
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 51 (1) (2022), 253 – 272

DOI : 10.15672/hujms.802601

Research Article

Distribution of test statistics under parameter
uncertainty for time series data: an application to

testing skewness, kurtosis and normality

Anil K. Bera1, Osman Doğan∗1, Süleyman Taşpınar2
1Department of Economics, University of Illinois at Urbana-Champaign (UIUC), U.S.A.

2Department of Economics, Queens College, The City University of New York, U.S.A.

Abstract
In this paper, we provide a general result under some high level assumptions that shows
how to account for the parameter uncertainty problem in test statistics formulated with
the quasi maximum likelihood (QML) estimator. We use our general result to develop
various test statistics for testing skewness, kurtosis and normality for time series data. We
show that the asymptotic distributions of our test statistics coincide with the asymptotic
distributions of some tests suggested in the literature. Thus, our general result provides
a unified approach for test statistics formulated with the QML estimator for time series
data.
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1. Introduction
The parameter uncertainty problem arises when the asymptotic distribution of a given

test statistic
√
nTn(yn, θ̂n), where θ̂n is a consistent estimator of the true parameter

vector θ0, does not coincide with the asymptotic distribution of the unfeasible version√
nTn(yn, θ0) [4, 20]. To obtain the asymptotic distribution of

√
nTn(yn, θ̂n), where θ̂n

is the maximum likelihood estimator (MLE) of θ0, Pierce [26] provides a simple correc-
tion method that shows how to adjust the asymptotic distribution of

√
nTn(yn, θ0) when

the expectation of Tn(yn, θ0) is free of θ0. His method also provides a condition un-
der which the parameter uncertainty problem is asymptotically irrelevant for inference
about

√
nTn(yn, θ0), i.e., the asymptotic distribution of

√
nTn(yn, θ̂n) coincides with that

of
√
nTn(yn, θ0). However, the Pierce correction may not hold in the quasi maximum like-

lihood (QML) setting considered in [35, 37], and therefore can lead to incorrect inference
about

√
nTn(yn, θ0).

There are alternative methods in the literature to account for the parameter uncer-
tainty problem [4–6, 8, 19, 22, 23, 29, 31–34, 36, 38, 39]. Randles [29] studies the parameter
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uncertainty problem through the classical delta method and show when the problem is
asymptotically irrelevant for the U-statistics. For the popular specification tests such as
the Lagrange Multiplier test for nested hypotheses, the versions of Hausman [13]’s specifi-
cation tests and White [35]’s information matrix test, the parameter uncertainty problem
is accounted for by implementing these tests alternatively through ordinary least-squares
regressions [18, 22, 23, 30, 31, 34, 36, 38]. As elaborated in [38], it is important to note that
the validity of regression based procedures relies on certain auxiliary assumptions holding
in addition to the relevant null hypothesis. Moreover, the finite sample properties of re-
gression based procedures can be poor and highly misleading in some cases [11, 25]. The
parameter uncertainty problem can also affect out-of-sample inference regarding the mo-
ments of functions of out-of-sample forecasts and forecast errors in parametric forecasting
models. In these models, the parameter uncertainty problem is asymptotically irrelevant
only when the expected value of gradient of moment functions is zero or the limiting ratio
of the size of the prediction sample to that of regression sample is zero [19,32,33].

In the generalized method of moments (GMM) framework, the moment conditions can
be adjusted so that they become robust against the parameter uncertainty problem [4–6].
Bontemps and Meddahi [5] show that the empirical moment functions formulated as lin-
ear combinations of Hermite polynomials are robust against the parameter uncertainty
problems. Moreover, the Hermite polynomials associated with the distribution of a ran-
dom variable have zero mean if and only if the random variable has a standard normal
distribution [5,9]. These results suggest that the empirical moments based on the Hermite
polynomials can be used in the GMM framework to test the null hypothesis of normality.
In particular, the JB test of [14] coincides with the joint test based on the third and fourth
Hermite polynomials [5,15]. More recently, Bontemps [4] suggests a method based on the
oblique projection for transforming any moment function into a robust moment function,
i.e., a moment function that is robust against the parameter uncertainty problem. The
approach in [4] is only valid for the moment functions that satisfy an information matrix-
type equality.∗ Though these approaches provide moment based tests that are simple to
implement, it is not clear how to choose the number of moment functions that can lead
to an optimal test.

Recently, Bera et al. [3] revisit the Pierce correction method and show how it can
be extended to the QML setting considered in [35, 37] under some primitive conditions
imposed on the density function and the test statistics. In this paper, we derive their main
result under some high-level assumptions. Our general result indicates that the parameter
uncertainty problem is asymptotically irrelevant, i.e., both

√
nTn(yn, θ̂n) and

√
nTn(yn, θ0)

have the same asymptotic distribution, when the expectation of gradient of test statistic
is zero. We then use our result to develop various test statistics for testing skewness,
kurtosis and normality for time-series data. We compare our tests with those suggested in
[2], and analytically show that the asymptotic distributions of our tests coincide with the
asymptotic distributions of their tests. Thus, our analysis demonstrates that various test
statistics designed for testing skewness, kurtosis and normality fall under one category
and our general result can be applied to all of them.

The rest of this paper proceeds as follows. In Section 2, we revisit the QML framework
considered in [35, 37] and define the QML estimator (QMLE) under some high level as-
sumptions. In this section, following [3], we revisit the Pierce correction method and show
how to adjust it in the QML setting for certain type of test statistics. In Section 3, we
revisit the data generating process (DGP) considered in [2] and [14], and use our result

∗In terms of our notation in Section 2, this information matrix-type equality is stated as P
′
n(θ0, ψ0) =

−Dn(θ0). Also note that the analysis in [4] requires that the moment functions identify the parameter
vector and satisfy a CLT condition.
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to develop various test statistics for testing normality, skewness and kurtosis for time se-
ries data. In Section 4, we consider a Monte Carlo study to investigate the finite sample
size and power properties of our suggested tests. In Section 5, we conclude with some
directions for future studies. We collect some technical results in an appendix.

2. The asymptotic variance formula in the QML setting
In this section, following [3], we state a general result in the QMLE framework for

the asymptotic distribution of certain test statistics. We will then use this result to
derive our suggested test statistics for skewness, kurtosis and normality in Section 3. For
completeness, we first state the assumptions that are required to define the QMLE. The
DGP is characterized by the following assumption.

Assumption 2.1. Let (Ω,F,P0) be a complete probability space, where Ω = Rν∞ ≡
×∞
t=1Rν , ν ∈ N, and F is the Borel σ-field generated by the finite dimensional cylinder sets

of Ω. The observed data are a realization of the stochastic process defined by Y = {Yt :
Ω −→ Rν , t = 1, 2, . . .}.

We use Y n = (Y ′
1 , Y

′
2 , . . . , Y

′
n)′ to denote a random sample of size n, and yn = (y′

1, y
′
2, . . . ,

y
′
n)′ to denote a realization of Y n. The probability measure Pn0 governing the behav-

ior of Y n is defined as the restriction of P0 to the measurable space (Rνn,B(Rνn)) by
Pn0 (B) = P0(Y n ∈ B), where B ∈ B(Rνn) and B(Rνn) is the Borel σ-field generated by
the open sets of Rνn ≡ ×n

t=1Rν . Pn0 assumes a Radon-Nikodým density under the following
assumption.

Assumption 2.2. Let µn be a σ-finite measure defined on (Rνn,B(Rνn)) for n ∈ N.
Then, Pn0 is absolutely continuous with respect to µn.

Under Assumption 2.2, the Radon-Nikodým theorem ensures the existence of a measur-
able non-negative Radon-Nikodým density gn = dPn0/dµn such that Pn0 (B) =

∫
B g

ndµn
for all B ∈ B(Rνn). Thus, given µn, Pn0 will be known if we know gn. To this end, we
assume an approximation to gn based on the parametric stochastic specification defined
by S = {ft : Rνt × Θ −→ R+, Θ ⊆ Rp, p ∈ N, t = 1, 2, . . .}, where ft(·, θ) is measurable-
B(Rνt) for all θ ∈ Θ. Here, S is called a “specification for Y ”, and is assumed to satisfy
the following assumption.

Assumption 2.3. For each t, the function ft : Rνt × Θ −→ R+ satisfies the following
conditions: (i) ft(·, θ) is measurable-B(Rνt) for all θ ∈ Θ, where Θ is a compact subset
of Rp, and (ii) ft(Y t, ·) is continuous on Θ a.s. -P0, i.e., there exists a set Bt ∈ B(Rνt)
such that ft(yt, ·) is continuous on Θ for all yt ∈ Bt and Pt0(Bt) = 1.

Under Assumption 2.3, fn(yn, θ) =
∏n
t=1 ft(yt, θ) is called the quasi likelihood function

generated by S and can be viewed as an approximation to gn(yn). The divergence or
discrepancy of fn from gn can be measured by the Kullback-Leibler Information Criterion
(KLIC) given by

I(gn : fn; θ) =
∫
Sn

(
ln gn(yn)
fn(yn, θ)

)
gn(yn)dµn(yn)

=
∫
Sn

(ln gn(yn)) gn(yn)dµn(yn) −
∫
Sn

(ln fn(yn, θ)) gn(yn)dµn(yn)

= E (ln gn(Y n)) − E (ln fn(Y n, θ)) , (2.1)

where Sn = {yn : gn(yn) > 0}. The result in Equation (2.1) indicates that the KLIC min-
imizer θ is the value that maximizes E (ln fn(Y n, θ)). Thus, we can defined the QMLE θ̂n
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as the parameter vector that maximizes the estimated version of E (ln fn(Y n, θ)), namely

θ̂n = argmaxθ∈Θ ln fn(Y n, θ) = argmaxθ∈Θ

n∑
t=1

ln ft(Y t, θ). (2.2)

Assumptions 2.1 and 2.2 ensure that θ̂n exists almost surely. To establish the large sample
properties, namely, the consistency and asymptotic normality of θ̂n, we adopt the following
assumptions.

Assumption 2.4. (i) E
(
ln ft(Y t, θ)

)
exists and is finite for all t. (ii) E

(
ln ft(Y t, θ)

)
is

continuous on Θ for all t. (iii) The sequence {ln ft(Y t, θ)} obeys the strong uniform law
of large numbers (ULLN).

Assumption 2.5. (i) The sequence {E
(
n−1 ln fn(Y n, θ)

)
} is O(1) uniformly on Θ. (ii)

{E
(
n−1 ln fn(Y n, θ)

)
} has the identifiably unique maximizers θ⋆ ≡ {θ⋆n}. (iii) θ⋆ ≡ {θ⋆n}

lie in the interior of Θ uniformly in n.

Assumption 2.6. (i) ft(Y t, θ) is continuously differentiable of order 2 on Θ a.s.-P0 for
all t, i.e., there exists a set Ft ∈ B(Rνt) such that ft(yt, ·) is continuously differentiable of
order 2 on Θ for all yt ∈ Ft and Pt0(Ft) = 1 for each t. (ii) E

(
n−1∇ ln fn(Y n, θ)

)
< ∞

for all n and θ ∈ Θ, where ∇ is the gradient operator with respect to θ.

Assumption 2.7. (i) E
(
n−1∇2 ln fn(Y n, θ)

)
< ∞ for all n and θ ∈ Θ.

(ii) E
(
n−1∇2 ln fn(Y n, ·)

)
is continuous on Θ uniformly in n. (iii) The sequence

{∇2 ln ft(Y t, θ)} obeys the strong ULLN.

Assumption 2.8. The sequence {n−1/2∇ ln ft(Y t, θ⋆)} obeys the central limit theorem
(CLT) with the covariance matrix

{
Bn(θ⋆) ≡ Var

(
n−1/2∑n

t=1 ∇ ln ft(Y t, θ⋆)
)}

, where
{Bn(θ⋆)} is O(1) and positive definite uniformly in n.

Assumption 2.9.
{
An(θ⋆) ≡ −E

(
n−1∇2 ln fn(Y n, θ⋆)

)}
is O(1) and positive definite

uniformly in n.

The strong consistency result, namely, θ̂n−θ⋆ −→ 0 a.s.-P0, follows from Assumptions 2.1,
2.3, 2.4 and 2.5 (ii). It follows from Assumption 2.8 that B−1/2

n (θ⋆)n−1/2∑n
t=1 ∇ ln ft(Y t, θ⋆)

A∼ N [0, Ip], where A∼ denotes the asymptotic distribution and Ip is the p×p identity matrix.
Then, the asymptotic normality property of QMLE follows from Assumptions 2.1, 2.3 and
2.4-2.9.∗ If there exists θ0 in Θ such that fn(yn, θ0) = gn(yn) for all yn ∈ Rνn, then the
parametric stochastic specification S is said to be correct in its entirety for Y on Θ with
respect to µn [37]. When S is correct in its entirety, θ̂n defined in Equation (2.2) is called
the MLE, and the information matrix equality An(θ0) = Bn(θ0) holds.

Next, we describe the test statistic considered in this paper. We assume that the test
statistic has the following form

Tn(yn, θ̂n) = 1
n

n∑
t=1

ψt(yt, θ̂n), (2.3)

where the vector-valued test indicator function ψt : Rνt × Θ −→ Rq satisfies the conditions
in the following assumptions.

Assumption 2.10. (i) ψt(·, θ) is measurable-B(Rνt) for all t and θ ∈ Θ, where Θ is a
compact subset of Rp. (ii) ψt(Y t, ·) is continuous on Θ a.s.-P0, i.e., there exists a set
At ∈ B(Rνt) such that ψt(yt, ·) is continuous on Θ for all yt ∈ At and Pt0(At) = 1. (iii)
E
(
ψt(Y t, θ⋆)

)
= ψ⋆ is independent of θ⋆ for all t, where ψ⋆ ∈ Rq.

∗The literature provides various primitive conditions imposed on {ft} and {Yt} for ensuring these
theoretical properties. For a summary of these results, the reader is referred to [7, 27,28,37].
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Assumption 2.11. The function ψt(Y t, θ) is continuously differentiable on Θ a.s.-P0 for
all t, i.e., there exists a set Kt ∈ B(Rνt) such that ψt(yt, ·) is continuously differentiable
on Θ for all yt ∈ Kt and Pt0(Kt) = 1 for each t.

Assumption 2.12. (i) E
(
ψt(Y t, θ)

)
exists and is finite for all t. (ii) E

(
ψt(Y t, θ)

)
is

continuous on Θ for all t. (iii) The sequence {ψt(Y t, θ)} obeys the strong ULLN.

Assumption 2.13. (i) E
(
∇ψt(Y t, θ)

)
< ∞ for all t and θ ∈ Θ. (ii) E

(
∇ψt(Y t, ·)

)
is

continuous on Θ uniformly in n. (iii) The sequence {∇ψt(Y t, θ)} obeys the strong ULLN.

Assumption 2.14. The sequence {n−1/2∇ψt(Y t, θ⋆) − ψ⋆} obeys the central limit theo-
rem (CLT) with the covariance matrix

{
Cn(θ⋆, ψ⋆) ≡ Var

(
n−1/2∑n

t=1(ψt(Y t, θ⋆) − ψ⋆)
)}

,
where {Cn(θ⋆, ψ⋆)} is O(1) and positive definite uniformly in n.

Assumptions 2.10-2.14, except 2.10(iii), are counterparts to those assumed for {ft(Y t, θ)}
and ensure the asymptotic normality for the test statistic. Under these assumptions, our
test indicator function can be augmented with the score functions to form a vector of esti-
mating equations. Thus, we can determine the asymptotic distribution of our test statistic
as a by-product of the likelihood estimation. Pierce [26] suggests Assumption 2.10(iii) to
reach a simple variance formula for the test statistic in the ML setting. Our ensuing
analysis will show that this assumption is not enough to obtain the Pierce formula in the
QML setting, because the information matrix equality does not hold in the QML setting.
When S is correct in its entirety, we express Assumption 2.10(iii) as E

(
ψt(Y t, θ0)

)
= ψ0,

where ψ0 ∈ Rq. Assumption 2.12 and Lemma A.1 in Appendix A ensure that ψ̂n−ψ⋆ −→ 0
a.s.-P0, where ψ̂n = Tn(Y n, θ̂n).

Let

Pn(θ⋆, ψ⋆) = E

( 1√
n

n∑
t=1

∂ ln ft(Y t, θ⋆)
∂θ

)
×
(

1√
n

n∑
t=1

(
ψt(Y t, θ⋆) − ψ⋆

))′
and

Dn(θ⋆) = E
(
n−1

n∑
t=1

∂ψt(Y t, θ⋆)
∂θ′

)
.

In the following proposition, we provide a general result on the joint asymptotic distribu-
tion of

√
n(Tn(Y n, θ̂n) − ψ⋆) and

√
n(θ̂n − θ⋆) in the QML setting.

Proposition 2.15. Under Assumptions 2.1, 2.3 and 2.4-2.14, the asymptotic joint dis-
tribution of

√
n(Tn(Y n, θ̂n) − ψ⋆) and

√
n(θ̂n − θ⋆) is given by( √

n(θ̂n − θ⋆)√
n(Tn(Y n, θ̂n) − ψ⋆)

)
A∼ N

[
0,
(
A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆) V
′
n(θ⋆, ψ⋆)

Vn(θ⋆, ψ⋆) Sn(θ⋆, ψ⋆)

)]
, (2.4)

where

Vn(θ⋆, ψ⋆) = Dn(θ⋆)A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆) + P
′
n(θ⋆, ψ⋆)A−1

n (θ⋆), (2.5)

Sn(θ⋆, ψ⋆) = Cn(θ⋆, ψ⋆) + Dn(θ⋆)A−1
n (θ⋆)B(θ⋆)A−1

n (θ⋆)D′
n(θ⋆) + P

′
n(θ⋆, ψ⋆)A−1

n (θ⋆)D′
n(θ⋆)

+ Dn(θ⋆)A−1
n (θ⋆)Pn(θ⋆, ψ⋆). (2.6)

Proof. See Appendix A. �

Proposition 2.15 extends [3] to our setting, and thus provides a generalization of the
asymptotic variance formula suggested by [26] to the QML setting. When S is correct
in its entirety, our asymptotic variance formula in Equation(2.6) reduces to the Pierce
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formula under Assumption 2.10(iii). To see this, consider ∂E(T (Y n,θ))
∂θ′

∣∣
θ0

= 0, which can be
expressed as

∂E (T (Y n, θ))
∂θ′

∣∣∣∣
θ0

= n−1
n∑
t=1

∂E(ψt(Y t, θ))
∂θ′

∣∣∣∣
θ0

=
∫
n−1

n∑
t=1

∂ψt(yt, θ)
∂θ′

∣∣∣∣
θ0

× fn(yn, θ0)dµn(yn)

+
∫ ( 1√

n

n∑
t=1

ψt(yt, θ)
)(

1√
n

∂ ln fn(yn, θ)
∂θ

∣∣∣∣
θ0

)′

fn(yn, θ0)dµn(yn) = 0.

(2.7)

Since E
(
∂ log fn(Y n,θ)

∂θ

∣∣
θ0

)
= 0 holds under Assumption 2.5, Equation (2.7) can be expressed

as∫
n−1

n∑
t=1

∂ψt(ytn, θ)
∂θ′

∣∣∣∣
θ0

× fn(yn, θ0)dµn(yn)

+
∫ ( 1√

n

n∑
t=1

(ψt(yt, θ) − ψ0)
)(

1√
n

n∑
t=1

∂ ln ft(yt, θ)
∂θ

∣∣∣∣
θ0

)′

fn(yn, θ0)dµn(yn) = 0. (2.8)

The result in Equation (2.8) gives the following information matrix type equality [21, p.217,
Equation (14)]

P
′
n(θ0, ψ0) = −Dn(θ0). (2.9)

Also, if S is correct in its entirety, then it follows from the information matrix equality
that

Sn(θ0, ψ0) = Cn(θ0, ψ0) + Dn(θ0)A−1
n (θ0)D′

n(θ0) + P
′
n(θ0, ψ0)A−1

n (θ0)D′
n(θ0)

+ Dn(θ0)A−1
n (θ0)Pn(θ0, ψ0). (2.10)

Then, using Equations (2.9) in (2.10), we obtain the simple asymptotic variance formula
suggested by [26] in the ML setting:

Sn(θ0, ψ0) = Cn(θ0, ψ0) − Dn(θ0)A−1
n (θ0)D′

n(θ0). (2.11)

Remark 2.16. In the QML setting, Sn(θ⋆, ψ⋆) in Equation (2.6) indicates that the pa-
rameter uncertainty problem is asymptotically irrelevant for inference about

√
nTn(yn, θ⋆)

when Dn(θ⋆) = 0 holds. Similarly, when Dn(θ0) = 0 holds in Equation (2.11), the asymp-
totic covariance of both

√
nTn(yn, θ̂n) and

√
nTn(yn, θ0) is given by Cn(θ0, ψ0) in the ML

setting.

Remark 2.17. To estimate the elements of the covariance matrix in Proposition 2.15, we
need consistent estimators of An(θ⋆), Bn(θ⋆), Cn(θ⋆, ψ⋆), Dn(θ⋆) and Pn(θ⋆, ψ⋆). We can
use the plug-in method for An(θ⋆) and Dn(θ⋆), and a kernel type estimator [1, 10, 24] for
Bn(θ⋆), Cn(θ⋆, ψ⋆) and Pn(θ⋆, ψ⋆).

3. Testing skewness, kurtosis and normality
In this section, we show how our result can be used to determine the asymptotic dis-

tribution of the omnibus test for normality, the skewness test statistic in the presence of
excess kurtosis, and the kurtosis test statistic in the presence of asymmetry. Following [2],
we consider the following DGP

yt = µ0 + εt, t = 1, . . . , n, (3.1)
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where µ0 is the unknown mean of yt and εt is an ergodic strong stationary process with
mean zero and variance σ2

0. Let θ0 = (µ0, σ
2
0)′ be the true parameter vector and θ = (µ, σ2)′

be an arbitrary value in the parameter space. The misspecified model assumes that εt’s
are i.i.d normal random variables with mean zero and variance σ2

0.∗ Then, the quasi
log-likelihood function of an observation can be expressed as

ln f(yt, θ) = −1
2

ln 2π − 1
2

ln σ2 − 1
2σ2 ε

2
t (θ) (3.2)

where εt(θ) = yt − µ. The first and the second order conditions are

∂ ln f(yt, θ)
∂µ

= 1
σ2 εt(θ),

∂ ln f(yt, θ)
∂σ2 = − 1

2σ2 + 1
2σ4 ε

2
t (θ),

∂2 ln f(yt, θ)
∂µ2 = − 1

σ2 ,

∂2 ln f(yt, θ)
∂µ∂σ2 = − 1

σ4 εt(θ),
∂2 ln f(yt, θ)
∂σ2∂σ2 = 1

2σ4 − 1
σ6 ε

2
t (θ). (3.3)

The QMLE θ̂n is defined by θ̂n = argmaxθ∈Θ
∑n
t=1 ln f(yt, θ). The first order conditions

yield µ̂n = n−1∑n
t=1 yt and σ̂2

n = n−1∑n
t=1 ε̂

2
t , where ε̂t = yt − µ̂n. Using the second order

conditions, it follows that

An(θ0) =
(

1/σ2
0 0

0 1/2σ4
0

)
. (3.4)

On the other hand, due to the presence of serial correlation, Bn(θ0) takes the following
form

Bn(θ0) = E
(
g1(yt, θ0)g′

1(yt, θ0)
)

+
∑∞
s=1

(
E
(
g1(yt, θ0)g′

1(yt−s, θ0)
)

+ E
(
g1(yt−s, θ0)g′

1(yt, θ0)
))
, (3.5)

where g1(yt, θ0) =
(
εt /σ

2
0, ε

2
t /2σ4

0 − 1/2σ2
0
)′

. This long-run covariance matrix can be
estimated by the kernel type estimators [1,10,24]. Depending on the specification adopted
for the test statistic, our subsequent analysis will also require the long-run covariances
Cn(θ0) and Pn(θ0). Define g2(yt, θ0) = ε3

t /σ
3
0 − µ3σ

−3
0 , g3(yt, θ0) = (εr1

t −µr1 , ε
r2
t −µr2)

′
,

g4(yt, θ0) = ε4
t /σ

4
0 − µ4/σ

4
0, g5(yt, θ0) =

(
ε3
t , ε

4
t −3σ4

0
)′

, where µr = E(yt − µ0)r, and r1, r2
are two positive odd numbers. Consider the following long-run covariance matrix

Hn(θ0) = E
(
h(yt, θ0)h′(yt, θ0)

)
+
∑∞
s=1

(
E
(
h(yt, θ0)h′(yt−s, θ0)

)
+ E

(
h(yt−s, θ0)h′(yt, θ0)

))
, (3.6)

where h(yt, θ0) =
(
g

′
1(yt, θ0), g2(yt, θ0), g′

3(yt, θ0), g4(yt, θ0), g′
5(yt, θ0)

)′

. Consider the par-
tition of Hn(θ0) into sub-matrices Hij,n(θ0), for i, j = 1, 2, . . . 5, corresponding to the long-
run covariance between gi(yt, θ0) and gj(yt, θ0). We will use these sub-matrices to derive
expressions for Cn(θ0) and Pn(θ0) in the subsequent sections.

Remark 3.1. Note that when disturbance terms are independent, Bn(θ0) in Equation
(3.5) simplifies to

Bn(θ0) =

 1
σ2

0

µ3
2σ6

0
µ3
2σ6

0

µ4−σ4
0

4σ8
0

 . (3.7)

Then, using Equations (B.2) and (3.7), we obtain

A−1
n (θ0)Bn(θ0)A−1

n (θ0) =
(
σ2

0 µ3
µ3 µ4 − σ4

0

)
. (3.8)

∗For notational simplicity, we denote the parameter vector with θ0 = (µ0, σ
2
0)

′
even the model is

misspecified.
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3.1. Testing skewness
To test for skewness, we consider the following test statistic

T3,n(yn, θ̂n) = 1
n

n∑
t=1

ψ(yt, θ̂n), ψ(yt, θ̂n) = ε̂3
t /σ̂

3
n − µ3σ

−3
0 . (3.9)

Simple calculations show that

D3,n(θ0) = E
(
n−1

n∑
t=1

∂ψ(yt, θ)
∂θ′

∣∣
θ0

)
=
(
− 3
σ0

−3µ3
2σ5

0

)
. (3.10)

Then, Proposition 2.15 yields the following corollary.

Corollary 3.2. The asymptotic distribution of
√
nT3,n(yn, θ̂n) is

√
nT3,n(yn, θ̂n) A∼ N [0, S3,n(θ0)] , (3.11)

where

S3,n(θ0) = H22,n(θ0) + D3,n(θ0)A−1
n (θ0)H11,n(θ0)A−1

n (θ0)D′
3,n(θ0)

+ H
′
12,n(θ0)A−1

n (θ0)D′
3,n(θ0) + D3,n(θ0)A−1

n (θ0)H12,n(θ0).

Proof. See Appendix B. �

In Corollary 3.2, note that H11,n(θ0) = Bn(θ0) and the explicit expressions for H22,n(θ0)
and H12,n(θ0) are given by

H22,n(θ0) = E
(
g2

2(yt, θ0)
)

+ 2
∞∑
s=1

E (g2(yt, θ0)g2(yt−s, θ0)) , (3.12)

H12,n(θ0) = E (g1(yt, θ0)g2(yt, θ0))

+
∞∑
s=1

(E (g1(yt, θ0)g2(yt−s, θ0)) + E (g1(yt−s, θ0)g2(yt, θ0))) ,

where g2(yt, θ0) = ψ(yt, θ0) = ε3
t /σ

3
0 − µ3σ

−3
0 .

Since the odd moments of a symmetric distribution are zero, a test based on the several
odd moments can have more power. Following [2], we consider an alternative test statistic
based on two odd moments. This test statistic takes the following form∗

T35,n(yn, θ̂n) = 1
n

n∑
t=1

ψ(yt, θ̂n), ψ(yt, θ̂n) =
(
ε̂r1
t − µr1

ε̂r2
t − µr2

)
. (3.13)

Using Proposition 2.15, we can determine the asymptotic covariance of
√
nT35,n(yn, θ̂n) as

S35,n(θ0) = H33,n(θ0) + D35,n(θ0)A−1
n (θ0)H11,n(θ0)A−1

n (θ0)D′
35,n(θ0)

+ H
′
13,n(θ0)A−1

n (θ0)D′
35,n(θ0) + D35,n(θ0)A−1

n (θ0)H13,n(θ0), (3.14)

where

D35,n(θ0) = E
(
n−1

n∑
t=1

∂ψ(yt, θ)
∂θ′

∣∣
θ0

)
=
(

−r1µr1−1 0
−r2µr2−1 0

)
. (3.15)

Let S35,n(θ̂n) be a consistent estimator of S35,n(θ0). Then, the following result follows from
Proposition 2.15.

∗Note that we can form a joint test of several odd moment conditions in a similar fashion.
For example, a joint test based on three odd moment conditions can be based on ψ(yt, θ̂n) =
(ε̂r1

t − µr1 , ε̂
r2
t − µr2 , ε̂

r3
t − µr3 )

′
, where r1, r2 and r3 are three positive odd numbers.
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Corollary 3.3. Under the null hypothesis of no skewness, it follows that

nT
′
35,n(yn, θ̂n)

(
S35,n(θ̂n)

)−1
T35,n(yn, θ̂n) A∼ χ2

2. (3.16)

Proof. See Appendix B. �

In Corollaries 3.2 and 3.3, we account for the serial dependence in data through the
log-run covariances H11,n(θ0), H22,n(θ0), H12,n(θ0), H33,n(θ0) and H13,n(θ0). To account
for the serial dependence, Bai and Ng [2] use three dimensional long-run covariances
for

√
nT3,n(yn, θ̂n) and

√
nT35,n(yn, θ̂n). Let Z3,t =

(
ε3
t −µ3, εt, ε

2
t −σ2

0
)′

and α3 =(
1, −3σ2

0, −3σ0
2

µ3
σ3

0

)
. Under the assumption that 1√

n

∑n
t=1 Z3,t

A∼ N [0,Γ3,n], where Γ3,n

is the long-run covariance matrix of 1√
n

∑n
t=1 Z3,t, Bai and Ng [2, Theorem 1] show

that
√
nT3,n(yn, θ̂n) A∼ N [0, α3Γ3,nα

′
3/σ

6
0]. To determine the asymptotic distribution of

T35,n(yn, θ̂n), let

α35 =
(

1 0 −r1µr1−1
0 1 −r2µr2−1

)
, and Z35,t =

εr1 −µr1

εr2 −µr2

εt

 . (3.17)

Then, Bai and Ng [2] show that
√
nT35,n(yn, θ̂n) A∼ N [0, α35Γ35,nα

′
35], where Γ35,n is the

long-run covariance matrix of 1√
n

∑n
t=1 Z35,t. In the following corollary, we show that our

results are the same as with those derived in [2].

Corollary 3.4. It follows that α3Γ3,nα
′
3/σ

6
0 = S3,n(θ0) and α35Γ35,nα

′
35 = S35,n(θ0).

Proof. See Appendix B. �

Remark 3.5. There are two reasons why our results coincide with those in [2]. First, the
QMLE θ̂n in the context of Equation (3.1) coincides with the sample mean and variance.
Secondly, in both approaches, the asymptotic distributions of test statistics are based
on the mean value expansions. To illustrate the second point, we consider the skewness
statistic. The mean value expansions of µ̂3 = 1

n

∑n
t=1 ε̂

3
t and

√
n
(
σ̂2
n

)3/2 around µ0 and
σ2

0, respectively, give the following results:

√
nµ̂3 = 1√

n

n∑
t=1

(yt − µ̂)3 = 1√
n

n∑
t=1

ε3
t −3σ2

0
1√
n

n∑
t=1

εt +oP0(1), (3.18)

√
n
(
σ̂2
n

)3/2
=

√
n
(
σ2

0

)3/2
+ 3

2

(
σ2

0

)1/2 √
n
(
σ̂2
n − σ2

0

)
+ oP0(1). (3.19)

Note that T3,n(yn, θ̂n) can be expressed as

T3,n(yn, θ̂n) = µ̂3
σ̂3
n

− µ3
σ3

0
= µ̂3 − µ3

σ̂3
n

− µ3
σ3

0

σ̂3
n − σ3

0
σ̂3
n

. (3.20)

Then, using Equations (3.18) and (3.19) in (3.20), we obtain

T3,n(yn, θ̂n) = α3
σ̂3
n

1
n

n∑
t=1

Z3,t + oP0(1). (3.21)

Then, the result
√
nT3,n(yn, θ̂n) A∼ N [0, α3Γ3,nα

′
3/σ

6
0] stated in [2] directly follows from

Equation (3.21). Similarly, the proof of Proposition 2.15 in Appendix A shows that our
general variance formula is also based on the mean value expansions of the test statistic
and the score functions.
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3.2. Testing kurtosis
The kurtosis statistic is defined by

T4,n(yn, θ̂n) = 1
n

n∑
i=1

ψ(yt, θ̂), where ψ(yt, θ̂) = ε̂4
t /σ̂

4
n − µ4/σ

4
0, (3.22)

The following corollary gives the asymptotic distribution of
√
nT4,n(yn, θ̂n).

Corollary 3.6. The asymptotic distribution of
√
nT4,n(yn, θ̂n) is

√
nT4,n(yn, θ̂n) A∼ N [0, S4,n(θ0)] , (3.23)

where
S4,n(θ0) = H44,n(θ0) + D4,n(θ0)A−1

n (θ0)H11,n(θ0)A−1
n (θ0)D′

4,n(θ0)

+ H
′
14,n(θ0)A−1

n (θ0)D′
4,n(θ0) + D4,n(θ0)A−1

n (θ0)H14,n(θ0)
and

D4,n(θ0) = E
(
n−1

n∑
t=1

∂ψ(yt, θ)
∂θ′

∣∣
θ0

)
=
(

−4µ3
σ4

0
, −2µ4

σ6
0

)
.

Proof. See Appendix B. �

Alternatively, Bai and Ng [2] show that
√
nT4,n(yn, θ̂n) A∼ N

[
0, α4Γ4,nα

′
4/σ

8
0

]
, where

α4 =
(
1, −4µ3, −2µ4/σ

2
0
)

and Γ4,n is the long-run covariance matrix of 1√
n

∑n
t=1 Z4,t with

Z4,t =
(
ε4
t −µ4, εt, ε

2
t −σ2

0
)′

. The following corollary shows that our result coincides with
their result.

Corollary 3.7. It follows that α4Γ4,nα
′
4/σ

8
0 = S4,n(θ0).

Proof. See Appendix B. �

3.3. Testing normality
To test the null hypothesis of normality, we use both skewness and kurtosis statistics

to formulate the following test statistic:

T34,n(yn, θ̂n) = 1
n

n∑
t=1

ψ(yt, θ̂n), where ψ(yt, θ̂n) =
(

ε̂3
t /σ̂

3
n

ε̂4
t /σ̂

4
n − 3

)
. (3.24)

Under the null hypothesis of normality, T3,n(yn, θ̂n) and T4,n(yn, θ̂n) are asymptotically
independent even for time series data [2, 16, 17]. Thus, under the null hypothesis of nor-
mality, a generalization of JB test of Jarque and Bera [14] to dependent data is

nT
′
34,n(yn, θ̂n)

(
Var

(√
nT34,n(yn, θ̂n)

))−1
T34,n(yn, θ̂n) (3.25)

= nT 2
3,n(yn, θ̂n)/Var

(√
nT3,n(yn, θ̂n)

)
+ nT 2

4,n(yn, θ̂n)/Var
(√

nT4,n(yn, θ̂n)
)
.

Following Bai and Ng [2], we also consider an alternative test statistic based on the third
and fourth central moments. This test statistic is defined as

Tµ34,n(yn, θ̂n) = 1
n

n∑
t=1

ψ(yt, θ̂n), where ψ(yt, θ̂n) =
(

ε̂3
t

ε̂4
t − 3σ̂4

n

)
. (3.26)

Let S
µ
34,n(θ0) be the asymptotic covariance of

√
nTµ34,n(yn, θ̂n). Then, under the null hy-

pothesis of normality, Proposition 2.15 gives

S
µ
34,n(θ0) = H55,n(θ0) + D

µ
34,n(θ0)A−1

n (θ0)H11,n(θ0)A−1
n (θ0)Dµ′

34,n(θ0)

+ H
′
15,n(θ0)A−1

n (θ0)Dµ′

34,n(θ0) + D
µ
34,n(θ0)A−1

n (θ0)H15,n(θ0), (3.27)
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where

D
µ
34,n(θ0) = E

(
n−1

n∑
t=1

∂ψ(yt, θ)
∂θ′

∣∣
θ0

)
=
(

−3σ2
0 0

0 −6σ2
0

)
. (3.28)

The following corollary gives the asymptotic distributions of
√
nT34,n(yn, θ̂n) and√

nTµ34,n(yn, θ̂n).
Corollary 3.8. (1) Under the null hypothesis of normality, we have

nT
′
34,n(yn, θ̂n)

(
Var

(√
nT34,n(yn, θ̂n)

))−1
T34,n(yn, θ̂n) (3.29)

= nT 2
3,n(yn, θ̂n)/S3,n(θ̂n) + nT 2

4,n(yn, θ̂n)/S4,n(θ̂n) A∼ χ2
2,

where S3,n(θ̂n) and S4,n(θ̂n) are consistent estimators of S3,n(θ0) and S4,n(θ0), re-
spectively.

(2) Under the null hypothesis of normality, it follows that

nTµ
′

34,n(yn, θ̂n)
(
S
µ
34,n(θ̂n)

)−1
Tµ34,n(yn, θ̂n) A∼ χ2

2, (3.30)

where S
µ
34,n(θ̂n) is a consistent estimator of Sµ34,n(θ0).

Proof. See Appendix B. �
In the case of Tµ34,n(yn, θ̂n), Bai and Ng [2] alternatively show that

nTµ
′

34,n(yn, θ̂n)
(
α34Γ34,nα

′
34

)−1
Tµ34,n(yn, θ̂n) A∼ χ2

2, (3.31)

where Γ34,n is the long-run covariance matrix of 1√
n

∑n
t=1 Z34,t with

Z34,t =
(
εt, ε

2
t −σ2

0, ε
3
t , ε

4
t −3σ4

0,
)′

and

α34 =
(

−3σ2
0 0 1 0

0 −6σ2
0 0 1

)
. (3.32)

Then, the following corollary shows that our results coincide with the results of [2].
Corollary 3.9. It follows that α34Γ34,nα

′
34 = S

µ
34,n(θ0).

Proof. See Appendix B. �
Remark 3.10. When the disturbance terms are i.i.d, the asymptotic variance of the
unfeasible version

√
nT34,n(yn, θ0) under the null hypothesis of normality can be derived

as

C34,n(θ0) = E
(
ψ(yt, θ0)ψ′(yt, θ0)

)
= E

(
ε6
t /σ

6
0 ε7

t /σ
7
0 − 3 ε3

t /σ
3
0

ε7
t /σ

7
0 − 3 ε3

t /σ
3
0 ε8

t /σ
8
0 − 6 ε4

t /σ
4
0 + 9

)
=
(

15 0
0 96

)
. (3.33)

Then, using Equation (2.11), it can be shown that
√
nT34,n(yn, θ̂n) has the following

asymptotic covariance under the null hypothesis of normality

Var
(√

nT34,n(yn, θ̂n)
)

=
(

6 0
0 24

)
. (3.34)

Then, the omnibus test statistic derived in Jarque and Bera [14] can alternatively be
derived as

JB = nT
′
34,n(yn, θ̂n)

(
Var

(√
nT34,n(yn, θ̂n)

))−1
T34,n(yn, θ̂n)

= n

6

(
1
n

n∑
i=1

ε̂3
i /σ̂

3
n

)2

+ n

24

(
1
n

n∑
i=1

ε̂4
i /σ̂

4
n − 3

)2
A∼ χ2

2. (3.35)
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It is important to note that the JB is derived under under the null hypothesis of normality,
and its components cannot be used separately to test symmetry or excess kurtosis.

4. A Monte Carlo simulation
In this section, we design a Monte Carlo simulation to investigate the finite sample

properties of test statistics derived in Section 3. Following [2], we generate yt according
to yt = ρ0yt−1 + ut, where ρ0 ∈ {0, 0.5, 0.8}, and ut’s are i.i.d. random variables gener-
ated from the symmetric and asymmetric distributions. We consider 3 symmetric and 3
asymmetric distributions listed in Table 1. We consider n ∈ {100, 500, 1000}, and set the
nominal size to 0.05 and the number of re-sampling to 2000 in all cases.∗

Table 1. Distributions.

Symmetric Distributions
1 Standard normal distribution: N(0, 1)
2 Student’s t distribution: t5
3 e11(z ≤ 0.5) + e21(z > 0.5), where z ∼ U(0, 1), e1 ∼ N(−1, 1) and e2 ∼ N(1, 1).

Asymmetric Distributions
4 Lognormal: exp(e), e ∼ N(0, 1)
5 Chi-squared distribution: χ2

2
6 Exponential: Exp(1)

We use µ̂n = n−1∑n
t=1 yt and σ̂2

n = n−1∑n
t=1 ε̂

2
t , where ε̂t = yt − µ̂n to compute

our test statistics given in Section 3. Also, we need to formulate consistent estimators of
An(θ0), D3,n(θ0), D4,n(θ0), D35,n(θ0), Dµ

34,n(θ0) and Hn(θ0). We use the plug-in estimators
for An(θ0), D3,n(θ0), D4,n(θ0), D35,n(θ0), and D

µ
34,n(θ0), and the following estimator for

Hn(θ0),

Hn(θ̂) = Γ̂0 +
P∑
i=1

ωi
(
Γ̂i + Γ̂′

i

)
, (4.1)

where Γ̂i = 1
n

∑n
t=i+1 h(yt, θ̂)h

′(yt−i, θ̂) for i = 0, 1, 2, . . . , P , P is the maximum lag length
and ωi’s are weights chosen to ensure that Hn(θ̂) is positive definite and consistent. We
use three methods to choose ωi and P : (i) the Bartlett method, (ii) the Parzen method
and (iii) the quadratic spectral method.† Table 2 shows how P and ωi can be determined
according to each method. Using Table 2, we use a three-step approach to compute Hn(θ̂).
For a given method, in the first step, we choose the initial P value given in the first column
of Table 2. In the second step, we compute Ĥ0 = Γ̂0 +

∑P
i=1

(
Γ̂i + Γ̂′

i

)
, Ĥ1 = 2

∑P
i=1 iΓ̂i,

Ĥ2 = 2
∑P
i=1 i

2Γ̂i and νi = l
′
Ĥil for i = 0, 1, 2, where l is a matching column vector of

ones. We use these quantities to update P according to the second column of Table 2.
In the third step, we use the updated P value to compute the weights given in the third
column of Table 2. We then use these quantities to compute Hn(θ̂) in Equation (4.1).

The simulation results are presented in Tables 3-5. The results for testing the null
hypothesis of symmetry are given in Table 3. The results in the first three rows of each
panel show the empirical size properties, while those in the remaining rows show the
empirical power properties. In the case of T35,n, we set r1 = 3 and r2 = 5. The results in
Table 3 show that T35,n is severely under-sized, and generally has low power in all cases.

∗The simulation results in this section can be replicated by using the code available at
https://sites.google.com/view/osmandogan/software.

†The simulation results presented in [2] are based on the Bartlett method.

https://sites.google.com/view/osmandogan/software
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On the other hand, T3,n performs better than T35,n in terms of both empirical size and
power properties. Although the size of T3,n is robust to the degree of serial correlation in
data, there are few cases where this test is over-sized (e.g., under the case where we have
the quadratic method, ρ0 = 0.8 and n = 100). In general, the power decreases when ρ0
increases to 0.8, especially when n = 100. Overall, our results in Table 3 are consistent
with those presented in [2] (e.g., see π̂∗

3 and µ̂35 in their Table 1).

Table 2. Choosing lag length and weights.

Initial P Updated P Weight

Bartlett

int
[
4
(

n
100
)2/9

]
int
[
1.1447

(
ν2

1 n

ν2
0

)1/3
]

ωi = 1 − i
P +1

Parzen

int
[
4
(

n
100
)4/25

]
int
[
2.6614

(
ν2

2 n

ν2
0

)1/5
]

ωi =

{
1 − 6( i

P +1 )2 − 6( i
P +1 )3, 0 ≤ i ≤ P +1

2
2(1 − i

P +1 )3, otherwise

Quadratic Spectral

int
[
4
(

n
100
)2/25

]
int
[
1.3221

(
ν2

2 n

ν2
0

)1/5
]

ωi = 25
12π2( i

P )2

( 5P
6πi sin( 6πi

5P ) − cos( 6πi
5P )

)

Table 3. Testing symmetry.

n=100 n=500
Bartlett Parzen Quadratic Bartlett Parzen Quadratic

ρ0 dist T3,n T35,n T3,n T35,n T3,n T35,n T3,n T35,n T3,n T35,n T3,n T35,n

0 1 0.034 0.008 0.043 0.018 0.052 0.011 0.043 0.015 0.048 0.015 0.046 0.017
0 2 0.026 0.018 0.040 0.029 0.035 0.025 0.028 0.099 0.030 0.088 0.034 0.106
0 3 0.034 0.006 0.057 0.015 0.056 0.008 0.048 0.015 0.044 0.013 0.051 0.019
0 4 0.385 0.462 0.405 0.455 0.405 0.464 0.678 0.932 0.684 0.925 0.676 0.928
0 5 0.756 0.045 0.800 0.079 0.769 0.064 0.991 0.547 0.989 0.428 0.991 0.474
0 6 0.715 0.173 0.741 0.179 0.727 0.170 0.987 0.900 0.987 0.750 0.983 0.790

0.5 1 0.037 0.004 0.040 0.010 0.066 0.014 0.043 0.009 0.052 0.013 0.189 0.051
0.5 2 0.028 0.007 0.045 0.018 0.059 0.015 0.038 0.009 0.039 0.025 0.113 0.029
0.5 3 0.036 0.003 0.041 0.007 0.068 0.016 0.050 0.010 0.042 0.009 0.205 0.076
0.5 4 0.410 0.175 0.432 0.170 0.436 0.206 0.683 0.732 0.687 0.767 0.711 0.783
0.5 5 0.659 0.036 0.673 0.064 0.699 0.051 0.988 0.080 0.986 0.099 0.991 0.168
0.5 6 0.678 0.026 0.692 0.075 0.698 0.059 0.981 0.117 0.978 0.115 0.985 0.239
0.8 1 0.040 0.006 0.043 0.011 0.315 0.085 0.042 0.004 0.039 0.006 0.006 0.022
0.8 2 0.034 0.015 0.036 0.013 0.346 0.068 0.046 0.007 0.040 0.004 0.032 0.063
0.8 3 0.033 0.006 0.040 0.007 0.311 0.091 0.037 0.009 0.052 0.009 0.003 0.018
0.8 4 0.312 0.030 0.306 0.062 0.664 0.083 0.673 0.117 0.684 0.211 0.755 0.294
0.8 5 0.183 0.005 0.195 0.018 0.606 0.096 0.860 0.259 0.857 0.263 0.631 0.142
0.8 6 0.234 0.009 0.260 0.022 0.670 0.095 0.892 0.246 0.907 0.227 0.726 0.129

The simulation results for testing the null hypothesis of no excess kurtosis are presented
in Table 4. In this case, the results in the first row of each panel show the empirical size
properties, while those in the remaining rows show the empirical power properties. The
results show that T4,n is generally over-sized, especially when we have the quadratic method
and ρ0 = 0.8. When n = 100, the power is very low in all cases. Moreover, the presence
of serial correlation, i.e., when ρ0 = 0.5 or ρ0 = 0.8, further reduces the power. The power
generally increases when the sample size increases to 1000 in all cases.
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Table 4. Testing excess kurtosis.

n=100 n=500 n=1000
Bartlett Parzen Quadratic Bartlett Parzen Quadratic Bartlett Parzen Quadratic

ρ0 dist T4,n T4,n T4,n T4,n T4,n T4,n T4,n T4,n T4,n

0 1 0.058 0.081 0.080 0.070 0.076 0.079 0.066 0.075 0.061
0 2 0.070 0.099 0.091 0.559 0.562 0.589 0.731 0.719 0.713
0 3 0.342 0.384 0.371 0.899 0.911 0.899 0.990 0.989 0.991
0 4 0.209 0.211 0.205 0.372 0.372 0.376 0.473 0.484 0.451
0 5 0.126 0.143 0.148 0.745 0.729 0.749 0.911 0.910 0.919
0 6 0.207 0.232 0.219 0.759 0.766 0.775 0.899 0.897 0.908

0.5 1 0.041 0.060 0.078 0.086 0.075 0.102 0.077 0.074 0.099
0.5 2 0.045 0.062 0.063 0.401 0.372 0.402 0.654 0.647 0.683
0.5 3 0.129 0.169 0.193 0.532 0.522 0.545 0.726 0.724 0.763
0.5 4 0.166 0.180 0.190 0.378 0.402 0.384 0.472 0.489 0.501
0.5 5 0.061 0.086 0.069 0.552 0.579 0.558 0.853 0.846 0.859
0.5 6 0.120 0.128 0.102 0.669 0.664 0.677 0.862 0.856 0.875
0.8 1 0.039 0.044 0.131 0.065 0.075 0.244 0.080 0.088 0.101
0.8 2 0.029 0.043 0.115 0.064 0.058 0.327 0.158 0.163 0.266
0.8 3 0.040 0.058 0.162 0.117 0.139 0.291 0.156 0.191 0.131
0.8 4 0.045 0.051 0.114 0.307 0.281 0.757 0.425 0.441 0.688
0.8 5 0.020 0.033 0.116 0.073 0.068 0.334 0.197 0.174 0.300
0.8 6 0.029 0.030 0.102 0.130 0.099 0.427 0.334 0.298 0.442

Finally, we evaluate the simulation results presented in Table 5 for testing the null
hypothesis of normal distribution. In this table, the results in the first row of each panel
show the empirical size properties, while those in the remaining rows indicate the empirical
power properties. In Table 5, JB denotes our suggested test stated in Equation (3.25).
The simulation results show that Tµ34,n is severely under-sized. In terms of size properties,
the JB test generally performs better than Tµ34,n in all cases. However, there are some cases
where the JB test reports large size distortions, especially when we have serial correlation
in data and the method is quadratic. Both tests have low power when the sample size is
small and the distributions are symmetric. When the sample size increases to 1000, both
tests report good power (though there are some irregular cases when ρ0 = 0.8).

Table 5. Testing normality.

n=100 n=500 n=1000
Bartlett Parzen Quadratic Bartlett Parzen Quadratic Bartlett Parzen Quadratic

ρ0 dist Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB Tµ34,n JB
0 1 0.006 0.028 0.022 0.065 0.021 0.063 0.024 0.063 0.038 0.075 0.032 0.071 0.030 0.059 0.050 0.072 0.029 0.059
0 2 0.009 0.048 0.021 0.080 0.013 0.067 0.236 0.396 0.239 0.395 0.239 0.408 0.507 0.599 0.514 0.603 0.525 0.597
0 3 0.047 0.219 0.075 0.274 0.048 0.235 0.496 0.855 0.496 0.851 0.507 0.863 0.812 0.977 0.790 0.977 0.796 0.976
0 4 0.001 0.462 0.011 0.472 0.003 0.472 0.291 0.679 0.310 0.675 0.326 0.686 0.534 0.776 0.527 0.743 0.545 0.774
0 5 0.001 0.723 0.011 0.737 0.001 0.729 0.818 0.988 0.812 0.989 0.813 0.987 0.981 0.999 0.978 0.997 0.980 0.994
0 6 0.104 0.718 0.162 0.732 0.093 0.717 0.992 0.980 0.987 0.975 0.989 0.980 1.000 0.996 1.000 0.998 0.998 0.996

0.5 1 0.003 0.024 0.007 0.043 0.017 0.068 0.009 0.057 0.013 0.070 0.046 0.150 0.013 0.070 0.012 0.073 0.055 0.175
0.5 2 0.007 0.036 0.013 0.068 0.013 0.060 0.079 0.255 0.085 0.247 0.111 0.313 0.266 0.483 0.272 0.496 0.326 0.546
0.5 3 0.006 0.054 0.017 0.091 0.030 0.129 0.073 0.420 0.088 0.442 0.177 0.511 0.173 0.628 0.206 0.634 0.346 0.667
0.5 4 0.000 0.493 0.004 0.468 0.004 0.492 0.219 0.707 0.262 0.685 0.293 0.717 0.424 0.786 0.470 0.784 0.467 0.761
0.5 5 0.002 0.545 0.004 0.598 0.009 0.586 0.251 0.981 0.283 0.977 0.422 0.919 0.885 0.999 0.883 0.996 0.875 0.823
0.5 6 0.002 0.610 0.015 0.642 0.021 0.655 0.747 0.971 0.804 0.977 0.809 0.925 0.986 0.996 0.986 0.997 0.884 0.852
0.8 1 0.002 0.009 0.006 0.032 0.018 0.228 0.005 0.051 0.004 0.064 0.045 0.064 0.006 0.066 0.007 0.070 0.009 0.011
0.8 2 0.003 0.019 0.007 0.029 0.018 0.243 0.012 0.058 0.016 0.060 0.072 0.107 0.031 0.115 0.032 0.111 0.043 0.056
0.8 3 0.004 0.011 0.007 0.029 0.022 0.229 0.009 0.080 0.013 0.095 0.051 0.070 0.011 0.126 0.021 0.145 0.011 0.011
0.8 4 0.000 0.228 0.004 0.230 0.011 0.544 0.002 0.696 0.009 0.684 0.388 0.141 0.132 0.785 0.188 0.789 0.103 0.040
0.8 5 0.002 0.085 0.005 0.107 0.015 0.426 0.000 0.758 0.001 0.773 0.103 0.065 0.000 0.959 0.003 0.967 0.062 0.041
0.8 6 0.001 0.120 0.003 0.134 0.014 0.484 0.000 0.845 0.002 0.863 0.202 0.088 0.007 0.972 0.025 0.978 0.074 0.049
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5. Conclusion
In this paper, we showed how the parameter uncertainty problem affects the asymptotic

distribution of test statistics formulated with the QMLE. We provided a general result
for the distribution of test statistics formulated with the QMLE under some high-level
assumptions. We then showed how to use this general result to develop test statistics for
testing normality, skewness and kurtosis under parameter uncertainty for time series data.
Our results on the asymptotic distribution of skewness coefficient are valid in the presence
of excess kurtosis, and vice-versa. We showed that the asymptotic distributions of our
tests coincide with those proposed in Bai and Ng [2]. Therefore, our analysis provides a
unified approach that can be used to determine the asymptotic distributions of various
test statistics designed for testing normality, skewness and kurtosis for time series data.
In a Monte Carlo study, we investigated the finite sample size and power properties of
our suggested test statistics. Our results show that T3,n, T4,n and the JB test (T34,n) can
be useful for testing the null hypothesis of no skewness, no excess kurtosis and normality,
respectively.

Our results suggest several directions for future studies. First, though our Proposi-
tion 2.15 indicates that we can determine the asymptotic distribution of any test statistic
as long as the QMLE has the standard asymptotic properties, we consider only the test
statistics for testing skewness, excess kurtosis and normality. Our result can be used to
determine the asymptotic distributions of some other type of test statistics including some
well-know test statistics such as the Cox test, the White information matrix test and the
Durbin h test in the context of time series data. Second, we developed our suggested
tests in Section 3 in the context of a simple scale-location model. It will be interesting to
consider some specific models such as ARMA and GARCH type models to develop our
suggested tests and study their finite sample properties. Third, our test statistics can have
size distortions when the sample size is small since we suggested the critical values based
on the corresponding asymptotic distributions. In future studies, the block bootstrap ver-
sions of our tests can be considered. In this respect, the unified approach suggested in
[12] can be used to develop a block bootstrap version of our Proposition 2.15. Such a
result will provide the first-order asymptotic validity of the block bootstrap versions of
our suggested tests. Finally, another direction for future studies is to compare the finite
sample size and power properties of our suggested test with their block bootstrap versions
through simulation studies. We leave all these extensions for future studies.

Acknowledgment. We are grateful to the Editor and two anonymous referees for their
constructive comments and suggestions on the earlier versions of this paper.
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Appendix

Appendix A. Proof of proposition 2.15
This proposition can be proved by following the argument given in [3]. To that end, we

require the following lemma, which shows how a consistent estimator of a term that obeys
the strong ULLN can be formulated.

Lemma A.1. Let {Qn : Ω × Θ −→ R} be a sequence of continuous function on Θ a.s.-
P0, and let {θ̂n : Ω −→ Θ} be a sequence satisfying θ̂n − θ∗ −→ 0 a.s.-P0. Suppose that
supθ∈Θ

∣∣∣Qn(·, θ) − Q̄n(θ)
∣∣∣ −→ 0 a.s.-P0, where {Q̄n : Θ −→ R} is continuous on Θ uniformly

in n. Then,

Qn(·, θ̂n) − Q̄n(θ∗) −→ 0 a.s.-P0.

Proof. See [37, Corollary 3.8]. �

Define the following vector

φt(Y t, θ, ψ) =
(

∂ ln ft(yt,θ)
∂θ

ψt(yt, θ) − ψ

)
. (A.1)

By Lemma A.1 and the fact that θ̂n − θ⋆ −→ a.s. -P0, we have 1
n

∑n
t=1 φt(Y t, θ̂n, ψ̂n) = 0

a.s. -P0. Also, under Assumptions 2.8 and 2.14, we have

Var
(

1√
n

n∑
t=1

φt(Y t, θ⋆, ψ⋆)
)

=
(

Bn(θ⋆) Pn(θ⋆, ψ⋆)
P

′
n(θ⋆, ψ⋆) Cn(θ⋆, ψ⋆)

)
, (A.2)

where Pn(θ⋆, ψ⋆) = E
((

1√
n

∑n
t=1

∂ ln ft(Y t,θ⋆)
∂θ

)
×
(

1√
n

∑n
t=1

(
ψt(Y t, θ⋆) − ψ⋆

))′)
. The CLT

results in Assumptions 2.8 and 2.14 ensure that

1√
n

n∑
t=1

φt(Y t, θ⋆, ψ⋆) A∼ N

[
0,
(

An(θ⋆) Pn(θ⋆, ψ⋆)
P

′
n(θ⋆, ψ⋆) Cn(θ⋆, ψ⋆)

)]
. (A.3)
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Let ∇δ be the gradient with respect to δ. Taking a mean value expansion of φt(Y t, θ̂n, ψ̂n)
around θ⋆ and ψ⋆ gives

1√
n

n∑
t=1

φt(Y t, θ⋆, ψ⋆) = − 1
n

n∑
t=1

∇θψφt(Y t, θ̃n, ψ̃n)
( √

n(θ̂n − θ⋆)√
n(Tn(Y n, θ̂n) − ψ⋆)

)
a.s.-P0,

(A.4)

where θ̃n and ψ̃n are the mean values. Our Assumptions 2.7 and 2.13 ensure that

E
(

1
n

∑n
t=1 ∇θψφt(Y t, θ⋆, ψ⋆)

)
= E

 1
n

∑n
t=1

∂2 ln ft(Y t,θ⋆)
∂θ∂θ′ 0

1
n

∑n
t=1

∂ψt(Y t,θ⋆)
∂θ′ −Iq

 =
(

−An(θ⋆) 0
Dn(θ⋆) −Iq

)
, (A.5)

where Iq is the q× q identity matrix. Then, under Assumptions 2.7 and 2.13, Lemma A.1
implies that (

− 1
n

n∑
t=1

∇θψφt(Y t, θ̃n, ψ̃n)
)

−
(

−An(θ⋆) 0
Dn(θ⋆) −Iq

)
−→ 0 a.s.-P0. (A.6)

The result in Equation (A.6) ensures that
(
− 1
n

∑n
t=1 ∇θψφt(Y t, θ̃n, ψ̃n)

)
is non-singular

a.s.-P0. Then, Equation (A.4) can be written as( √
n(θ̂n − θ⋆)√

n(Tn(Y n, θ̂n) − ψ⋆)

)
=
(
− 1
n

∑n
t=1 ∇θψφt(Y t, θ̃n, ψ̃n)

)−1 1√
n

∑n
t=1 φt(Y t, θ⋆, ψ⋆) a.s.-P0. (A.7)

Then, using Equations (A.3) and (A.6) in Equation (A.7), it follows that( √
n(θ̂n − θ⋆)√

n(Tn(Y n, θ̂n) − ψ⋆)

)
A∼ N

[
0,
(
A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆) V
′
n(θ⋆, ψ⋆)

Vn(θ⋆, ψ⋆) Sn(θ⋆, ψ⋆)

)]
, (A.8)

where(
A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆) V
′
n(θ⋆, ψ⋆)

Vn(θ⋆, ψ⋆) Sn(θ⋆, ψ⋆)

)(
−An(θ⋆) 0
Dn(θ⋆) −Iq

)−1(
Bn(θ⋆) Pn(θ⋆, ψ⋆)

P
′
n(θ⋆, ψ⋆) Cn(θ⋆, ψ⋆)

)(
−An(θ⋆) D

′
n(θ⋆)

0 −Iq

)−1

. (A.9)

From the inverse partitioned matrix formula, it easily follows that(
−An(θ⋆) 0
Dn(θ⋆) −Iq

)−1
=
(

−A−1
n (θ⋆) 0

−Dn(θ⋆)A−1
n (θ⋆) −Iq

)
. (A.10)

Then, using Equation(A.10) in Equation (A.9), it can be shown that

Vn(θ⋆, ψ⋆) = Dn(θ⋆)A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆) + P
′
n(θ⋆, ψ⋆)A−1

n (θ⋆), (A.11)

Sn(θ⋆, ψ⋆) = Cn(θ⋆, ψ⋆) + Dn(θ⋆)A−1
n (θ⋆)Bn(θ⋆)A−1

n (θ⋆)D′
n(θ⋆)

+ P
′
n(θ⋆, ψ⋆)A−1

n (θ⋆)D′
n(θ⋆) + Dn(θ⋆)A−1

n (θ⋆)Pn(θ⋆, ψ⋆). (A.12)

Appendix B. Proofs of corollaries
Corollaries 3.2, 3.3, 3.6 and 3.8 directly follow from Proposition 2.15. Therefore, we only

provide proofs for Corollaries 3.4, 3.7 and 3.9. We start by showing that α3Γ3,nα
′
3/σ

6
0 =

S3,n(θ0). Note that we can express Z3,t in terms of g1(yt, θ0) =
(
εt /σ

2
0, ε

2
t /2σ4

0 − 1/2σ2
0
)′

and g2(yt, θ0) = ε3
t /σ

3
0 − µ3σ

−3
0 as

Z3,t =
(

σ3
0g2(yt, θ0)

A−1
n (θ0)g1(yt, θ0)

)
=
(
σ3

0 01×2
02×1 A−1

n (θ0)

)(
g2(yt, θ0)
g1(yt, θ0)

)
, (B.1)

where

An(θ0) =
(

1/σ2
0 0

0 1/2σ4
0

)
. (B.2)
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Thus, in terms of our notation, Γ3,n can be derived as

Γ3,n =
(
σ3

0 01×2
02×1 A−1

n (θ0)

)(
H22,n(θ0) H

′
12,n(θ0)

H12,n(θ0) H11,n(θ0)

)(
σ3

0 01×2
02×1 A−1

n (θ0)

)
. (B.3)

Also simple calculations shows that

α3

(
σ3

0 01×2
02×1 A−1

n (θ0)

)
= σ3

0

(
1, D3,n(θ0)A−1

n (θ0)
)
. (B.4)

Then, using Equations (B.3) and (B.4), it follows that

α3Γ3,nα
′
3/σ

6
0 =

(
1, D3,n(θ0)A−1

n (θ0)
)(H22,n(θ0) H

′
12,n(θ0)

H12,n(θ0) H11,n(θ0)

)(
1, D3,n(θ0)A−1

n (θ0)
)′

= S3,n(θ0). (B.5)

Next, we show that α35Γ35,nα
′
35 = S35,n(θ0). In this case, Z35 can be expressed in terms

of g1(yt, θ0) and g3(yt, θ0) in the following way.

Z35,t =

1 0 0 0
0 1 0 0
0 0 σ2

0 0

(g3(yt, θ0)
g1(yt, θ0)

)
. (B.6)

Thus, Γ35,n can alternatively be derived as

Γ35,n =

1 0 0 0
0 1 0 0
0 0 σ2

0 0

(H33,n(θ0) H
′
13,n(θ0)

H13,n(θ0) H11,n(θ0)

)1 0 0 0
0 1 0 0
0 0 σ2

0 0


′

. (B.7)

Also simple calculations shows that

α35

1 0 0 0
0 1 0 0
0 0 σ2

0 0

 =
(
I2 σ2

0D35,n(θ0)
)

=
(
I2 D35,n(θ0)A−1

n (θ0)
)
. (B.8)

Then, it follows that

α35Γ35,nα
′
35 =

(
I2 D35,n(θ0)A−1

n (θ0)
)(H33,n(θ0) H

′
13,n(θ0)

H13,n(θ0) H11,n(θ0)

)(
I2 D35,n(θ0)A−1

n (θ0)
)′

= S35,n(θ0). (B.9)

To show α4Γ4,nα
′
4/σ

8
0 = S4,n(θ0), we write Z4,t as

Z4,t =
(
σ4

0 01×2
02×1 A−1

n (θ0)

)(
g4(yt, θ0)
g1(yt, θ0)

)
. (B.10)

Then, it can be shown that

Γ4,n =
(
σ4

0 01×2
02×1 A−1

n (θ0)

)(
H44,n(θ0) H

′
14,n(θ0)

H14,n(θ0) H11,n(θ0)

)(
σ4

0 01×2
02×1 A−1

n (θ0)

)
, (B.11)

α4

(
σ4

0 01×2
02×1 A−1

n (θ0)

)
= σ4

0

(
1, D4,nA

−1
n (θ0)

)
. (B.12)

Then, using Equations (B.11) and (B.12), we obtain the desired result as

α4Γ4,nα
′
3/σ

8
0 =

(
1, D4,nA

−1
n (θ0)

)(H44,n(θ0) H
′
14,n(θ0)

H14,n(θ0) H11,n(θ0)

)(
1, D4,nA

−1
n (θ0)

)′

= S4,n(θ0). (B.13)
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Finally, we show that α34Γ34,nα
′
34 = S

µ
34,n(θ0). We express Z34,t in terms of g1(yt, θ0) and

g5(yt, θ0) in the following way

Z34,t =
(
A−1
n (θ0) 02×2
02×2 I2

)(
g1(yt, θ0)
g5(yt, θ0)

)
. (B.14)

Then, the long-run covariance matrix Γ34,n can alternatively be expressed as

Γ34,n =
(
A−1
n (θ0) 02×2
02×2 I2

)(
H11,n(θ0) H15,n(θ0)
H

′
15,n(θ0) H55,n(θ0)

)(
A−1
n (θ0) 02×2
02×2 I2

)′

, (B.15)

Also, simple calculations gives

α34

(
A−1
n (θ0) 02×2
02×2 I2

)
=
(
D
µ
34,n(θ0)A−1

n (θ0), I2
)
. (B.16)

Thus, using Equations (B.15) and (B.16), we obtain the desired result as

α34Γ34,nα
′
34 =

(
D
µ
34,n(θ0)A−1

n (θ0), I2
)(H11,n(θ0) H15,n(θ0)

H
′
15,n(θ0) H55,n(θ0)

)(
D
µ
34,n(θ0)A−1

n (θ0), I2
)′

= S
µ
34,n(θ0). (B.17)


