we have

™ =DT @D . (3.1)
We say that a semi-slant submanifold M is proper if dim(DT) # {0} and 6 # 0, 5

For any X € T'M we write
JX =PX+FX | (3.2)

where PX is the tangential part of JX, and FX is the normal part of JX. Then the
normal bundle T+M of M is decomposed as

T*M=FD°®D , (3.3)
where D is the orthogonal complementary distribution of FD? in T+ M and it is invariant
subbundle of T+ M with respect to .J. For a semi-slant submanifold [21], we have

P2V = —cos?0V (3.4)

g(PU, PV) = cos?0g(U, V) and g(FU,FV) = sin?0g(U, V) (3.5)
for U,V € T'(D?).
Lemma 3.1. Let M be a semi-slant submanifold of a g.c.K. manifold (M, J,w,g). Then

we have

9(VxY,V) = CSCQQ{Q(AFVJY — ArpvY, X> + 3w(FV)g(JY, X)
~J(FPV)g(XY) | - Ju(V)g(X.Y),

for any X,Y € T(DT) and V € T(D?).
Proof. Let X,Y € T(DT) and V € T'(DY), since (M, J,w, § = e~7g) is a Kaehler manifold,
using (2.8), (2.12), (2.13) and (3.2), we have
G(VxY, V) =g(VxY,V)=g§(VxJY,JV)
= g(V)SJY, PV) + g(V)EJY, FV)
= —9(VxY,JPV) + §(Apv X, JY) N
= —g(VxY,P?V) = §(VxY,FPV) + §(Apv X, JY)
= c0s03(VxY, V) + g(Arv JY, X) — §(AppvY, X).
Hence, it follows that
g(@xy, V) = CSC29§(AFV<]Y, X) - g(lepVY, X) .
Now, by using (2.6), (2.14) and (2.16), we derive the conclusion. O
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Using the above Lemma, we have the following result.
Theorem 3.2. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w, g).
Then the holomorphic distribution DT is totally geodesic if and only if
1
9(ArvTY = Appy Y. X) = 3{ (sin®6(V) + w(FPYV) ) o(¥, X) = w(FV)g(7¥. X) }

(3.6)
for X, Y € T(DT) and V € T'(DY).

Lemma 3.3. Let M be a semi-slant submanifold of a g.c.K. manifold (M, J,w,g). Then
we have

o(VoV, X) = — csclg (AFVJX — Appy X, U) Cle(X)gUV) . (3.7

for any X € T(DT) and U,V € T'(D?).

Proof. Let X e I'(DT) and U,V € T'(D?), since (M, J,w, § = e~ ?g) is a Kaehler manifold,
using (2.8), (2.12), (2.13) and (3.2), we have

VoV, X) =g(VoV,X)=g(VuJV,JX)
= §(VuPV,JX)+ §(VyFV,JX)
~§(VuJPV, X) - §(Apv J X, U)
—§(VyP?V,X) — §(VuFPV,X) — §(Apy JX,U)
= cos?05(VyV, X) + §(Appy X, U) — §(Apy J X, U).

Hence, it follows that
G(VuV,X) = —csc?0G(Apy JX — Appy X, U) .
Now, by using (2.6), (2.14) and (2.16), we derive the conclusion. O
By using (3.7), we obtain the following result.

Theorem 3.4. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w, g).
Then the slant distribution DY is integrable if and only if

g(Apva—AvaX, U) :g(AFUJX—AFPUX, V) (3.8)
for X e T(DT) and U,V € T(DY).

Now, we give totally geodesicness condition of D? and integrability condition of DT,
respectively.

Theorem 3.5. Let M be a proper semi-slant submanifold of a g.c. K. manifold (M, J,w, g).
Then the slant distribution D? is totally geodesic if and only if

9(ApyJX — Appy X,U) = —%sin*0w(X)g(U, V) (3.9)
for X € T(DT) and U,V € T(DY).

Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w,g). The
slant distribution DY is totally geodesic if and only if g(VyV, X) = 0 for any U,V € T'(D?)
and X € T'(DT). From (3.7), g(VyV, X) = 0 if and only if (3.9) holds. O

Remark 3.6. In [23], the authors gave a different condition for the totally geodesicness
of the slant distribution D?.

Theorem 3.7. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w, g).
Then the holomorphic distribution DT is integrable if and only if

g(Apij — AFPVK X) + w(FV)g(JY,X) = g(AF\/JX — AvaX, Y) (3.10)
for X, Y e T(DT) and V € T'(DY).
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Proof. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w,g). The
holomorphic distribution D7 is integrable if and only if g([X,Y],V) = 0 for any X,Y €
[(DT) and V € T'(DY). From (3.6), g([X,Y],V) = 0 if and only if (3.10) holds. O

Remark 3.8. In [23], the authors gave a different condition for the integrability of the
holomorphic distribution DT

Remark 3.9. Throughout this paper, for a semi-slant submanifold M of a g.c.K. manifold
(M, J,w,g), we write B = BT + B, where BT is the tangent part of B to DT and BY is
the tangent part of B to DY.

4. Conformal-twisted product semi-slant submanifolds of a g.c.K. mani-
fold

In this section, we study conformal-twisted product semi-slant submanifolds in the
form (M7T x, M 9 with conformal factor f defined on M7 and twisting function b of a
g.c.K. manifold , where M7 is a holomorphic and M? is a slant submanifold of the g.c.K.
manifold. We first give an (non-trivial) example of such a submanifold in a g.c.K. manifold.

Example 4.1. Let (z1,...,2¢) be natural coordinates of the six-dimensional Euclidean
space R® and let RS = {(z1,...,26) € RS : 21,22,25 # 0}. Then (RS, J, go) is a Kaehler
manifold with usual Kaehler structure (.J, go). Now, we consider the Riemannian metric
g = e%go conformal to Kaehler metric gg on RS, where ¢” = (z127)?. Then (RS, J,g) is
clearly a g.c.K. manifold. Let M be a submanifold given by

21=2, 22=Y, 23=UFV, Z4=—-u+v, 25 =1, 26:07
where x,y,u # 0 and v > 1. Then, the local frame field of the tangent bundle T'M of M
is given by
Ha-aral, v-—{oal
\/g 3 4 5] I - \/§ 3 4 9
where 0; = 3%2 for i € {1,2,...,6}. Then DT = span{X,Y} is a holomorphic and DY =
span{U,V'} is a (proper) slant distribution with the slant angle 6 = Cosfl(%). Thus,

X=0, Y=0, U=

M is a proper semi-slant submanifold of (RS,.J,g). We easily observe both D7 and D’
are integrable. Let denote the integral submanifolds of DT and D? by MT and M?,
respectively. Let g7 and gg be the induced metrics on M7 and M? with respect to the

1
Kaehler metric go, respectively. We choose the conformal metric gy = —gp on M 9 Since
v
x =z and y = zo on M, the induced metric of M from the conformal Kaehler metric g is
ds® = (zy)?(dz? + dy?) + (2y)?(du® + dv?)
= 2%y°gr + 2°Y°go
= 2%y’gr + 2°y*0°gp .
Thus, M is a conformal-twisted product of (M7, g7) and (MY, g). So, M is a non-trivial

conformal-twisted product proper semi-slant submanifold in the g.c.K. manifold (RS, J, )
in the form ;M T xp, M? with conformal factor f = xy and twisting function b = xyv.

_ 1 1
Moreover, the Lee form of (R®,.J, g) is w = Z{dx + dy}. Consequently, the Lee vector
T Yy

field is
2 10 10
b= {xaﬂyay}

which is tangent to M7
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Lemma 4.2. Let M = fMT xp M? be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M, J,w,q). Then, for all V € L(M?Y), we have

wV)=0. (4.1)

Proof. Let M = ;M T %, MY be a conformal-twisted semi-slant submanifold of a g.c.K.
manifold (M,J,w,g) and V € L(M?) and X,Y € L(MT). Then using the exterior
differentiation formula (see, [29], p. 17), we have

3dUV, X,Y) = VX, Y)+ XQ(Y, V) +YQV, X)

-V, X,Y) - Q(X,Y],V) - Q([Y, V], X)
=Vy(X,JY) - Xg(JY,V)+Yg(V,JX)
—g([V,X],JY) —i—g(J[X,Y],V) —g([Y, V]?‘]X)

Here, we know ¢(JY,V) = g(V,JX) = 0, since M is a semi-slant submanifold. Also, by
(2.3), we have [V, X] = [Y,V] = 0 and by (2.2), we have [X,Y] = VXY — VIX. So

JIX,Y] € L(MT). Thus, we obtain
3dQ(V, X,Y) = Vg(X,JY)

g(Vv X, JY) +g(VvY, JX).

Again, using (2.3), we find
3dQUV, X,Y) = X(Inb)g(V,JY )+ Y(Inb)g(V,JX) = 0.
So, d2(V, X,Y) = 0. On the other hand, from (2.5) we have

AUV, X,Y) = wAQV,X,Y)
= w(V)QX,Y) +w(X)QY, V) +w(Y)Q(V, X)
w(V)g(X,JY).

Since g is non-degenerate, it follows that w(V) = 0. O

Lemma 4.3. Let M :JcMT Xy M? be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M, J,w,q). Then, for all X € L(MT), we have

w(X) =2X(Inb) . (4.2)

Proof. Let M = ;M T %, M? be a conformal-twisted product semi-slant submanifold of
a g.c.K. manifold (M, J,w,g) and U,V € £L(M?) and X € £L(MT). Then, we have
dUX, U, V) = XQU,V)+UQUV,X)+VQ(X,U)
= Xg(U,PV),
since [X, V] = [X, U] = 0 from (2.3) and [U, V] = V&V - V% U € £(M?) from (2.4). After
some calculation in view of (2.3), we obtain
3dQUX,U, V) =2X(Inb)g(U, PV) . (4.3)
On the other hand, we have
dQUX, U, V) =wAQUX,U,V)
= w(X)QU,V)+w0)QV,X) +w(V)QUX,U)
= w(X)g(U,PV).
from (2.5). Namely,
dUX,U, V) =w(X)g(U,PV) . (4.4)
Thus, the assertion follows from (4.3) and (4.4). O
Remark 4.4. In Kaehlerian case, we have w(X) = ZX(Inb) = 0, since w = 0. It
follows that twisting function b depends only on the points of M?. Then, we have gy =

297 ®b%gs. Then, M is a locally direct product of (Mr, g1) and (M, g2), where g1 = f2gr
and go = b%gy.
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Theorem 4.5. Let M = fMT xp MY be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M, J,w,g). Then M is a locally direct product manifold if and
only if the Lee vector field B is normal to M.

Proof. Let M be a direct product semi-slant submanifold of and (M7, g7) and (M?, gy),
where gg = cgy for some constant ¢. Then the induced metric tensor gys of M has the
form gy = gr @ Gp, where g7 and gy are the induced metrics on M7 and MY, respec-
tively. By Lemma 4.3, for any X € £(M7), we have 2X(Inb) = w(X) = 0, since b is a
constant function. With the help of (2.6), it follows that w(X) = ¢g(B,X) = 0. So B is
normal to M7. By this fact together with (4.1), we deduce that w(V) = g(B,V) = 0, for
V € L(M?). Also, B is normal to My. Thus B is normal to M.

Conversely, let B be normal to M. Then for any X € £L(M7T), (4.2) implies 2X (Inb) =
w(X) = ¢g(B,X) = 0. Which says us the twisting function depends only on the points
Mpy. Then the induced metric tensor gps of M has the form gy = f2g9r @ b*gr, where f
and g depend only on the points My and My, respectively. Hence, we conclude that M is
a locally direct product of (M, g1) and (Mg, g2), where g1 = f2gr and go = b2g. O

Remark 4.6 ([18, Proposition 3-b]). Let g be a pseudo Riemannian metric on the manifold
My x My and assume that the canonical foliations D and Ds intersect perpendicularly
everywhere. Then g is the metric of a twisted product 1 M; x s, My if and only if Dy is a
totally geodesic and D5 is a totally umbilic foliation.

Remark 4.7. Actually, twisted products and conformal-twisted products can be expressed
in terms of each other. Indeed, let (M; x, Ma, g) be a twisted product manifold, where
g = g1 ® b?>gy with twisting function b. Choosing conformal metric g; = f2g;, where
the positive smooth function f depends only on the points of M, the metric g is of the
form g = f231 @ b%ga. So, (M x3, Ms, g) is a conformal-twisted product of (M, g1) and
(Ma, g2). On the other hand, let (fM; x; Ma, g) be a conformal-twisted product manifold
with conformal factor f and twisting function b. Choosing conformal metric g, = f2gi,
the metric g is of the form g = g1 & b%go. Thus, (fM; xp, Mo, g) is a twisted product of
(M1, 1) and (M2, g2).

Now, we are ready to prove main theorem.

Theorem 4.8. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w, g).
Then M is a locally conformal-twisted product submanifold of type fMT xp M? if and only
if for any X € T(DT) and V € T(D?), we have

w(V) =0, (4.5)
w(X) = X(p), (46)

AijX—AvaX: %{W(FPV)X—W(FV)JX}
+ sin%fw(X)V

(4.7)

for some function p.

Proof. Let M be a conformal-twisted product submanifold of the g.c.K. manifold (M, .J,w, g)
of type fMT x, M?. The equations (4.5) is already obtained in Lemma 4.2. On the other
hand, we have w(X) = 2X(Inb) from Lemma 4.3. Thus, we get (4.6) for p = 2 Inb. Now,
for any X € L(MT) and V € L(M?), we write

T 0
ApyJX — Appy X = (AFVJX - AFPVX) + <AFVJX - AFPVX> ; (4.8)
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T
where (AFVJX — AvaX> is the tangent part of ApyJX — AppyX to MT and

0
<AFVJX — AFPVX) is the tangent part of ApyJX — AppyX to M?. Hence, for
any Y € L(M7T), using (2.2) and (4.1), we have

g(AFVJX — Appy X, Y) = ;{W(FPV)g(X,Y) — w(FV)g(JX, Y)}

from (3.6). Hence, it follows that

(AFVJX - AFpVX>T = ;{W(FPV)X — w(FV)JX} : (4.9)
Similarly, for any U € £(M?), using (2.3) and (4.2), we have

g(AFVJX — Appv X, U) = sin?0X (2 Inb)g(U,V)
from (3.7). Since U € £(M?) is arbitrary and the metric g is Riemann, it follows that
<AFVJX - AFPVX>0 = sin?0w(X)V . (4.10)

By using (4.8)~(4.10), we get (4.7).

Conversely, suppose that M is a semi-slant submanifold of a g.c.K. manifold (M, J,w, g)
such that (4.5)~(4.7) hold. Then, for any X € T'(DT) and U,V € I'(D?), using (4.5) and
(4.7), we obtain (3.6). Thus, by Theorem 3.2, the holomorphic distribution D7 is totally
geodesic. On the other hand, using (4.7), we deduce (3.8). Thus, by Theorem 3.4, the
slant distribution DY is integrable. Let M and M? be the integral manifolds of DT and
DY respectively and let denote by h” and h? the second fundamental forms of M7 and
MY in M, respectively. Then, for any X,Y € I'(DT) and V € T'(DY), using (2.9), we have

g(h"(X,Y),V) = g(VxY,V) .
Here, if we use (4.5) and (4.7), we deduce that
g(h"(X,Y),V) =0

from (3.6). Which means that M7 is totally geodesic in M. On the other hand, for any
X eI(DT) and U,V € T(DY), using (2.9), we have

g(*(U.V), X) = g(VuV, X) .
Here, using (4.6) and (4.7), we obtain
g(h’(U,V),X)=-X(Inb)g(U,V)
from (3.7). After some calculation, we obtain
g(h*(U,V),X) = —g(9(U, V)V (Ind), X) .
Hence, we conclude that
R(U,V) = g(U,V)(=V(Inb)) .

It means that M? is totally umbilic in M with parallel mean curvature vector field
—V(Inbd). Hence, by Remark 4.6 and Remark 4.7, we know that M is conformal-twisted
product fM T %, M? of a holomorphic submanifold M7 and a slant submanifold M? of
M, where M7 is a leaf of DT and MY is leaf of D? and b is a certain twisting function. [
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5. An inequality for conformal-twisted product semi-slant submanifolds
in the form ;M7 x, M’

In this section, we shall establish an inequality for the squared norm of the second
fundamental form of a conformal-twisted product semi-slant submanifold in the form
fMT xp M?, where M7 is a holomorphic and M? is a slant submanifold of a g.c.K.
manifold (M, J,w, g).

Lemma 5.1. Let M = MT xy MY be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M, J,w,g) and h be the second fundamental form of M in M. Then
we have
g(MX,Y), FV) = —59(X,Y)w(FV) , (5.1)
g(h(X,U), FV) = —w(JX)g(U,V) —w(X)g(U,PV) , (5.2)
where X,Y € L(MT) and U,V € £L(MY).

Proof. Let M =y M T x, M? be a conformal-twisted product semi-slant submanifold of
a g.c.K. manifold (M, J,w,g) and let X,Y € L(MT) and V € £(M?), since (M, J,w,j =
e~ %g) is a Kaehler manifold, using (2.12), (3.2) and (2.8), we have

Q(E(X,Y),FV) = g(@XKFV)

= §(VxY,JV) — §(VxY, PV)

= —§(VxJY,V) = §(VxY,PV)
= —§(VxJY,V) = §(VxY,PV).

Now, using (2.14), (2.15) and (4.1), we get (5.1). Next, let X,Y € L(MT) and V € L(M?),
since (M, J,w,§ = e ?g) is a Kaehler manifold, using (2.12), (3.2) and (2.8), we have

g(M(X,U),FV) = g(VuX,FV)
Now, using (2.3), (2.14), (2.15), (4.1) and (4.2), we get (5.2). O

Let M = M 75y, MY be a conformal-twisted product semi-slant submanifold of a g.c.K.
manifold (M, J,w, g). We choose a canonical orthonormal basis
{e1, s emy s €1, ey €y, €7, oy €5y, €15 00y €1 Of M such that {ey, ..., em, } is an orthonormal
basis of DT, {€y,...,én,} is an orthonormal basis of DY, {e], ..., e},,} is an orthonormal
basis of FD? and {¢1,...,¢} is an orthonormal basis of D. Here, m; = dim(DT), mg =

dim(D?) and | = dim(D).

Remark 5.2. Since D7 is a holomorphic distribution, {Jes, ..., Jen, } is also an orthonor-
mal basis of DT. Moreover, by (3.5), we observe that

{a; = secOPey,ay = —sechPey, ..., a2,,—1 = seclPeay,, , a2y, = —seclPeap,_1} is also an
orthonormal basis of DY and {cscfFeé, ..., cscOFeé,,, } is also an orthonormal basis of FDY,
where 6 is the slant angle of DY and my = 2ny = dim(M?).

Theorem 5.3. Let M = fMT xp MY be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M, J,w,g). Then we have
(i) The squared norm of the second fundamental form h of M satisfies

1
12 = B2 4 ma (1 macot? )[BT (53)

where my = dim(MT), my = dim(M?) and BFD’ s tangential part of B to FDY.
(ii) If the equality sign of (5.3) holds identically, then M? is also umbilic in the ambient
manifold M .
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Proof. The squared norm of the second fundamental form h can be written as
5> = [[R(DT, DT)|I? + [Ih(DT, D))||* + ||n(D?, D%)|*.

In view of decomposition (3.3), which can be explicitly written as follows:

mp M2 mz mi

HhH2 = Z Zg( 61”768 + Z Zg 67’761 2

r,s=11i=1 i,j=1r=1
m1 l mi1 ma 2 (54)

5 5D SRNTES 35 95 o I
r,s=1t=1 r=1i=1t=1

+[A(D?, D)%

Hence, we have
mi m2 ma My
HhH2 2 Z Zg( er,€s),€;) >+ z Zg (€i,er), 2 .
r,s=114=1 i,j=1r=1

By Remark 5.2, we obtain

mi1  Mm2 m2  Mmi

[n]]* > Z ZQ( (er,es), 24 Z Zg (€, ), CSCGFeJ)

r,s=114i=1 i,j=1r=1

Now, using (5.1) and (5.2), we get

mi1 mo
IR2 = 3 D0 D g (er es)w?(e))
r,s=11i=1
mo mi
+ csc?6 Z Z { (Jer)g*(Ei,€5) + wQ(eT)gQ(éi,Péj)}
i,0=1r=1
ms  mi
+2 csc?6 Z Z (Jer)g(es, €j)w(er)g(es, Pej).
i,j=1r=1
Using (2.6), we obtain
mi mo
1Al > 5 >0 D g% (eres)g?(B,e;)
r,s=1i=1
mo mi
+ csc?h Z Z{ (B, Jer)g (ei,ej)—}—gQ(B,eT)gQ(ei,Pej)}
S
+2 csc?6 Z Zg(B,Jer)g(éi,éj)g(B,e,ﬂ)g(éi,Péj).
i,j=1r=1
Here, the term
mo mi
Z 29(37Je?“)g(éi7éj)g(B>€T)g(éi>Péj)
ij=1r=1
mo  mi
Z Zg B, Je)g(B,e)g(€;, €;)g(ei, Pe;)
i,j=1r=1
mo mi
=— Z Zg (JB,e)g(B,er)g(€i, €5)g(€i, Pej)
i,j=1r=1

m2
= —g(JBT,BT) > g(ei,e;)g(é, Pej) =0,
i,j=1
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since g(JBT, BT) = 0. Thus, we arrive at

mi1  Mm2

HhH2Z 1 Z Zg er,€s)g B ,€)

r,s=11i=1
mo  mi

+ csc26 Z Z{ (B, Jer)g (ei,éj)+92(B7€r)92(éiapéj)}'

i,j=1r=1
Here, for i,j € {1,2,...,ma}, we have

_cos® if i # j,
(617Pe]) { 0 if 4 :,j7

since DY is a slant distribution with slant angle 6.

ma2

Consequently, Z (&, Peé;) = ma(mg —1) cos?. Thus, by direct calculation, we obtain
ij=1

the following inequality,

|R|? > imlHBFD@H2 + CSC20{m2HBTH2 + ma(mae — 1) 00329||BT||2} .

Rearrange the last inequality, we get the inequality (5.3). If the equality sign of (5.3) holds
identically, then we have h(D% DY) = 0 from (5.4). Namely, h vanishes on D?. Since D’
is a umbilic distribution on M, it follows that AM? is umbilic in M. ([l

6. Conformal-twisted product semi-slant submanifolds of a g.c.K. mani-
fold in the form M’ x, MT

In this section, we study conformal-twisted product semi-slant submanifolds in the form
M 0 %, MT with conformal factor f defined on M? and twisting function b of a g.c.K.
manifold, where M7 is a holomorphic and M? is a slant submanifold of the g.c.K. manifold.
We first give an (non-trivial) example of such a submanifold in a g.c.K. manifold.

Example 6.1. Let (#1,...,26) be natural coordinates of the six-dimensional Euclidean
space RS and let RS = {(21,...,26) € R® : 21, 29,25 # 0}. Then (R, J, go) is a Kaehler
manifold with usual Kaehler structure (J, gg). Now, we consider the Riemannian metric

g = €% gy conformal to Kaehler metric gy on R®, where 7 = (%)2. Then (RS, J, g) is
clearly a g.c.K. manifold. Let M be a submanifold given by
Z1=T, 22=Y, B3=Uu+V, 4=—-u+v, % =1u, 26:07

where z > 1 and y, u,v # 0. Then, the local frame field of the tangent bundle TM of M
is given by

1 1
X=0, Y=0, U=-—{08;-20 +a}, V:{a +a},
1 2 \/3{3 4 5} \/i 3 4

where 0; = 8 for i € {1,2,...,6}. Then DT = span{X,Y} is a holomorphic and DY =
span{U,V'} is a (proper) slant distribution with the slant angle 6 = cos_l(%). Thus,

M is a proper semi-slant submanifold of (Rﬁ, J,g). We easily observe both D" and DY
are integrable. Let denote the integral submanifolds of DT and D? by MT and M?,
respectively. Let g7 and gy be the induced metrics on M7 and M? with respect to the

1
Kaehler metric go, respectively. We choose the conformal metric gr = — g7 on M T Since
x
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v =23 —; on M , the induced metric of M from the conformal Kaehler metric g is

ds? = v*(du? + dv?) + v*(dz? + dy?)
= v?gg + vPgr
= v2gg + v%2%gr .

Thus, M is a conformal-twisted product of (M7, gr) and (M?, gp). So, M is a non-trivial
conformal-twisted product proper semi-slant submanifold in the g.c.K. manifold (RS, J, g)
in the foorm M =; M 9 xp, MT with conformal factor f = v and twisting function b = zv.

_ 1
Moreover, the Lee form of (RS, J, g) is w = Z{dv}. Consequently, the Lee vector field is
v
2 (10
B=—-{—-——
v2 { v Ov }

Lemma 6.2. Let M :JcMa xpy MT be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M, J,w,q). Then, for all V € L(M?), we have

w(V) = 2V(Ind) . (6.1)

which is tangent to M?.

Proof. The proof is similar to the proof of Lemma 4.3. So, we omit it. O

Lemma 6.3. Let M :JcMo xy M be a conformal-twisted product semi-slant submanifold
of a g.c.K. manifold (M, J,w,q). Then, for all X € L(M™), we have

w(X)=0". (6.2)
Proof. The proof is similar to the proof of Lemma 4.2. So, we omit it. O

Theorem 6.4. Let M be a proper semi-slant submanifold of a g.c.K. manifold (M, J,w, g).
Then M 1is a locally conformal-twisted product submanifold of type fMe xp M1 if and only
if for any X € T(DT) and V € T'(D?), we have

w(V) =V(p), (6.3)
w(X) =0, (6.4)

AFvJX—AvaX: %{W(FPV)X—W(FV)JX}
—V (1) X sin?0

(6.5)

for some function u.

Proof. Let M be a conformal-twisted product submanifold of the g.c.K. manifold (M, .J,w, g)
of type MY x, MT. The equations (6.3) is already obtained in Lemma 6.2 for = ZIn®.
On the other hand, we have w(X) = 0 from Lemma 6.3. Thus, we get (6.4). Now, for any
X € L(MT) and V € L(M?), we write

T 0
ApyJX — Appy X = (AFVJX — AFPVX> + (AFVJX — AFPVX) ; (6.6)

T
where (AFVJX — AvaX> is the tangent part of ApyJX — AppyX to MT and

0
<AFVJX — AFPVX) is the tangent part of ApyJX — AppyX to M?. Hence, for
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any Y € L(MT), using (2.2) and (6.1), we have
g(AFVJX — Appv X, Y) = —w(V)g(X,Y)sin?0
+§{w(FPV)g(X, V) —w(FV)g(JX, Y)}
from (3.6). Hence, it follows that
T
(AFVJX - AFPVX> = —w(V)sin20X + ;{W(FPV)X - w(FV)JX} . (6.7)
Similarly, for any U € £(M?), using (2.3) and (6.2), we have
9<AFVJX — Appv X, U) =—g(U,V)X(In f)

from (3.7). Since U € L(M?) is arbitrary and f depends only on the points of M?,
X(In f)=0. So

0
(AFVJX - AFPVX) =0 . (6.8)
Since 1 = 2 Inb, by using (6.6)~(6.8), we get (6.5).

Conversely, suppose that M is a semi-slant submanifold of a g.c.K. manifold (M, J,w, g)
such that (6.3)~(6.5) hold. Then, for any X € T'(DT) and U,V € I'(D?), using (6.4) and
(6.5), we obtain (3.9). Thus, by Theorem 3.5, the slant distribution DY is totally geodesic.
On the other hand, using (6.5), we deduce (3.10). Thus, by Theorem 3.7, the holomorphic
distribution D7 is integrable. Let MT and MY be the integral manifolds of DT and D?,
respectively and let denote by AT and h? the second fundamental forms of M7 and M?
in M, respectively. Then, for any X,Y € T'(DT) and V € T'(D?), using (2.9), we have

g(h"(X,Y),V) = g(VxY,V) .
Here, if we use (6.3) and (6.5), we deduce that
g(hT(Xv Y)7 V) = —V(ln b)g(Xv Y)

from (3.6). It means that M7 is totally umbilic in M with parallel mean curvature vector
field —V(Inb). On the other hand, for any X € I'(DT) and U,V € I'(D?), using (2.9), we
have

g(h*(U,V),X) = g(VuV.X) .
Here, using (6.4) and (6.5), we obtain
g(h?(U,V),X) =0
from (3.7). Hence, we conclude that
(U, V)=0 .

Which means that M? is totally geodesic in M. Hence, by Remark 4.6 and Remark 4.7,
we know that M is conformal-twisted product ;M 9 %, MT of a holomorphic submanifold
MT and a slant submanifold M? of M, where M7 is a leaf of DT and M? is leaf of DY
and b is a certain twisting function. O
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7. An inequality for conformal-twisted product semi-slant submanifolds
in the form ;MY x;, M7

In this section, we shall establish an inequality for the squared norm of the second
fundamental form of a conformal-twisted product semi-slant submanifold in the form
fMH xp MT, where M7 is a holomorphic and M? is a slant submanifold of a g.c.K.
manifold (M, J,w, g).

Lemma 7.1. Let M =y M? %y MT be a conformal-twisted product semi-slant submanifald
of a g.c.K. manifold (M, J,w, g) and h be the second fundamental form of M in M. Then
we have

g(MX,Y),FV) =w(V)g(X,JY) + w(PV)g(X,Y) — $w(FV)g(X,Y) , (7.1)
g(h(X,U),FV) =0, (7.2)

where X,Y € L(MT) and U,V € £L(MY).
Proof. The proof is similar to the proof of Lemma 5.1. So, we omit it. (|

Theorem 7.2. Let M = M? xy, MT be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M, J,w,q) and h be the second fundamental form of M in M.
If h(X,Y) € T(D) for all X,Y € L(MT) and Lee vector field B is tangent to M, then
M =; MO x, MT is a direct product manifold.

Proof. Let M =; M 9 %, MT be a conformal-twisted product semi-slant submanifold of a
g.c.K. manifold (M, J,w, g) and h be the second fundamental form of M in M. Let h € D
and Lee vector field B is tangent to M. Then, for any X,Y € £L(MT) and V € £(M?),
we find

gh(X,Y),FV)=w(V)g(X,JY)+w(PV)g(X,Y)=0 (7.3)
from (7.1), since w(FV) = 0. From (7.3), we find
wV)g(JX,Y) =w(PV)g(X,Y). (7.4)
In (7.4), if we write JX instead of X, we find
—w(V)g9(X,Y) =w(PV)g(JX,Y) (7.5)
and if we write PV instead of V' in (7.5), we find
—w(PV)g(X,Y) = w(P*V)g(JX,Y). (7.6)
After some calculation, we conclude that from (3.4),
cos’0w(V)g(JX,Y) = w(PV)g(X,Y). (7.7)

Using (7.4) and (7.7), we have
sin?0w(V)g(JX,Y) = 0. (7.8)

Since g(JX,Y) # 0, we find w(V) = 0. Using (6.1), we conclude that twisting function
b depends only on the points of MT. Then, metric tensor is of the form g = f2gy ® b2gr.
So M is direct product of (M?, g1) and (M7, go), where g1 = f2gg and go = b2gr. O

Theorem 7.3. Let M = fMe xp MT be a conformal-twisted product semi-slant subman-
ifold of a g.c.K. manifold (M, J,w,g) and the Lee vector field B is tangent to M. Then
we have

(i) The squared norm of the second fundamental form h of M satisfies

A2 = ma(1 + cos20) csc20|| BY||2 (7.9)

where my = dim(MT), my = dim(M?) and BY is tangential part of B to DP.
(ii) If the equality sign of (7.9) holds identically, then M? is also umbilic in the ambient
manifold M .
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Proof. The squared norm of the second fundamental form h can be written as
I8l[> = [[R(DT, D7) + [I(DT, D))||* + ||L(D?, D%)|*.

In view of decomposition (3.3), which can be explicitly written as follows:

mi ma m2 M1
B2 =3 glhler,es),e))’ + > Y glhler, &), €f)?
r,s=11i=1 i,j=1r=1
m1 l myp ma 1 2 (710)
+ Z Zg( eraes et +ZZ g ervez
r,s=1t=1 r=1i=1t=1
+[r(D?, D).
Hence, we have
mi1 mo ma2 Mmi
HhH2 2 Z Zg( (er,€s), 2+ Z Zg (€i,er), 2 .
r,s=114=1 i,j=1r=1

By Remark 5.2 and (7.2) we obtain

mi1  m2

[2]? > Z Zg (er,e5), csc OFE;)?

r,s=1i=1

Since w(FV) = g(B,FV) =0, using (7.1), we get

mi  ma

|h|2 > csc?6 Z 292(er,J63)w2(@)

r,s=11i=1
m2 mi

+ csc?6 Z Z W (Pé&)g* (e, es)

ij=1r=1
mo mq

+2csc?f Z Z g(er, Jes)w(Pe;)g(er, es).

i,j=1r=1

Using (2.6), we obtain

mi ma

|2 > csc?0 Z Zg (e,, Jes)g*(B, &)

r,s=1i=1
mi  ma2

+ csc26 Z Z g*(B, Pé;)g*(er, es)

r,s=11i=1
mi1 m2

+2csc?6 Z Zg(B, égler, Jes)g(B, Pé;)g(er, es).

r,s=1i=1

Here, the term

mp ma

Z Zg(Bvéi)g(eﬁJGS)Q(BvPG_i)g(ehes)

r,s=11i=1
mi1 M2

Z Zg B,ei)g(B, Pé;)gler, Jes)g(er, es)

r,s=11i=1
mi1 M2

=— > Y g(B.&)g(JB,&)gler, Jes)gler, es)

r,s=11i=1

= —g(JB, B) er 19(€r7 Jes)g(€r768) =0,
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since g(JB, B) = 0. Thus, we arrive at
mi mo

|R||2 > csc?f Z 292(6T,J65)92(B,éi)

r,s=11i=1
ma2
+csc?f Dot Z G*(B, P& g*(er, es).
i=1

Using Remark 5.2, we find
mi mo

|h||?> > csc?0 Z ZQQ(GT,J63)92<B,EZ‘)

r,s=11i=1
m2

mi
+ csc20 cos?0 Z Z d*(B, a;)g* (e, es).

r,s=11,7=1
Thus, by direct calculation, we obtain the following inequality,
|A]|2 > my cot?d|| B?||? + mq csc6|| BY||%.

Rearrange the last inequality, we get the inequality (7.9). If the equality sign of (7.9) holds
identically, then we have h(DY DY) = 0 from (7.10). Namely, h vanishes on DY, Since D?
is a umbilic distribution on M, it follows that M? is umbilic in M. O

Remark 7.4. Whether the Lee form w is exact or not does not change all results in this
paper. Thus, these results are also hold for locally conformal Kaehler case. For recent
results on the geometry of submanifolds in locally conformal Kaehler ambient space, see
[4,9,12,27,28].
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