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1. Introduction

An ideal I [1] on a space (X, τ) is a non-empty collection of subsets of X which satisfies the following
conditions.

1. A ∈ I and B ⊂ A imply B ∈ I and

2. A ∈ I and B ∈ I imply A ∪B ∈ I.

Given a space (X, τ) with an ideal I on X if ℘(X) is the set of all subsets of X, a set operator
(.)⋆ : ℘(X) → ℘(X), called a local function of A with respect to τ and I is defined as follows: for
A ⊂ X, A⋆(I, τ) = {x ∈ X : U ∩ A /∈ I for every U ∈ τ(x)} where τ(x) = {U ∈ τ : x ∈ U} [2]. The
closure operator defined by cl⋆(A) = A∪A⋆(I, τ) [3] is a Kuratowski closure operator which generates
a topology τ⋆(I, τ) called the ⋆-topology which is finer then τ . We will simply write A⋆ for A⋆(I, τ)
and τ⋆ for τ⋆(I, τ). If I is an ideal on X, then (X, τ, I) is called an ideal topological space or an ideal
space.

Some new notions in the concept of ideal nano topological spaces were introduced by Parimala et
al. [4, 5] and Rajasekaran et.al [6] were introduced nano B#-set and nano t#-set.

In this paper, we made an attempt to unveil to notions of nano B#g -closed sets and I
B
#
g

-closed sets

are introduce and their properties are discussed with suitable examples. They are characterizations
in the context of an ideal nanotopological spaces.
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2. Preliminaries

Definition 2.1. [7] Let U be a non-empty finite set of objects called the universe and R be an
equivalence relation on U named as the indiscernibility relation. Elements belonging to the same
equivalence class are said to be indiscernible with one another. The pair (U, R) is said to be the
approximation space. Let X ⊆ U .

1. The lower approximation of X with respect to R is the set of all objects, which can be for certain
classified as X with respect to R and it is denoted by LR(X). That is, LR(X) =

⋃
x∈U{R(x) :

R(x) ⊆ X}, where R(x) denotes the equivalence class determined by x.

2. The upper approximation of X with respect to R is the set of all objects, which can be possibly
classified as X with respect to R and it is denoted by UR(X). That is, UR(X) =

⋃
x∈U{R(x) :

R(x) ∩X 6= φ}.

3. The boundary region of X with respect to R is the set of all objects, which can be classified
neither as X nor as not - X with respect to R and it is denoted by BR(X). That is, BR(X) =
UR(X) − LR(X).

Definition 2.2. [8] Let U be the universe, R be an equivalence relation on U and τR(X) =
{U, φ,LR(X), UR(X), BR(X)} where X ⊆ U . Then τR(X) satisfies the following axioms:

1. U and φ ∈ τR(X).

2. The union of the elements of any sub collection of τR(X) is in τR(X).

3. The intersection of the elements of any finite subcollection of τR(X) is in τR(X).

Thus τR(X) is a topology on U called the nano topology with respect to X and (U, τR(X)) is called
the nano topological space. The elements of τR(X) are called nano-open sets (briefly n-open sets).
The complement of a n-open set is called n-closed.

In the rest of the paper, we denote a nano topological space by (U,N ), where N = τR(X). The
nano-interior and nano-closure of a subset A of U are denoted by n-int(A) and n-cl(A), respectively.

Definition 2.3. A subset A of a space (U,N ) is called a

1. nano semi-open [8] if H ⊆ n-cl(n-int(H)).

2. nano pre-open [8] if H ⊆ n-int(n-cl(H)).

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.4. A subset H of a space (U,N ) is called a

1. nano g-closed (briefly, ng-closed) [9] if n-cl(H) ⊆ G, whenever H ⊂ G and G is n-open.

2. nano gp-closed (briefly, ngp-closed) [10] if n-pcl(H) ⊆ G, whenever H ⊆ G and G is n-open.

3. nano gs-closed (briefly, ngs-closed) [11] if n-scl(H) ⊆ G, whenever H ⊆ G and G is nano
semi-open.

The complements of the above mentioned sets are called their respective closed sets.

Definition 2.5. [6] A subset H of a space (U, τR(X)) is called a

1. nano t#-set (briefly, nt#-set) if n-int(H) = n-cl(n-int(H)).

2. nano B#-set (briefly, nB#-set) if H = P ∩Q, where P is n-open and Q is nt#-set.

Remark 2.6. [6] In a space (U,N ), each n-open set is nB#-set.

Theorem 2.7. In a space (U,N ),

1. each n-closed set is ng-closed set. [9]
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2. each ng-closed set is ngp-closed set. [10]

3. each ng-closed set is ngs-closed set. [11]

A nano topological space (U,N ) with an ideal I on U is called [4] an ideal nano topological space
and is denoted by (U,N , I). Gn(x) = {Gn |x ∈ Gn, Gn ∈ N}, denotes [4] the family of nano open sets
containing x.

In future an ideal nano topological spaces (U,N , I) is referred as a space.

Definition 2.8. [4] Let (U,N , I) be a space with an ideal I on U . Let (.)⋆n be a set operator from ℘(U)
to ℘(U) (℘(U) is the set of all subsets of U). For a subset A ⊆ U , A⋆

n(I,N ) = {x ∈ U : Gn ∩ A /∈ I,
for every Gn ∈ Gn(x)} is called the nano local function (briefly, n-local function) of A with respect to
I and N . We will simply write A⋆

n for A⋆
n(I,N ).

Theorem 2.9. [4] Let (U,N , I) be a space and A and B be subsets of U . Then

1. A ⊆ B ⇒ A⋆
n ⊆ B⋆

n.

2. A⋆
n = n-cl(A⋆

n) ⊆ n-cl(A) (A⋆
n is a n-closed subset of n-cl(A)).

3. (A⋆
n)

⋆
n ⊆ A⋆

n.

4. (A ∪B)⋆n = A⋆
n ∪B⋆

n.

5. V ∈ N ⇒ V ∩A⋆
n = V ∩ (V ∩A)⋆n ⊆ (V ∩A)⋆n.

6. J ∈ I ⇒ (A ∪ J)⋆n = A⋆
n = (A− J)⋆n.

Theorem 2.10. [4] Let (U,N , I) be a space with an ideal I and A ⊆ A⋆
n, then A⋆

n = n-cl(A⋆
n) =

n-cl(A).

Definition 2.11. [4] Let (U,N , I) be a space. The set operator n-cl⋆ called a nano ⋆-closure is
defined by n-cl⋆(A) = A ∪A⋆

n for A ⊆ X.
It can be easily observed that n-cl⋆(A) ⊆ n-cl(A).

Theorem 2.12. [5] In a space (U,N , I), if A and B are subsets of U , then the following results are
true for the set operator n-cl⋆.

1. A ⊆ n-cl⋆(A).

2. n-cl⋆(φ) = φ and n-cl⋆(U) = U .

3. IfA ⊂ B, then n-cl⋆(A) ⊆ n-cl⋆(B).

4. n-cl⋆(A) ∪ n-cl⋆(B) = n-cl⋆(A ∪B).

5. n-cl⋆(n-cl⋆(A)) = n-cl⋆(A).

Definition 2.13. [12] A subset A of a space (U,N , I) is n⋆-dense in itself (resp. n⋆-perfect and
n⋆-closed) if A ⊆ A⋆

n (resp. A = A⋆
n, A

⋆
n ⊆ A).

Definition 2.14. [13] A subset A of a space (U,N , I) is called a weakly nano I-locally closed set
(briefly, W-nI-LC) if A = P ∩Q where P is n-open and Q is n⋆-closed.

Definition 2.15. [12] A subset A of a space (U,N , I) is called a nano Ig-closed (briefly nIg-closed)
if A⋆

n ⊆ B whenever A ⊆ B and B is n-open.

Theorem 2.16. [13] For a subset A of a space (U,N , I), the following are equivalent,

1. A is W-nI-LC,

2. A = G ∩ n-cl⋆(A) for few n-open set G,

3. n-cl⋆(A)−A = A⋆
n −A is n-closed,

4. (U −A⋆
n) ∪A = A ∪ (U − n-cl⋆(A)) is n-open,

5. A ⊂ n-int(A ∪ (U −A⋆
n)).
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3.On nano I
B

#
g

-closed sets

Definition 3.1. A subset H of a space (U,N ) is called a

1. nano B#g -closed set if (briefly, nB#g -closed set) n-cl(H) ⊆ G whenever H ⊆ G and G is nB#-set.

The complement of nB#g -open if Hc = U −H is nB#g -closed.

2. nano B#g -set if (briefly, nB
#
g -set) H = P ∩Q where P is ng-open and nt#-set.

3. nano B#gs-set if (briefly, nB
#
gs-set) H = P ∩Q where P is ngs-open and nt#-set.

4. nano B#gp-set if (briefly, nB
#
gp-set) H = P ∩Q where P is ngp-open and nt#-set.

Remark 3.2. The diagram holds for any subset of a space (U,N ):

nB#-set
↓

nB#gp-set ←− nB#g -set −→ nB#gs-set

In this diagram, none of the implications are reversible.

Example 3.3. Let U = {a, b, c, d, e} with U/R = {{e}, {a, b}, {c, d}} and X = {b, e}. Then N =
{φ,U, {e}, {a, b}, {a, b, e}}. Let the ideal be I = {φ, {a}, {b}, {a, b}}. Then

1. {c} is nB#g -set but not nB#-set.

2. {b, c, d, e} is nB#gp-set and nB#gs-set but not nB
#
g -set.

Definition 3.4. A subset H of a space (U,N , I) is called a

1. nI
B
#
g

-closed set if H⋆
n ⊆ P whenever H ⊆ P and P is nB#-set.

2. nI
B
#
gs

-closed set if H⋆
n ⊆ P whenever H ⊆ P and P is nB#gs-set.

3. nI
B
#
gp

-closed set if H⋆
n ⊆ P whenever H ⊆ P and P is nB#gp-set.

4. nIgp-closed set if H⋆
n ⊆ P whenever H ⊆ P and P is ngp-open.

5. nIgs-closed set if H⋆
n ⊆ P whenever H ⊆ P and P is ngs-open.

The complements of the above mentioned closed sets are called their respective open sets.

Theorem 3.5. Let (U,N , I) be a space and H ⊆ U , then

1. H is n⋆-closed ⇒ H is nI
B
#
g

-closed.

2. H is nI
B
#
g

-closed ⇒ H is nIg-closed.

3. H is nI
B
#
gp

-closed ⇒ H is nI
B
#
g

-closed.

4. H is nI
B
#
gs

-closed ⇒ H is nI
B
#
g

-closed.

5. H is nI
B
#
gs

-closed ⇒ H is nIgs-closed.

6. H is nI
B
#
gp

-closed ⇒ H is nIgp-closed.

7. H is nIgp-closed ⇒ H is nIg-closed.

8. H is nIgs-closed ⇒ H is nIg-closed.
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Proof. 1. Let H be n⋆-closed set and P be nB#-set in U such that H ⊆ P . Since H is n⋆-closed,
H⋆

n ⊆ H, so H⋆
n ⊆ P . Hence H is nI

B
#
g

-closed set.

2. Let H be nI
B
#
g

-closed set and H ⊆ P where P ∈ N . Since each n-open set is nB#-set, so P is

nB#-set. Since H is nI
B
#
g

-closed set, we obtain that H⋆
n ⊆ P and hence H is nIg-closed set.

3. It follows from Remark 3.2 and Definition 3.4.

4. It follows from Remark 3.2 and Definition 3.4.

5. Let H ⊆ P where P is ngs-open set in U . Since each ngs-open set is nB#gs-set, so P is nB#gs-set.
Since H is nI

B
#
gs

-closed set, we have H⋆
n ⊆ P . Hence H is nIgs-closed set.

6. Let H ⊆ P where P is ngp-open set in U . Since each ngp-open set is nB#gp-set, so P is nB#gp-set.
Since H is nI

B
#
gp

-closed set, we have H⋆
n ⊆ P . Hence H is nIgp-closed set.

7. It follows from Theorem 2.7 and Definition 3.4(4).

8. It follows from Theorem 2.7 and Definition 3.4(5).

Remark 3.6. These relations are shown in the diagram.

n⋆-closed
↓

nI
B
#
gp

-closed −→ nI
B
#
g

-closed ←− nI
B
#
gs

-closed

↓ ↓ ↓
nIgp-closed −→ nIg-closed ←− nIgs-closed

The converses of each statement in Theorem 3.5 are not true as shown in the following Examples.

Example 3.7. In Example 3.3, Then

1. {c} is nI
B
#
g

-closed but not n⋆-closed.

2. {d} is nI
B
#
g

-closed but not nI
B
#
gp

-closed.

3. {a, c} is nI
B
#
g

-closed but not nI
B
#
gs

-closed.

4. {b, c, d} is nIgp-closed but not nI
B
#
gp

-closed.

5. {a, e} is nIgs-closed but not nI
B
#
gs

-closed.

6. {c} is nIg-closed but not nIgp-closed.

7. {d} is nIg-closed but not nIgs-closed.

Example 3.8. Let U = {a, b, c, d} with U/R = {{b}, {d}, {a, c}} and X = {c, d}. Then N =
{φ,U, {d}, {a, c}, {a, c, d}}. Let the ideal be I = {φ, {d}}. Then

{b, c} is nIg-closed but not nI
B
#
g

-closed.

Remark 3.9. The following Example shows that the family of nB#-sets and the family of nI
B
#
g

-closed

sets are independent of a space (U,N , I).

Example 3.10. In Example 3.3, then

1. {e} is nB#-set but not nI
B
#
g

-closed.

2. {a} is nI
B
#
g

-closed but not nB#-set.

Theorem 3.11. If H is both nB#-set and nI
B
#
g

-closed set, then H is n⋆-closed.
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Proof. Let H be a both nB#-set and nI
B
#
g

-closed set. Then H⋆
n ⊆ H, whenever H is nB#-set and

H ⊆ H. Hence H is n⋆-closed.

Theorem 3.12. If A and B are nI
B
#
g

-closed sets, then A ∪B is nI
B
#
g

-closed set.

Proof. Let A ∪B ⊆ U , where U is nB#-set. Since A and B are nI
B
#
g

-closed, A⋆
n ⊆ U and B⋆

n ⊆ U ,

whenever A ⊆ U,B ⊆ U and U is nB#-set. Therefore, (A ∪ B)⋆n = A⋆
n ∪ B⋆

n ⊆ U . Hence A ∪ B is
nI

B
#
g

-closed set.

Remark 3.13. The intersection of two nI
B
#
g

-closed sets but not nI
B
#
g

-closed set.

Example 3.14. In Example 3.3, H = {c, e} and K = {d, e} are nI
B
#
g

-closed. But H ∩ K = {e} is

not nI
B
#
g

-closed.

Theorem 3.15. If A is nI
B
#
g

-closed set such that A ⊆ B ⊆ A⋆
n, then B is also nI

B
#
g

-closed set.

Proof. Let G be nB#-set in U such that B ⊆ G. Then A ⊆ G. Since A is nI
B
#
g

-closed set, A⋆
n ⊆ G.

Now B⋆
n ⊆ (A⋆

n)
⋆
n ⊆ A⋆

n ⊆ G. Therefore B is also nI
B
#
g

-closed set.

Proposition 3.16. For any space (U,N , I), each singleton {x} of U is nB#-set.

Proof. Let x ∈ U . If {x} ∈ N , then {x} is nB#-set. If {x} /∈ N , then n-int({x}) = φ =
n-cl(n-int({x})), so {x} is nB#-set.

Corollary 3.17. For each x ∈ U, {x} is nI
B
#
g

-closed set if and only if {x} is n⋆-closed set.

Proof. Necessity: Let {x} be nI
B
#
g

-closed set. Since {x} is both nB#-set and nI
B
#
g

-closed set, then

{x} is n⋆-closed.
Sufficiency: Let {x} be n⋆-closed set. We know that each n⋆-closed set is nI

B
#
g

-closed set. There-

fore {x} is nI
B
#
g

-closed set.

Theorem 3.18. Let A be nI
B
#
g

-closed set. Then A⋆
n−A does not contain any non-empty complement

of nB#-set.

Proof. Let A be nI
B
#
g

-closed set. Suppose that F is the complement of nB#-set and F ⊆ A⋆
n − A.

Since F ⊆ A⋆
n−A ⊆ U−A,A ⊆ U−F and U−F is nB#-set. Therefore, A⋆

n ⊆ U−F and F ⊆ U−A⋆
n.

However, since F ⊆ A⋆
n −A, we have F = φ.

Theorem 3.19. For a subset A of a space (U,N , I), the following are equivalent.

1. A is n⋆-closed.

2. A is W-nI-LC and nI
B
#
g

-closed.

Proof. (1)⇒(2). Obvious.
(2)⇒(1). Since A is W-nI-LC, by Theorem 2.16, A = G ∩ n-cl⋆(A), where G is n-open in U .

So, A ⊆ G and G is nB#-set in U . Since A is nI
B
#
g

-closed, A⋆
n ⊆ G and A⋆

n ∪ A ⊆ G. Therefore

n-cl⋆(A) ⊆ G ∩ n-cl⋆(A) = A. Hence A is n⋆-closed set in U .

Remark 3.20. The following Example shows that the family of W-nI-LC and the family of nI
B
#
g

-

closed sets are independent of a space (U,N , I).

Example 3.21. In Example 3.3, then

1. {e} is W-nI-LC but not nI
B
#
g

-closed.

2. {c} is nI
B
#
g

-closed but not W-nI-LC.

Theorem 3.22. Let (U,N , I) be a space and A ⊆ U . Then A is nI
B
#
g

-open if and only if F ⊆

n-int⋆(A) whenever F is the complement of nB#-set and F ⊆ A.
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Proof. Suppose A is nI
B
#
g

-open. If F is the complement of nB#-set and F ⊆ A, then U−A ⊆ U−F

and so (U −A)⋆n ⊆ U −F and [(U −A)∪ (U −A)⋆n] ⊆ [U −F ]∪ [U −A]. Hence n-cl⋆(U −A) ⊆ U −F .
Therefore F ⊆ n-int⋆(A).

Conversely, suppose the condition holds. Let G be nB#-set such that U−A ⊆ G. Then U−G ⊆ A
and U − G is the complement of nB#-set. By assumption, U − G ⊆ n-int⋆(A) which implies that
n-cl⋆(U −A) ⊆ G and (U −A)⋆n ⊆ G. Therefore U −A is nI

B
#
g

-closed and so A is nI
B
#
g

-open.

Theorem 3.23. Let (U,N , I) be a space and A ⊆ U . If A is nI
B
#
g

-open and n-int⋆(A) ⊆ B ⊆ A,

then B is nI
B
#
g

-open.

Proof. It follows from Theorem 3.15.

Theorem 3.24. Let (U,N , I) be a space. Then each subset of U is nI
B
#
g

-closed if and only if each

nB#-set is n⋆-closed.

Proof. (⇒) Let G ⊆ U be any nB#-set. Since G is both nB#-set and nI
B
#
g

-closed, by Theorem

3.11, G is n⋆-closed.
(⇐) Let A ⊆ U and G is nB#-set such that A ⊆ G, then A⋆

n ⊆ G⋆
n ⊆ G. Therefore A is nI

B
#
g

-closed
set.
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