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Abstract

There are various bootstrapping approaches depending on how bootstrap samples are selected. The conventional
bootstrapping obtains random bootstrap samples by using all the units in the original sample. Balanced bootstrapping
based on having individual observations with equal overall frequencies in all bootstrap samples and sufficient
bootstrapping based on using only the distinct individual observations instead of all the units in the original sample are the
two basic attempts proposed in this manner. This study compares the balanced, sufficient and conventional bootstrapping
approaches in terms of efficiency, bootstrap confidence interval coverage accuracy, and average interval length. Although
sufficient bootstrapping approach resulted in more efficient estimators and the narrower confidence intervals than the
other two in all cases, none of the actual coverage level of confidence intervals was controlled within the desired limits.
Conventional and balanced bootstrapping approaches have given quite similar results in terms of efficiency, coverage
accuracy and average length.
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GELENEKSEL, DENGELI VE YETERLI BOOTSTRAP YAKLASIMLARININ GUVEN
ARALIKLARI VE ETKINLIK ACISINDAN KARSILASTIRILMASI

Ozet

Bootstrap érneklemlerinin nasil olusturulduguna bagl olarak degisen farkli bootstrap yaklasimlar: mevcuttur. Geleneksel
bootstrap, bootstrap érneklemlerini orjinal érneklemdeki tiim gézlem birimlerini kullanarak rasgele olusturur. Dengeli
bootstrap, orjinal érneklemdeki her bir gézlemin tiim bootstrap érneklemlerdeki toplam frekansinin egit olmasi ilkesine
dayanir. Yeterli bootstrap yaklasiminda ise, bootstrap drneklemler olusturulurken orjinal é6rneklemdeki tiim gézlemler
yerine sadece farkli é6rneklem birimleri kullanilir. Bu calisma, dengeli, yeterli ve geleneksel bootstrap yaklasimlarini
bootstrap giiven araliklarinin kapsama orani, ortalama genisligi ve etkinlik acilarindan karsilastirmaktadir. Incelenen
tiim durumlar igin, yeterli bootstrap yaklasimi kullanilarak diger iki yaklasima gére daha dar giiven araliklari ve daha
etkin kestiriciler elde edilmistir. Ancak, yeterli bootstrap yaklasimi ile elde edilen giiven araliklarinin kapsama oranlari
belirlenen limitler icerisinde yer almamistir. Geleneksel ve dengeli bootstrap yaklasimlari, etkinlik, giiven araliklarinin
kapsama orani ve ortalama genisligi kriterleri acisindan olduk¢a benzer sonuglar vermigslerdir.

Anahtar Kelimeler: yeniden érnekleme, bootstrap, kapsama orani, dayanikl1 konum élgiileri
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methods can be utilised to compute confidence intervals
and test hypotheses [2].

There are many studies on the confidence interval
estimation of the location parameter for asymmetric
population distributions comparing the coverage
accuracy of various methods including the bootstrap
(e.g., [3-6]). In all of these studies, the confidence interval
methods were compared using bootstrap samples
generated by the conventional bootstrapping approach.
In conventional bootstrapping, the bootstrap samples
are obtained by using all the units in the original sample.

1. Introduction

It is known that the coverage accuracy of a t-based
confidence interval for the population mean is (1-a) for
normal distributed population, and approximately (1-a)
for non-normally distributed populations. However, the
coverage accuracy decreases when the population
distribution is asymmetric [1]. In cases where the data is
obtained from an asymmetric or heavy-tailed
distribution, robust measures of location can be used.
Since it is not possible to calculate the standard errors of
many robust measures of location analytically, bootstrap
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There are various bootstrapping approaches that are
claimed to be more efficient than the conventional one in
the literature. In this study, we focus on the first order
balanced and the sufficient bootstrapping procedures.
The first-order balanced bootstrap was introduced by
Davison et al. [7]. They claim that the balanced
bootstrapping approach results in better estimation of
bias in terms of efficiency. In a first-order balanced
bootstrap, each of the original observations appears with
equal frequency in the samples and in a second-order
balanced bootstrap, each pair of observations occurs
exactly the same number of times [8]. Do and Hall [9]
investigated the theoretical aspects of the balanced
resampling.

In 2011, Singh and Sedory [10] introduced the sufficient
bootstrapping that uses only the distinct individual
responses instead of all the units in the bootstrap
resample. They consider the estimation of the sample
mean, variance, standard deviation, coefficient of
variation and proportion. Based on a simulation study,
they conclude that the use of the proposed sufficient
bootstrapping method may lead to better efficiency than
conventional bootstrapping for certain situations.

In this study, we compare the conventional, the first
order balanced and the sufficient bootstrapping methods
based confidence interval estimations for some robust
location measures. We compare those methods by using
coverage accuracy and average interval length. We focus
on three different bootstrap confidence interval
methods: bootstrap percentile, bootstrap-t and
bootstrap BCa. The details of these bootstrap confidence
interval methods can be found in [8, 11].

The organization of the paper is as follows. Section 2
describes the bootstrapping approaches. Section 3 gives
a brief information on the robust location estimators
used in the study. Section 4 presents the conducted
simulation study and its results. Section 5 gives
concluding remarks. The R codes used in the simulation
study are provided in Appendix and
https://github.com/eyildiztepe/comp_bootstrap.

2. Bootstrapping Approaches
This section concisely describes the conventional, the
first-order balanced, and the sufficient bootstrapping
approaches that are used in the study.

2.1. Conventional Bootstrapping
In conventional bootstrap, bootstrap samples of size n
are selected by random sampling with replacement from
the original sample with the size n.

Let X®* = (x™" %" x®"} be the b-th bootstrap
resample by sampling with replacement from a sample of
X = {x4, %5, ..., x,}. The statistic §®* is calculated for the
corresponding bootstrap sample. This process is
repeated for B times where 6 denotes the targeted
population parameter. The distribution of these
bootstrap statistics {§(V*,0@* .., §B*} forms the
bootstrap sampling distribution that is used to estimate
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the standard error, bias, shape, dispersion and location
of the sampling distribution of the corresponding sample
statistic 8.

2.2.The First-Order Balanced Bootstrapping

In a balanced bootstrap method, every x;in X =
{x1, x5, ..., x,} exactly occurs B times in all of the B
bootstrap samples. It is said to have the first-order
balance if each of the original observations appears
exactly equal. A simple first-order balanced bootstrap
algorithm proposed by [8] can be described as follows;

(1) Concatenate B copies of xq,x;,...,x, in a list L of
length B xn

(2) Randomly permute the elements of L.

(3) Take as bootstrap samples the successive sets of

length n from L.
Then those resamples are used to form the bootstrap
sampling distribution of the statistic 8.

2.3. The Sufficient Bootstrapping

Let XS+ = {xf(b)*, xg(b)*, e, x3®)* 1 pe the bth sufficient

bootstrap sample consisting v distinct units in bth
X @) ={x£b)*,x§b)* ,x,(lb)* conventional bootstrap
sample where b =1,2,...,B. The sufficient bootstrap
sample estimate 0°®* is estimated from X$®)* =
xf(b)*,x;(b)*,...,xi(b)* ). Then the distribution of
(65, 5s@+ | §sB)*) gives the sufficient bootstrap
sampling distribution [10]. It is possible that some
distinct units in a sufficient bootstrap sample may have
the same value. But, it should be clear that those same
values in a sufficient bootstrap sample must have come
from different units.

) aes

3. Robust Estimators of Location

The standard errors of the trimmed mean, the one-step
M-estimator, and the modified one-step M-estimator
were calculated using the aforementioned bootstrap
methods in order to estimate the confidence interval for
the population counterpart of these estimators. Only the
brief information for those robust estimators are
presented here. For detailed information, see [2].

3.1. Trimmed Mean
The y trimmed mean can be described as follows:

X1-y

f x dF(x)

Xy

He (1)

“1-2y

where x, and x;_, are the y and 1—y quantiles
(0 <y <0.5). Let x4, x5, ..., X, be a random sample and
let x4y <Xz < ..<Xun be the observations in
ascending order. Let g = [yn], where [yn] is the value of
yn rounded down to the closest integer. The X, is
computed as follows [2];

7 = X(g+1D)+ .. +X(n—g)

£ n—2g (2)
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3.2.0One-step M-estimator

Estimation of Huber’s M-measure of location uses an
iterative estimation procedure such as the Newton-
Raphson method. One iteration of this procedure
produces the one-step M-estimator which has good
asymptotic properties even with only a single iteration
[12]. The 4, is

_ 1.28MADN(i; — iy) + X2, X

fim = 3)

n—i;—1I,

where MADN = MAD /0.6745, and

MAD = Med{|x, — M|, |x, — M|, ..., |x, — M|}. MAD is
the median absolute deviation statistic and M is the
sample median. Here i; is the number of observations x;
such that (x; — M)/MADN < —1.28 and i, is the number
of observations x; such that (x, — M)/MADN > 1.28 [2].

3.3.Modified One-step M-estimator

Ignoring 1.28MADN (i, — i) in eq.(3) gives the modified
one-step M-estimator. This estimator averages non-
outlier values. However, to obtain a reasonably good
efficiency under normality, utilized outlier detection rule
is changed. The one-step M-estimator is

N _ Z?:_illzﬂx(i) (4)
,umom_n_il_iz

where i;is the number of observations for which
(x; —M)/MADN < —2.24, and i, is the number of
observations for which (x; — M)/MADN > 2.24

(Hampel identifier) [2].

4. Numerical Studies

This section includes the detailed simulation study and
two real data examples that are used to compare three
bootstrap methods for estimating confidence intervals
for five location estimators: trimmed mean (y =
0.1,0.2), median, one-step M-estimator, modified one-
step M-estimator) and sample mean. We compare the
actual coverage level and the average length of the
confidence intervals. In each cell of the tables that we
present the coverage accuracies and average lengths, the
first, second and third values represent the results for the
conventional bootstrap, the sufficient bootstrap and the
first-order balanced bootstrap, respectively. Coverage
accuracies closer to the nominal values are highlighted.
All computations were performed in R statistical
programming language [13].

4.1. The Simulation Study

In this section, we generate our data from the standard
normal and the g-and-h distributions for each of the
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sample sizes n=20 and n=50. For each of the 5000
simulations, we select B=1500 bootstrap resamples. To
estimate the unknown standard error with an unknown
analytical form, we conduct the second level bootstrap
with B=500. Then we calculate the coverage accuracy by
dividing the number of intervals which include the
parameter’s real value by the total number of
simulations. We also consider the average length of the
confidence intervals. For confidence intervals with
coverage accuracy close to the nominal value, the method
with a smaller average length is accepted as more
appropriate. (1 — a) + (0.2a) range are accepted as
close to the nominal value and it corresponds to the
limits of (0.94, 0.96) for the 95% (a = 0.5) confidence
level that we study [5, 6, 14].

The g-and-h distribution is equivalent to the standard
normal distribution for g=h=0 which provides the
opportunity to observe, by ranking, the distance from
normal distribution, in which skewness can be controlled
by g, and kurtosis by h parameters [15]. The skewness
and kurtosis values for the g-and-h distribution obtained
with g=0.5 and h=0.4 are 76.877 and 14091.46
respectively. Fig. 1 illustrates the shapes of the g-and-h
distributions for selected values of the parameters.

Tables 1 and 2 present the results for the Normal
Distribution and g-and-h distributions, respectively. For
all of the cases considered, the sufficient bootstrapping
approach fails keeping the coverage accuracy between
the determined limits. All the average confidence interval
lengths calculated for the samples of size 50 are
narrower compared to the ones calculated for n=20 as
expected. Coverage accuracy of the all confidence
intervals for trimmed mean with trimming percentage
0.2 stays within the desired limits proving its success
when one wishes to use it with a bootstrap confidence
interval method. When sufficient bootstrapping is used,
we get the bootstrap-t confidence intervals smaller in the
average length compared to the average lengths of the
bootstrap-BCa and the percentile bootstrap confidence
intervals. However, it is just the opposite when the
conventional and the first-order balanced approaches
are used. The percentile bootstrap is the best among
three bootstrap confidence interval methods considered
for both conventional and balanced approaches under
both the standard normal distribution and the g-and-
h(0.5,0.4) distribution. None of the confidence intervals
calculated for the population arithmetic mean preserve
the nominal coverage accuracy for the g-and-h
population.
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Figure 1. The pdf of various g-and-h distributions

Table 1. Coverage accuracies (Coverage) and average lengths (Av.L.) when the population
distribution is Normal(0,1).

n=20 n=50
bs-BCa bs-t bs-perc bs-BCa bs-t bs-perc
0.9302 0.9540 0.9320 0.9366  0.9460 0.9378
Coverage  0.8512 0.6866  0.8502 0.8596  0.6586  0.8584
7 0.9254 0.9498 0,9284 0.9442 0.9512 0.9446
0.8505 0.9452  0.8455 0.5473  0.5693  0.5468
Av.L. 0.6595 0.4633  0.6592 0.4209 02702  0.4209
0.8491  0.9430  0.8441 0.5468  0.5689  0.5462
0.9456 0.9548 0.9468 0.9462 0.9504 0.9460
Coverage  0.8434 0.6480 0.8478 0.8530 0.6340 0.8576
3 0.9446 0.9540 0.9450 0.9508 0.9540 0.9512
tr=0.1 0.9113 0.9839  0.9090 0.5732  0.5889  0.5730
Av.L. 0.6719 0.4368 0.6738 0.4317 02683  0.4321
0.9077 0.9766  0.9056 0.5718  0.5872  0.5715
0.9420 0.9478 0.9450 0.9450 0.9514 0.9452
Coverage  0.8390 0.6352 0.8476 0.8570 0.6362  0.8566
£ 0.9438 0.9540 0.9458 0.9480 0.9550 0.9478
tr=0.2 0.9445 1.0333  0.9433 0.5954  0.6181  0.5955
Av.L. 0.6895 0.4430 0.6941 0.4471  0.2785  0.4478
0.9387 1.0246  0.9376 0.5931  0.6156  0.5931
0.9406 0.9100 0.9400 0.9460 09132 0.9476
Coverage  0.8408 0.5730 0.8370 0.8530  0.5950  0.8540
M 0.9434 0.9128 0.9420 0.9468 0.9194  0.9482
1.0718 1.2541 1.0528 0.6904 0.7789  0.6945
Av.L. 0.7902  0.5204 0.7749 0.5212 0.3384  0.5206
1.0680  1.2457  1.0468 0.6807  0.7660  0.6859
0.9376 0.9592 0.9400 0.9442 0.9494 0.9460
Coverage  0.8442 0.6702  0.8456 0.8564  0.6388  0.8570
One step 0.9377 0.9578 0.9386 0.9444 0.9526 0.9448
M-estimator 0.9146 1.0828 0.9089 0.5723  0.5968 0.5721
Av.L. 0.6866 0.4668 0.6856 04352  0.2726  0.4352
0.9145 1.0847 0.9089 0.5727 05975  0.5722
0.9304 0.9170 0.9554 0.9434 0.9400 0.9576
Modified Coverage  0.8478 0.6352  0.8734 0.8606 0.6470 0.8736
One step 0.9388 0.9280 0.9572 0.9478 0.9402 0.9586
M-estimator 1.0422 1.1032  1.0335 0.6342  0.6410  0.6350
Av.L. 0.7861 0.5057 0.7875 04860  0.3035  0.4870
1.0448 1.1018 1.0360 0.6339  0.6393  0.6351

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method;
bs-perc: Percentile bootstrap method.
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Table 2. Coverage accuracies and average lengths when population distribution is g-and-h (g=0.5,
h=0.4) distribution

n=20 n=50
bs-BCa bs-t bs-perc bs-BCa bs-t bs-perc
0.8052 0.8438 0.8108 0.8432 0.8650 0.8462
Coverage 0.7154 0.5196 0.7154 0.7370 0.5168 0.7334
7 0.8046 0.8430 0.8150 0.8422 0.8654 0.8468
2.8857 7.9970 2.3394 2.1626 4.7769 1.7444
Av.L. 1.6770 4.4556 1.6827 1.2271 2.6187 1.2296
2.9470 6.9919 2.3806 2.1806 4.1680 1.7614
0.9442 0.9546 0.9512 0.9430 0.9366 0.9486
Coverage 0.8588 0.6012 0.8468 0.8648 0.5934 0.8568
% 0.9388 0.9556 0.9462 0.9500 0.9446 0.9544
tr=01 1.9264 1.8220 1.8347 0.8948 0.8573 0.8909
Av.L. 1.0732 0.6931 1.0950 0.6468 0.3670 0.6583
1.9412 1.8206 1.8526 0.8948 0.8557 0.8907
0.9440 0.9470 0.9472 0.9460 0.9412 0.9462
Coverage 0.8620 0.5776 0.8498 0.8636 0.6000 0.8588
P 0.9468 0.9470 0.9486 0.9498 0.9472 0.9524
tr=02 1.3454 1.3187 1.3442 0.7451 0.7325 0.7458
Av.L. 0.9195 0.5056 0.9444 0.5503 0.3219 0.5560
1.3412 1.3107 1.3400 0.7427 0.7299 0.7435
0.9402 0.9044 0.9400 0.9458 0.9080 0.9470
Coverage 0.8434 0.5472 0.8378 0.8534 0.5876 0.8540
M 0.9442 0.9118 0.9422 0.9466 0.9162 0.9482
1.2028 1.3131 1.2087 0.7221 0.7878 0.7347
Av.L. 0.8586 0.5102 0.8576 0.5405 0.3368 0.5433
1.2033 1.3109 1.2058 0.7107 0.7736 0.7242
0.9306 0.9516 0.9354 0.9400 0.9424 0.9454
Coverage 0.8372 0.6364 0.8408 0.8472 0.6234 0.8526
One step 0.9306 0.9522 0.9344 0.9400 0.9448 0.9438
M-estimator 1.3361 1.5403 1.3031 0.7804 0.8038 0.7734
Av.L. 0.9437 0.6386 0.9373 0.5781 0.3624 0.5767
1.3354 1.5415 1.3025 0.7793 0.8039 0.7728
0.9238 0.8984 0.9612 0.9322 0.9128 0.9600
Modified Coverage 0.8448 0.5732 0.8848 0.8518 0.6196 0.8830
One step 0.9298 0.9068 0.9620 0.9376 0.9198 0.9622
M-estimator 1.3354 1.3077 1.3140 0.7733 0.7643 0.7692
Av.L. 0.9630 0.5617 0.9690 0.5822 0.3561 0.5833
1.3290 1.2974 1.3036 0.7703 0.7625 0.7671

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method;

bs-perc: Percentile bootstrap method.

Table 3. Descriptive statistics of the real data sets

Data Set Name N Mean Median SDted\} IQR Skewness Kurtosis
Total AA Degrees 2859 26898 114.0 45196 281 4.98 47.31
GRE Verbal 4637  468.81 470 103.23 150 0.13 2.54

4.2.Real Data Examples

In this section, we study performances of the considered
confidence intervals on two different real data sets.
Those data sets are available on
https://github.com/eyildiztepe/datasets_cbs. One of the
data sets has symmetric distribution while the other has
an asymmetric shape (Fig. 2). Table 3 gives some
descriptive statistics of these data sets. We treat those
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sets as our populations and randomly select samples
with the sizes of 20 and 50 from each sets. We repeat this
selection for 5000 times with 1500 bootstrap resample
for each simulation. 500 second bootstrap resamples are
selected for estimating standard errors. Tables 4 and 5
present the results when the random sample is selected
from the right skewed “Total AA Degrees” data set and
from the symmetrical “GRE Verbal” data set, respectively.
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Figure 2. The histograms of the real data sets

Table 4. Coverage accuracies and average lengths for the “Total AA Degrees” real data set.

n=20 n=50

bs-BCa bs-t bs-perc bs-BCa bs-t bs-perc

0.8728 0.9270 0.8492 0.9164 0.9401 0.8988

Coverage 0.7542 0.6510 0.7450 0.8058 0.6554 0.7988

7 0.8760 0.9272 0.8494 0.9160 0.9386 0.8974
387.11 622.77 327.84 25491 306.82 227.27

Av.L. 242.59 326.99 242.30 168.19 153.60 168.30

385.98 621.51 327.81 254.88 306.69 227.27
0.9424 0.9600 0.9442 0.9476 0.9532 0.9490

Coverage 0.8378 0.6492 0.8406 0.8610 0.6420 0.8666
7 0.9414 0.9580 0.9440 0.9470 0.9520 0.9486
tr=01 301.94 337.48 288.70 165.82 174.02 164.15
Av.L. 187.31 136.76 194.37 119.49 75.36 123.70

301.30 336.66 288.57 165.73 174.01 164.10
0.9442 0.9598 0.9442 0.9464 0.9512 0.9486

Coverage 0.8446 0.6120 0.8422 0.8540 0.6390 0.8560
7 0.9436 0.9526 0.9444 0.9476 0.9504 0.9484
tr=0.2 241.82 273.10 241.60 139.87 148.57 140.14
Av.L. 162.61 104.15 174.13 101.82 63.73 105.35

241.46 272.49 241.60 139.81 148.55 140.07
0.9456 0.9286 0.9434 0.9458 0.9242 0.9504

Coverage 0.8492 0.5714 0.8432 0.8628 0.5996 0.8628
M 0.9448 0.9292 0.9442 0.9451 0.9230 0.9494
211.02 261.97 221.09 125.51 14193 129.90

Av.L. 151.45 96.15 156.49 93.48 58.20 95.09

211.37 261.71 220.80 125.77 142.02 129.99
0.9382 0.9674 0.9330 0.9472 0.9648 0.9452

Coverage 0.8404 0.7176 0.8412 0.8548 0.6994 0.8572
One step 0.9400 0.9688 0.9334 0.9462 0.9670 0.9448
M-estimator 266.09 424.16 248.50 157.24 198.20 152.48
Av.L. 186.14 162.93 181.38 116.00 86.37 114.46

265.73 424.89 248.45 157.38 198.35 152.54
0.9410 0.9082 0.9460 0.9428 0.9264 0.9532

Modified Coverage 0.8518 0.5346 0.8592 0.8668 0.5964 0.8684
One step 0.9412 0.9034 0.9454 0.9434 0.9286 0.9518
M-estimator 258.20 281.28 238.15 151.05 165.53 144.25
Av.L. 178.24 108.52 174.23 111.15 69.92 108.82

258.28 279.87 238.12 150.88 165.20 144.22

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method;
bs-perc: Percentile bootstrap method.
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Table 5. Coverage accuracies and average lengths for the “GRE Verbal” real data set

n=20 n=50

bs-BCa bs-t bs-perc bs-BCa bs-t bs-perc

0.9336 0.9538 0.9288 0.9466 0.9548 0.9436

Coverage 0.8520 0.7000 0.8538 0.8638 0.6694 0.8634

3 0.9340 0.9530 0.9292 0.9470 0.9556 0.9468
87.76 97.56 87.41 56.72 59.06 56.68
Av.L. 68.30 47.46 68.27 43.62 27.85 43.61
87.78 97.56 87.42 56.67 58.98 56.62

0.9422 0.9546 0.9416 0.9470 0.9518 0.9462

Coverage 0.8414 0.6650 0.8508 0.8566 0.6594 0.8622

3 0.9442 0.9564 0.9432 0.9458 0.9522 0.9458
tr=0.1 96.20 105.34 96.01 61.46 63.64 61.46
Av.L. 71.47 47.02 71.62 46.32 29.00 46.34
96.22 105.37 95.99 61.41 63.58 61.39

0.9406 0.9524 0.9414 0.9458 0.9516 0.9480

Coverage 0.8326 0.6472 0.8452 0.8552 0.6540 0.8614

5 0.9408 0.9532 0.9418 0.9454 0.9514 0.9472
tr=0.2 101.77 113.47 101.67 65.24 68.30 65.25
Av.L. 74.58 48.83 75.06 49.03 30.77 49.09
101.79 113.53 101.68 65.22 68.25 65.21

0.9432 0.8906 0.9498 0.9566 09028 0.9622

Coverage 0.8562 0.5582 0.8576 0.8850 0.5820 0.8878

M 0.9483 0.8924 0.9480 0.9537 09042 0.9628
117.31 140.49 115.87 78.19 90.03 78.62
Av.L. 86.86 58.81 85.85 59.07 39.73 58.91
120.49 140.38 115.79 80.04 89.97 78.71

0.9408 0.9622 0.9382 0.9460 0.9538 0.9450

Coverage 0.8554 0.6944 0.8542 0.8666 0.6652 0.8614

One step 0.9442 0.9639 0.9393 0.9464 0.9550 0.9460
M-estimator 98.54 118.13 97.85 61.45 64.13 61.41
Av.L. 74.16 50.84 74.10 46.85 29.33 46.85
98.67 118.22 98.06 61.48 64.20 61.45

0.9400 0.9256 0.9508 0.9500 0.9456 0.9556

Modified Coverage 0.8572 0.6746 0.8736 0.8750 0.6790 0.8776
One step 0.9384 0.9240 0.9510 0.9476 0.9462 0.9556
M-estimator 113.41 121.41 112.25 67.46 67.33 67.64
Av.L. 85.03 54.98 85.20 51.40 31.51 51.54
113.48 121.11 112.23 67.38 67.29 67.60

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method;

bs-perc: Percentile bootstrap method.

For real data sets, conventional and balanced
bootstrapping methods behave similarly. In terms of
confidence interval type, bootstrap-BCa seems to be the
best one.

4.3.Relative Efficiencies

Table 6 shows the relative efficiencies of the location
estimators calculated by the conventional, sufficient and
balanced bootstrapping approaches. The first value in
each cell of Table 6 is the relative efficiency of the
sufficient bootstrap estimate with respect to the
conventional bootstrap estimate (e.g. the variance of the
estimator from the conventional bootstrap is divided by
the variance estimated by the sufficient bootstrap). The
second value is for the relative efficiency of the first-
order balanced bootstrap estimate with respect to the
conventional bootstrap estimate. With the relative
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efficiencies greater than 1, the sufficient bootstrap
estimators are more efficient than conventional
bootstrap estimators under the considered scenarios.
The first-order balanced bootstrap and conventional
bootstrap estimators seem to behave equally in terms of
efficiency.
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Table 6. The relative efficiencies of the bootstrap estimates

Distribution Real Data

Estimator n Normal(0,1) g-and-h Total AA Degrees GRE Verbal
20 1.6396 1.6383 1.6504 1.5508
7 0.9904 0.9672 1.0575 1.0439
50 1.8016 1.7578 1.7041 1.6476
1.0291 0.9373 1.0256 0.9586
20 1.8244 2.8370 1.6345 1.6626
0.9785 0.9411 1.0551 1.0391
Xpreoa 50 1.9155 2.1441 2.0174 1.7174
1.0449 1.0150 0.9596 0.9575
20 1.8310 2.2398 2.0871 1.6983
3 0.9720 0.9821 1.0749 1.0529
tr=0.2 50 1.9058 1.9864 1.7360 1.6342
1.0531 1.0470 0.9722 0.9530
20 1.7109 1.8055 1.8822 1.4682
0.9888 0.9743 1.0955 1.0244
M 50 2.7719 2.6824 2.6799 1.4953
1.0428 1.0499 1.1372 0.9632
20 1.7126 1.9645 2.8121 1.6184
One step 0.9751 0.9658 1.2143 1.0412
M-estimator ¢ 1.8891 2.0034 1.9873 1.5353
1.0530 1.0401 1.0309 0.9395
e 1.7916 1.8567 3.6037 1.9142
ggjlsftl:s 20 0.9656 0.9874 1.5260 1.0580
M-estimator 50 1.9358 2.0353 2.2577 1.4475
1.1020 1.1240 1.0729 0.9439

First row= var,, (est)/varg,¢(est) , second row= varly,(est) /vary, (est) where the subscript
shows the resampling approach under which estimator was computed.

Population: g&h; Percentile bootstrap confidence interval
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Figure 3. Density plots of bootstrap sampling distributions for X, , . The vertical solid line indicates the population
parameter. The black dashed lines show confidence interval limits obtained with conventional bootstrapping and the
grey dashed lines show confidence interval limits obtained with sufficient bootstrapping.

5. Conclusion

We compared the sufficient, balanced and conventional
bootstrapping approaches in terms of efficiency for
estimating three different bootstrap confidence interval
methods using the coverage accuracy and the average
interval length criteria. We considered both symmetric
and skewed distributions.
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The variances of the sampling distribution of all the
estimators calculated by the sufficient bootstrapping
approach is smaller than the variances estimated by the
conventional bootstrapping approach. Figure 3
illustrates the sampling distributions of the 20%
trimmed means calculated with both approaches, and the
limits of the confidence interval obtained using the
percentile bootstrap method.
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As a result of smaller variance of an estimator obtained
by the sufficient bootstrap method, the length of the
confidence  intervals obtained via  sufficient
bootstrapping is always narrower than the one obtained
using conventional bootstrapping. The small leftward or
rightward shifts of the sampling distribution on the X
scale, which can result from randomness, might easily
yield a confidence interval not containing the targeted
parameter when the sufficient bootstrapping approach
was used. For these reasons, the coverage accuracies of
the confidence intervals calculated using the samples
generated with the sufficient bootstrapping approach are
lower values compared to conventional bootstrapping
approach, and the actual coverage accuracies could not
be preserved between the (1 — a) + (0.2a) range for any
of the confidence intervals obtained using sufficient
bootstrapping. Having a low coverage accuracy always
means having high actual significance levels in terms of
one sample statistical inference for the sufficient
bootstrap approach. All the actual significance levels
were larger than the nominal level (0.05) which means
the sufficient bootstrapping approach caused a liberal
one sample inference about the population parameters
included in the study. In general, conventional approach
was successful in 98 and balanced approach was
successful in 97 cases out of 144 different experimental
situations investigated. The percentile bootstrap
confidence intervals worked better than the other two
when samples are generated from theoretical
distributions whereas the bootstrap-BCa worked better
when samples are generated from real data sets. 20%
and 10% trimmed means were the best two robust
estimators regarding the number of coverage accuracies
that controlled within the desired limits. Using sufficient
bootstrapping approach while generating bootstrap
samples resulted in small standard errors for estimators
but this did not create any advantage in terms of one
sample inference and any type of bootstrap confidence
interval’s coverage accuracy in particular.
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Appendix - R codes used in the simulation study
#R codes used in the simulation study are provided for
#only 20% trimmed mean.

#Distribution: N(0,1), estimator: 20% trimmed mean

#initial values

alpha<-0.05; B<-1500 #bootstrap replications

k<-5000 #iteration number

n<-20 #sample size

tr=0.2 #trim value

theta<-0 # parameter value

#functions

trmean.f<-function(d,i){z<-mean(d[i], trim=0.2)

return(z)}

coverage <- function(ci, value kr=nrow(ci)) {

#function that takes a matrix of confidence intervals and

#the true value of parameter

#and returns the coverage level.
coverage<-(kr-(sum((ci[,1]>value)|(ci[,2]<value))))/kr
below<-(sum(ci[,2]<value))/kr
over<-(sum(ci[,1]>value))/kr
return(list("coverage" = coverage, "below" = below,

"over"=over)) }

# BCa bootstrap CI

boot.BCa <-function(data, statistic, statistic.vector, fun,

conf=.95) {
data <- as.matrix(data); n <- nrow(data)
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N <- 1:n; alpha <- (1 + c(-conf, conf))/2
zalpha <- qnorm(alpha)
z0<-gnorm(sum(statistic.vector<statistic)/
length(statistic.vector))
statistic.vector.jack <- numeric(n)
for (iin 1:n) {J <- N[1:(n-1)]
statistic.vector.jack[i] <- fun(data[-i, ],]) }
L <- mean(statistic.vector.jack) - statistic.vector.jack
a <-sum(L”*3)/(6 * sum(L"2)"1.5)
adj.alpha <- pnorm(z0 + (zO+zalpha) / (1-a* (z0 +
zalpha)))
limits <- quantile(statistic.vector, adj.alpha, type=6)
return(list("estimated"=statistic, "BCa"=limits)) }
# (Bootstrap-t CI)
boot.t<-function(statistic, statistic.vector, se, conf =.95) {
t.stats <- (statistic.vector - statistic) /se
se( <- sd(statistic.vector)
Qt <- quantile(t.stats, c((1-conf)/2,(1+conf)/2),type = 6)
names(Qt) <- rev(names(Qt))
CI <- rev(statistic - Qt * se0)
return(list("estimated"=statistic, "t"=CI)) }
# (Bootstrap percentile CI)
boot.perc <-function(statistic,statistic.vector, conf=.95){
CI <- quantile(statistic.vector,c((1-conf)/2, (1+conf)/2),
type = 6); names(Cl)<-names(quantile(statistic.vector,
c((1-conf)/2, (1+conf)/2)))
return(list("estimated"=statistic, "percentile"=CI)) }
ci.width <- function(cis) { # function that takes a matrix
#of conf. int. and computes the average of ci width.
z<-mean(cis[,2]-cis[,1]); return(z) }
bootse<-
function(x,nboot=1000,est=median,SEED=TRUE,...){
# Wilcox, R.R. (2017). Introduction to Robust Est. and
#Hypothesis Testing. 4th Ed.
# Rallfun-vxx.txt can be downloaded from
# http://dornsife.usc.edu/labs/rwilcox/software/
# Compute bootstrap estimate of the standard error of
# the estimator est
if(SEED)set.seed(2) # set seed of random number
#generator so that results can be duplicated.
data<-matrix(sample(x,size=length(x)*nboot,
replace=TRUE), nrow=nboot)
bvec<-apply(data,1,est,...); bootse<-sqrt(var(bvec))
bootse}
#simulation
con.theta <- numeric(B)
suf.theta <- numeric(B) ; bal.theta <- numeric(B)
con.theta.se<-numeric(B)
suf.theta.se<-numeric(B) ; bal.theta.se<-numeric(B)
con.bs.bca<-matrix(nrow=Kk,ncol=2)
suf.bs.bca<-matrix(nrow=k,ncol=2)
bal.bs.bca<-matrix(nrow=k,ncol=2)
con.bs.t<-matrix(nrow=k,ncol=2)
suf.bs.t<-matrix(nrow=Kk,ncol=2)
bal.bs.t<-matrix(nrow=Kk,ncol=2)
con.bs.perc<-matrix(nrow=k,ncol=2)
suf.bs.perc<-matrix(nrow=Kk,ncol=2)
bal.bs.perc<-matrix(nrow=k,ncol=2)
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clist<-list() ; set.seed(100)
for (iin 1:k) { x<-rnorm(n)
theta.hat <- mean(x,trim=tr)
#Randomly permute the indices for balanced bootstrap
bal.ind<-sample(rep(1:n,B),B*n)
for (bin 1:B) {
ind.con <- sample(1:n, size = n, replace = TRUE)
resample.x <- x[ind.con]
con.theta[b] <- mean(resample.x,trim=tr)
con.theta.se[b]<-bootse(resample.x,nboot=500,
est=mean,SEED=F, trim=tr)
#bootse computes bootstrap estimate of the standard
#error of the estimator est
ind.suf <- unique(ind.con)#sufficient bootstrapping
resample.x <- x[ind.suf]
suf.theta[b] <- mean(resample.x, trim=tr)
suf.theta.se[b]<-bootse(resample.x,nboot=500,
est=mean,SEED=F, trim=tr)
#balanced bootstrapping
ind.bal<-balind[((b-1)*n+1):(b*n)]
resample.x <- x[ind.bal]
bal.theta[b] <- mean(resample.x,trim=tr)
bal.theta.se[b]<-bootse(resample.x,nboot=500,
est=mean,SEED=F, trim=tr) }
con.bs.bcali,]<-boot.BCa(x, statistic = theta.hat,
statistic.vector = con.theta, fun = trmean.f, conf=1-
alpha)$BCa[c(1,2)]
suf.bs.bca[i,]<-boot.BCa(x, statistic = theta.hat,
statistic.vector = suf.theta, fun = trmean.f, conf=1-
alpha)$BCa[c(1,2)]
bal.bs.bca[i,]<-boot.BCa(x, statistic = theta.hat,
statistic.vector = bal.theta, fun = trmean.f, conf=1-
alpha)$BCa[c(1,2)]
con.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector =
con.theta, se=con.theta.se, conf=1-alpha)$t[c(1,2)]
suf.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector =
suf.theta, se=suf.theta.se, conf=1-alpha)$t[c(1,2)]
bal.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector =
bal.theta, se=bal.theta.se, conf=1-alpha)$t[c(1,2)]
con.bs.perc[i,]<-boot.perc(statistic = theta.hat,
statistic.vector = con.theta, conf=1-
alpha)$percentile[c(1,2)]
suf.bs.perc][i,]<-boot.perc(statistic = theta.hat,
statistic.vector = suf.theta, conf=1-
alpha)$percentile[c(1,2)]
bal.bs.perc[i,]<-boot.perc(statistic = theta.hat,
statistic.vector = bal.theta, conf=1-
alpha)$percentile[c(1,2)]
print(paste(i,".completed”,sep="")) }
cilist<-list(con.bs.bca=con.bs.bca, suf.bs.bca=suf.bs.bca,
bal.bs.bca=bal.bs.bca, con.bs.t=con.bs.t, suf.bs.t=suf.bs.t,
bal.bs.t=bal.bs.t, con.bs.perc=con.bs.perc,
suf.bs.perc=suf.bs.perc, bal.bs.perc=bal.bs.perc)
result <- lapply(ci.list, coverage, value=theta, kr=Kk)
ci.widths<-lapply(ci.list, ci.width)
result
ci.widths



