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Abstract 

There are various bootstrapping approaches depending on how bootstrap samples are selected. The conventional 
bootstrapping obtains random bootstrap samples by using all the units in the original sample. Balanced bootstrapping 
based on having individual observations with equal overall frequencies in all bootstrap samples and sufficient 
bootstrapping based on using only the distinct individual observations instead of all the units in the original sample are the 
two basic attempts proposed in this manner.  This study compares the balanced, sufficient and conventional bootstrapping 
approaches in terms of efficiency, bootstrap confidence interval coverage accuracy, and average interval length. Although 
sufficient bootstrapping approach resulted in more efficient estimators and the narrower confidence intervals than the 
other two in all cases, none of the actual coverage level of confidence intervals was controlled within the desired limits. 
Conventional and balanced bootstrapping approaches have given quite similar results in terms of efficiency, coverage 
accuracy and average length. 
Keywords: resampling, bootstrap, coverage accuracy, robust estimators of location 

GELENEKSEL, DENGELİ VE YETERLİ BOOTSTRAP YAKLAŞIMLARININ GÜVEN 
ARALIKLARI VE ETKİNLİK AÇISINDAN KARŞILAŞTIRILMASI 

Özet 

Bootstrap örneklemlerinin nasıl oluşturulduğuna bağlı olarak değişen farklı  bootstrap yaklaşımları mevcuttur. Geleneksel 
bootstrap, bootstrap örneklemlerini orjinal örneklemdeki tüm gözlem birimlerini kullanarak rasgele oluşturur. Dengeli 
bootstrap, orjinal örneklemdeki her bir gözlemin tüm bootstrap örneklemlerdeki toplam frekansının eşit olması ilkesine 
dayanır. Yeterli bootstrap yaklaşımında ise, bootstrap örneklemler oluşturulurken orjinal örneklemdeki tüm gözlemler 
yerine sadece farklı örneklem birimleri kullanılır. Bu çalışma, dengeli, yeterli ve geleneksel bootstrap yaklaşımlarını 
bootstrap güven aralıklarının kapsama oranı, ortalama genişliği ve  etkinlik  açılarından karşılaştırmaktadır. İncelenen 
tüm durumlar için, yeterli bootstrap yaklaşımı kullanılarak diğer iki yaklaşıma göre daha dar güven aralıkları ve daha 
etkin kestiriciler elde edilmiştir. Ancak, yeterli bootstrap yaklaşımı ile elde edilen güven aralıklarının kapsama oranları 
belirlenen limitler içerisinde yer almamıştır. Geleneksel ve dengeli bootstrap yaklaşımları, etkinlik, güven aralıklarının 
kapsama oranı ve ortalama genişliği kriterleri açısından oldukça benzer sonuçlar vermişlerdir.  
Anahtar Kelimeler: yeniden örnekleme, bootstrap, kapsama oranı, dayanıklı konum ölçüleri 
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intervals and efficiency”, Mugla Journal of Science and Technology, 6(2), 111-120. 

 

1.  Introduction 

It is known that the coverage accuracy of a t-based 
confidence interval for the population mean is (1-α) for 
normal distributed population, and approximately (1-α) 
for non-normally distributed populations. However, the 
coverage accuracy decreases when the population 
distribution is asymmetric [1]. In cases where the data is 
obtained from an asymmetric or heavy-tailed 
distribution, robust measures of location can be used. 
Since it is not possible to calculate the standard errors of 
many robust measures of location analytically, bootstrap 

methods can be utilised to compute confidence intervals 
and test hypotheses [2].  

There are many studies on the confidence interval 
estimation of the location parameter for asymmetric 
population distributions comparing the coverage 
accuracy of various methods including the bootstrap 
(e.g., [3-6]). In all of these studies, the confidence interval 
methods were compared using bootstrap samples 
generated by the conventional bootstrapping approach. 
In conventional bootstrapping, the bootstrap samples 
are obtained by using all the units in the original sample. 
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There are various bootstrapping approaches that are 
claimed to be more efficient than the conventional one in 
the literature. In this study, we focus on the first order 
balanced and the sufficient bootstrapping procedures. 
The first-order balanced bootstrap was introduced by 
Davison et al. [7]. They claim that the balanced 
bootstrapping approach results in better estimation of 
bias in terms of efficiency. In a first-order balanced 
bootstrap, each of the original observations appears with 
equal frequency in the samples and in a second-order 
balanced bootstrap, each pair of observations occurs 
exactly the same number of times [8]. Do and Hall [9] 
investigated the theoretical aspects of the balanced 
resampling. 

In 2011, Singh and Sedory [10] introduced the sufficient 
bootstrapping that uses only the distinct individual 
responses instead of all the units in the bootstrap 
resample. They consider the estimation of the sample 
mean, variance, standard deviation, coefficient of 
variation and proportion. Based on a simulation study, 
they conclude that the use of the proposed sufficient 
bootstrapping method may lead to better efficiency than 
conventional bootstrapping for certain situations. 

In this study, we compare the conventional, the first 
order balanced and the sufficient bootstrapping methods 
based confidence interval estimations for some robust 
location measures. We compare those methods by using 
coverage accuracy and average interval length. We focus 
on three different bootstrap confidence interval 
methods:  bootstrap percentile, bootstrap-t and 
bootstrap BCa.  The details of these bootstrap confidence 
interval methods can be found in [8, 11]. 

The organization of the paper is as follows. Section 2 
describes the bootstrapping approaches. Section 3 gives 
a brief information on the robust location estimators 
used in the study. Section 4 presents the conducted 
simulation study and its results.  Section 5 gives 
concluding remarks. The R codes used in the simulation 
study are provided in Appendix and 
https://github.com/eyildiztepe/comp_bootstrap. 

2.  Bootstrapping Approaches 

This section concisely describes the conventional, the 
first-order balanced, and the sufficient bootstrapping 
approaches that are used in the study. 

2.1. Conventional Bootstrapping 

In conventional bootstrap, bootstrap samples of size n 
are selected by random sampling with replacement from 
the original sample with the size n.  

Let 𝑋(𝑏)∗ = {𝑥1
(𝑏)∗

, 𝑥2
(𝑏)∗

, … , 𝑥𝑛
(𝑏)∗

}  be the b-th bootstrap 

resample by sampling with replacement from a sample of       
𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛}. The statistic 𝜃(𝑏)∗ is calculated for the 
corresponding bootstrap sample. This process is 
repeated for B times where 𝜃 denotes the targeted 
population parameter. The distribution of these 
bootstrap statistics {𝜃(1)∗, 𝜃(2)∗ , … , 𝜃(𝑩)∗} forms the 
bootstrap sampling distribution that is used to estimate 

the standard error, bias, shape, dispersion and location 
of the sampling distribution of the corresponding sample 
statistic  𝜃.  

2.2. The First-Order Balanced Bootstrapping 

In a balanced bootstrap method, every 𝑥𝑖 in 𝑋 =
{𝑥1, 𝑥2, … , 𝑥𝑛} exactly occurs B times in all of the B 
bootstrap samples. It is said to have the first-order 
balance if each of the original observations appears 
exactly equal. A simple first-order balanced bootstrap 
algorithm proposed by [8] can be described as follows; 

(1) Concatenate B copies of 𝑥1, 𝑥2, … , 𝑥𝑛 in a list L of 
length   𝐵 × 𝑛 

(2) Randomly permute the elements of L. 

(3) Take as bootstrap samples the successive sets of 
length n from L. 

Then those resamples are used to form the bootstrap 

sampling distribution of the statistic 𝜃. 

2.3. The Sufficient Bootstrapping 

Let 𝑋𝑠(𝑏)∗ = {𝑥1
𝑠(𝑏)∗

, 𝑥2
𝑠(𝑏)∗, … , 𝑥𝜈

𝑠(𝑏)∗ } be the bth sufficient 

bootstrap sample consisting  distinct units in bth 

𝑋(𝑏)∗ = {𝑥1
(𝑏)∗

, 𝑥2
(𝑏)∗

, … , 𝑥𝑛
(𝑏)∗

}  conventional bootstrap 

sample where 𝑏 = 1,2, … , 𝐵. The sufficient bootstrap 

sample estimate 𝜃𝑠(𝑏)∗ is estimated from 𝑋𝑠(𝑏)∗ =

{𝑥1
𝑠(𝑏)∗

, 𝑥2
𝑠(𝑏)∗, … , 𝑥𝜈

𝑠(𝑏)∗ }. Then the distribution of 

{𝜃𝑠(1)∗, 𝜃𝑠(2)∗ , … , 𝜃𝑠(𝐵)∗} gives the sufficient bootstrap 
sampling distribution [10]. It is possible that some 
distinct units in a sufficient bootstrap sample may have 
the same value. But, it should be clear that those same 
values in a sufficient bootstrap sample must have come 
from different units. 

3. Robust Estimators of Location 

The standard errors of the trimmed mean, the one-step 
M-estimator, and the modified one-step M-estimator 
were calculated using the aforementioned bootstrap 
methods in order to estimate the confidence interval for 
the population counterpart of these estimators. Only the 
brief information for those robust estimators are 
presented here. For detailed information, see [2]. 

3.1. Trimmed Mean 

The γ trimmed mean can be described as follows: 

𝜇𝑡 =
1

1 − 2𝛾
∫ 𝑥 𝑑𝐹(𝑥)

𝑥1−𝛾

𝑥𝛾

 (1) 

where 𝑥𝛾 and 𝑥1−𝛾 are the 𝛾 and 1 − 𝛾 quantiles 
(0 ≤ 𝛾 ≤ 0.5). Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample and 
let 𝑥(1) ≤ 𝑥(2) ≤  … ≤ 𝑥(𝑛) be the observations in 

ascending order. Let 𝑔 = [𝛾𝑛], where [𝛾𝑛] is the value of 
𝛾𝑛 rounded down to the closest integer. The 𝑥̅𝑡 is 
computed as follows [2]; 

𝑥̅𝑡 =
𝑥(𝑔+1)+ … +𝑥(𝑛−𝑔)

𝑛 − 2𝑔
 (2) 
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3.2. One-step M-estimator 

Estimation of Huber’s M-measure of location uses an 
iterative estimation procedure such as the Newton-
Raphson method. One iteration of this procedure 
produces the one-step M-estimator which has good 
asymptotic properties even with only a single iteration 
[12]. The  𝜇̂𝑚 is 

𝜇̂𝑚 =
1.28𝑀𝐴𝐷𝑁(𝑖2 − 𝑖1) + ∑ 𝑥(𝑖)

𝑛−𝑖2
𝑖=𝑖1+1

𝑛 − 𝑖1 − 𝑖2
 (3) 

where 𝑀𝐴𝐷𝑁 = 𝑀𝐴𝐷/0.6745, and  

𝑀𝐴𝐷 = 𝑀𝑒𝑑{|𝑥1 − 𝑀|, |𝑥2 − 𝑀|, … , |𝑥𝑛 − 𝑀|}. MAD is 
the median absolute deviation statistic and M is the 
sample median. Here 𝑖1 is the number of observations 𝑥𝑖 
such that  (𝑥𝑖 − 𝑀) 𝑀𝐴𝐷𝑁⁄ < −1.28 and 𝑖2 is the number 
of observations 𝑥𝑖 such that (𝑥𝑖 − 𝑀) 𝑀𝐴𝐷𝑁⁄ > 1.28 [2]. 

3.3. Modified One-step M-estimator 

Ignoring 1.28𝑀𝐴𝐷𝑁(𝑖2 − 𝑖1) in eq.(3) gives the modified 
one-step M-estimator. This estimator averages non-
outlier values. However, to obtain a reasonably good 
efficiency under normality, utilized outlier detection rule 
is changed. The one-step M-estimator is 

𝜇̂𝑚𝑜𝑚 =
∑ 𝑥(𝑖)

𝑛−𝑖2
𝑖=𝑖1+1

𝑛 − 𝑖1 − 𝑖2
 (4) 

where 𝑖1 is the number of observations for which 
(𝑥𝑖 − 𝑀) 𝑀𝐴𝐷𝑁⁄ < −2.24, and 𝑖2 is the number of 
observations for which (𝑥𝑖 − 𝑀) 𝑀𝐴𝐷𝑁⁄ > 2.24  
(Hampel identifier) [2]. 

4. Numerical Studies 

This section includes the detailed simulation study and 
two real data examples that are used to compare three 
bootstrap methods for estimating confidence intervals 
for five location estimators: trimmed mean (𝛾 =
0.1 , 0.2), median, one-step M-estimator, modified one-
step M-estimator) and sample mean. We compare the 
actual coverage level and the average length of the 
confidence intervals.  In each cell of the tables that we 
present the coverage accuracies and average lengths, the 
first, second and third values represent the results for the 
conventional bootstrap, the sufficient bootstrap and the 
first-order balanced bootstrap, respectively. Coverage 
accuracies closer to the nominal values are highlighted. 
All computations were performed in R statistical 
programming language [13]. 

4.1. The Simulation Study 

In this section, we generate our data from the standard 
normal and the g-and-h distributions for each of the 

sample sizes n=20 and n=50. For each of the 5000 
simulations, we select B=1500 bootstrap resamples. To 
estimate the unknown standard error with an unknown 
analytical form, we conduct the second level bootstrap 
with B=500. Then we calculate the coverage accuracy by 
dividing the number of intervals which include the 
parameter’s real value by the total number of 
simulations. We also consider the average length of the 
confidence intervals. For confidence intervals with 
coverage accuracy close to the nominal value, the method 
with a smaller average length is accepted as more 
appropriate. (1 − 𝛼) ± (0.2𝛼) range are accepted as 
close to the nominal value and it corresponds to the 
limits of (0.94, 0.96) for the 95% (𝛼 = 0.5) confidence 
level that we study [5, 6, 14]. 

The g-and-h distribution is equivalent to the standard 
normal distribution for g=h=0 which provides the 
opportunity to observe, by ranking, the distance from 
normal distribution, in which skewness can be controlled 
by g, and kurtosis by h parameters [15]. The skewness 
and kurtosis values for the g-and-h distribution obtained 
with g=0.5 and h=0.4 are 76.877 and 14091.46 
respectively. Fig. 1 illustrates the shapes of the g-and-h 
distributions for selected values of the parameters. 

Tables 1 and 2 present the results for the Normal 
Distribution and g-and-h distributions, respectively. For 
all of the cases considered, the sufficient bootstrapping 
approach fails keeping the coverage accuracy between 
the determined limits. All the average confidence interval 
lengths calculated for the samples of size 50 are 
narrower compared to the ones calculated for n=20 as 
expected. Coverage accuracy of the all confidence 
intervals for trimmed mean with trimming percentage 
0.2 stays within the desired limits proving its success 
when one wishes to use it with a bootstrap confidence 
interval method. When sufficient bootstrapping is used, 
we get the bootstrap-t confidence intervals smaller in the 
average length compared to the average lengths of the 
bootstrap-BCa and the percentile bootstrap confidence 
intervals. However, it is just the opposite when the 
conventional and the first-order balanced approaches 
are used. The percentile bootstrap is the best among 
three bootstrap confidence interval methods considered 
for both conventional and balanced approaches under 
both the standard normal distribution and the g-and-
h(0.5,0.4) distribution. None of the confidence intervals 
calculated for the population arithmetic mean preserve 
the nominal coverage accuracy for the g-and-h 
population. 
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Figure 1. The pdf of various g-and-h distributions 

 

Table 1. Coverage accuracies (Coverage) and average lengths (Av.L.)  when the population 
distribution is Normal(0,1). 

 

n=20  n=50 
bs-BCa bs-t bs-perc  bs-BCa bs-t bs-perc 

𝑥̅ 

Coverage 
0.9302 0.9540 0.9320  0.9366 0.9460 0.9378 
0.8512 0.6866 0.8502  0.8596 0.6586 0.8584 
0.9254 0.9498 0,9284  0.9442 0.9512 0.9446 

Av.L. 
0.8505 0.9452 0.8455  0.5473 0.5693 0.5468 
0.6595 0.4633 0.6592   0.4209 0.2702 0.4209 
0.8491 0.9430 0.8441  0.5468 0.5689 0.5462 

𝑥̅𝑡𝑟=0.1 

Coverage 
0.9456 0.9548 0.9468   0.9462 0.9504 0.9460 
0.8434 0.6480 0.8478  0.8530 0.6340 0.8576 
0.9446 0.9540 0.9450  0.9508 0.9540 0.9512 

Av.L. 
0.9113 0.9839 0.9090  0.5732 0.5889 0.5730 
0.6719 0.4368 0.6738   0.4317 0.2683 0.4321 
0.9077 0.9766 0.9056  0.5718 0.5872 0.5715 

𝑥̅𝑡𝑟=0.2 

Coverage 
0.9420 0.9478 0.9450   0.9450 0.9514 0.9452 
0.8390 0.6352 0.8476  0.8570 0.6362 0.8566 
0.9438 0.9540 0.9458  0.9480 0.9550 0.9478 

Av.L. 
0.9445 1.0333 0.9433  0.5954 0.6181 0.5955 
0.6895 0.4430 0.6941   0.4471 0.2785 0.4478 
0.9387 1.0246 0.9376  0.5931 0.6156 0.5931 

𝑀 

Coverage 
0.9406 0.9100 0.9400   0.9460 0.9132 0.9476 
0.8408 0.5730 0.8370  0.8530 0.5950 0.8540 
0.9434 0.9128 0.9420  0.9468 0.9194 0.9482 

Av.L. 
1.0718 1.2541 1.0528  0.6904 0.7789 0.6945 
0.7902 0.5204 0.7749   0.5212 0.3384 0.5206 
1.0680 1.2457 1.0468  0.6807 0.7660 0.6859 

One step   
M-estimator 

Coverage 
0.9376 0.9592 0.9400   0.9442 0.9494 0.9460 
0.8442 0.6702 0.8456  0.8564 0.6388 0.8570 
0.9377 0.9578 0.9386  0.9444 0.9526 0.9448 

Av.L. 
0.9146 1.0828 0.9089  0.5723 0.5968 0.5721 
0.6866 0.4668 0.6856   0.4352 0.2726 0.4352 
0.9145 1.0847 0.9089  0.5727 0.5975 0.5722 

Modified  
One step 
M-estimator 

Coverage 
0.9304 0.9170 0.9554  0.9434 0.9400 0.9576 
0.8478 0.6352 0.8734  0.8606 0.6470 0.8736 
0.9388 0.9280 0.9572  0.9478 0.9402 0.9586 

Av.L. 
1.0422 1.1032 1.0335  0.6342 0.6410 0.6350 
0.7861 0.5057 0.7875   0.4860 0.3035 0.4870 
1.0448 1.1018 1.0360  0.6339 0.6393 0.6351 

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method; 
bs-perc: Percentile bootstrap method. 
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Table 2. Coverage accuracies and average lengths when population distribution is g-and-h (g=0.5, 
h=0.4) distribution 

 

n=20  n=50 
bs-BCa bs-t bs-perc  bs-BCa bs-t bs-perc 

𝑥̅ 

Coverage 
0.8052 0.8438 0.8108  0.8432 0.8650 0.8462 
0.7154 0.5196 0.7154  0.7370 0.5168 0.7334 
0.8046 0.8430 0.8150  0.8422 0.8654 0.8468 

Av.L. 
2.8857 7.9970 2.3394  2.1626 4.7769 1.7444 
1.6770 4.4556 1.6827   1.2271 2.6187 1.2296 
2.9470 6.9919 2.3806  2.1806 4.1680 1.7614 

𝑥̅𝑡𝑟=0.1 

Coverage 
0.9442 0.9546 0.9512   0.9430 0.9366 0.9486 
0.8588 0.6012 0.8468  0.8648 0.5934 0.8568 
0.9388 0.9556 0.9462  0.9500 0.9446 0.9544 

Av.L. 
1.9264 1.8220 1.8347  0.8948 0.8573 0.8909 
1.0732 0.6931 1.0950   0.6468 0.3670 0.6583 
1.9412 1.8206 1.8526  0.8948 0.8557 0.8907 

𝑥̅𝑡𝑟=0.2 

Coverage 
0.9440 0.9470 0.9472   0.9460 0.9412 0.9462 
0.8620 0.5776 0.8498  0.8636 0.6000 0.8588 
0.9468 0.9470 0.9486  0.9498 0.9472 0.9524 

Av.L. 
1.3454 1.3187 1.3442  0.7451 0.7325 0.7458 
0.9195 0.5056 0.9444   0.5503 0.3219 0.5560 
1.3412 1.3107 1.3400  0.7427 0.7299 0.7435 

𝑀 

Coverage 
0.9402 0.9044 0.9400   0.9458 0.9080 0.9470 
0.8434 0.5472 0.8378  0.8534 0.5876 0.8540 
0.9442 0.9118 0.9422  0.9466 0.9162 0.9482 

Av.L. 
1.2028 1.3131 1.2087  0.7221 0.7878 0.7347 
0.8586 0.5102 0.8576   0.5405 0.3368 0.5433 
1.2033 1.3109 1.2058  0.7107 0.7736 0.7242 

One step   
M-estimator 

Coverage 
0.9306 0.9516 0.9354   0.9400 0.9424 0.9454 
0.8372 0.6364 0.8408  0.8472 0.6234 0.8526 
0.9306 0.9522 0.9344  0.9400 0.9448 0.9438 

Av.L. 
1.3361 1.5403 1.3031  0.7804 0.8038 0.7734 
0.9437 0.6386 0.9373   0.5781 0.3624 0.5767 
1.3354 1.5415 1.3025  0.7793 0.8039 0.7728 

Modified  
One step   
M-estimator 

Coverage 
0.9238 0.8984 0.9612  0.9322 0.9128 0.9600 
0.8448 0.5732 0.8848  0.8518 0.6196 0.8830 
0.9298 0.9068 0.9620  0.9376 0.9198 0.9622 

Av.L. 
1.3354 1.3077 1.3140  0.7733 0.7643 0.7692 
0.9630 0.5617 0.9690   0.5822 0.3561 0.5833 
1.3290 1.2974 1.3036  0.7703 0.7625 0.7671 

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method; 
bs-perc: Percentile bootstrap method. 

 

Table 3. Descriptive statistics of the real data sets 

Data Set Name N Mean Median 
Std. 
Dev. 

IQR Skewness Kurtosis 

Total AA Degrees 2859 268.98 114.0 451.96 281 4.98 47.31 
GRE Verbal 4637 468.81 470 103.23 150 0.13 2.54 

 

4.2. Real Data Examples 

In this section, we study performances of the considered 
confidence intervals on two different real data sets. 
Those data sets are available on 
https://github.com/eyildiztepe/datasets_cbs. One of the 
data sets has symmetric distribution while the other has 
an asymmetric shape (Fig. 2). Table 3 gives some 
descriptive statistics of these data sets. We treat those 

sets as our populations and randomly select samples 
with the sizes of 20 and 50 from each sets. We repeat this 
selection for 5000 times with 1500 bootstrap resample 
for each simulation. 500 second bootstrap resamples are 
selected for estimating standard errors. Tables 4 and 5 
present the results when the random sample is selected 
from the right skewed “Total AA Degrees” data set and 
from the symmetrical “GRE Verbal” data set, respectively. 
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Figure 2. The histograms of the real data sets 

 

Table 4. Coverage accuracies and average lengths for the “Total AA Degrees” real data set. 

 

n=20  n=50 
bs-BCa bs-t bs-perc  bs-BCa bs-t bs-perc 

𝑥̅ 

Coverage 
0.8728 0.9270 0.8492  0.9164 0.9401 0.8988 
0.7542 0.6510 0.7450  0.8058 0.6554 0.7988 
0.8760 0.9272 0.8494  0.9160 0.9386 0.8974 

Av.L. 
387.11 622.77 327.84  254.91 306.82 227.27 
242.59 326.99 242.30   168.19 153.60 168.30 
385.98 621.51 327.81  254.88 306.69 227.27 

𝑥̅𝑡𝑟=0.1 

Coverage 
0.9424 0.9600 0.9442   0.9476 0.9532 0.9490 
0.8378 0.6492 0.8406  0.8610 0.6420 0.8666 
0.9414 0.9580 0.9440  0.9470 0.9520 0.9486 

Av.L. 
301.94 337.48 288.70  165.82 174.02 164.15 
187.31 136.76 194.37   119.49 75.36 123.70 
301.30 336.66 288.57  165.73 174.01 164.10 

𝑥̅𝑡𝑟=0.2 

Coverage 
0.9442 0.9598 0.9442   0.9464 0.9512 0.9486 
0.8446 0.6120 0.8422  0.8540 0.6390 0.8560 
0.9436 0.9526 0.9444  0.9476 0.9504 0.9484 

Av.L. 
241.82 273.10 241.60  139.87 148.57 140.14 
162.61 104.15 174.13   101.82 63.73 105.35 
241.46 272.49 241.60  139.81 148.55 140.07 

𝑀 

Coverage 
0.9456 0.9286 0.9434   0.9458 0.9242 0.9504 
0.8492 0.5714 0.8432  0.8628 0.5996 0.8628 
0.9448 0.9292 0.9442  0.9451 0.9230 0.9494 

Av.L. 
211.02 261.97 221.09  125.51 141.93 129.90 
151.45 96.15 156.49   93.48 58.20 95.09 
211.37 261.71 220.80  125.77 142.02 129.99 

One step 
M-estimator 

Coverage 
0.9382 0.9674 0.9330   0.9472 0.9648 0.9452 
0.8404 0.7176 0.8412  0.8548 0.6994 0.8572 
0.9400 0.9688 0.9334  0.9462 0.9670 0.9448 

Av.L. 
266.09 424.16 248.50  157.24 198.20 152.48 
186.14 162.93 181.38   116.00 86.37 114.46 
265.73 424.89 248.45  157.38 198.35 152.54 

Modified  
One step 
M-estimator 

Coverage 
0.9410 0.9082 0.9460  0.9428 0.9264 0.9532 
0.8518 0.5346 0.8592  0.8668 0.5964 0.8684 
0.9412 0.9034 0.9454  0.9434 0.9286 0.9518 

Av.L. 
258.20 281.28 238.15  151.05 165.53 144.25 
178.24 108.52 174.23   111.15 69.92 108.82 
258.28 279.87 238.12  150.88 165.20 144.22 

Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method; 
bs-perc: Percentile bootstrap method. 
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Table 5. Coverage accuracies and average lengths for the “GRE Verbal” real data set 

 

n=20  n=50 
bs-BCa bs-t bs-perc  bs-BCa bs-t bs-perc 

𝑥̅ 

Coverage 
0.9336 0.9538 0.9288  0.9466 0.9548 0.9436 
0.8520 0.7000 0.8538  0.8638 0.6694 0.8634 
0.9340 0.9530 0.9292  0.9470 0.9556 0.9468 

Av.L. 
87.76 97.56 87.41  56.72 59.06 56.68 
68.30 47.46 68.27   43.62 27.85 43.61 
87.78 97.56 87.42  56.67 58.98 56.62 

𝑥̅𝑡𝑟=0.1 

Coverage 
0.9422 0.9546 0.9416   0.9470 0.9518 0.9462 
0.8414 0.6650 0.8508  0.8566 0.6594 0.8622 
0.9442 0.9564 0.9432  0.9458 0.9522 0.9458 

Av.L. 
96.20 105.34 96.01  61.46 63.64 61.46 
71.47 47.02 71.62   46.32 29.00 46.34 
96.22 105.37 95.99  61.41 63.58 61.39 

𝑥̅𝑡𝑟=0.2 

Coverage 
0.9406 0.9524 0.9414   0.9458 0.9516 0.9480 
0.8326 0.6472 0.8452  0.8552 0.6540 0.8614 
0.9408 0.9532 0.9418  0.9454 0.9514 0.9472 

Av.L. 
101.77 113.47 101.67  65.24 68.30 65.25 
74.58 48.83 75.06   49.03 30.77 49.09 

101.79 113.53 101.68  65.22 68.25 65.21 

𝑀 

Coverage 
0.9432 0.8906 0.9498   0.9566 0.9028 0.9622 
0.8562 0.5582 0.8576  0.8850 0.5820 0.8878 
0.9483 0.8924 0.9480  0.9537 0.9042 0.9628 

Av.L. 
117.31 140.49 115.87  78.19 90.03 78.62 
86.86 58.81 85.85   59.07 39.73 58.91 

120.49 140.38 115.79  80.04 89.97 78.71 

One step  
M-estimator 

Coverage 
0.9408 0.9622 0.9382   0.9460 0.9538 0.9450 
0.8554 0.6944 0.8542  0.8666 0.6652 0.8614 
0.9442 0.9639 0.9393  0.9464 0.9550 0.9460 

Av.L. 
98.54 118.13 97.85  61.45 64.13 61.41 
74.16 50.84 74.10   46.85 29.33 46.85 
98.67 118.22 98.06  61.48 64.20 61.45 

Modified  
One step 
M-estimator 

Coverage 
0.9400 0.9256 0.9508  0.9500 0.9456 0.9556 
0.8572 0.6746 0.8736  0.8750 0.6790 0.8776 
0.9384 0.9240 0.9510  0.9476 0.9462 0.9556 

Av.L. 
113.41 121.41 112.25  67.46 67.33 67.64 
85.03 54.98 85.20   51.40 31.51 51.54 

113.48 121.11 112.23  67.38 67.29 67.60 
Note: n: sample size; bs-BCa: Bias corrected accelerated bootstrap method; bs-t: Bootstrap-t method; 
bs-perc: Percentile bootstrap method. 

 

For real data sets, conventional and balanced 
bootstrapping methods behave similarly. In terms of 
confidence interval type, bootstrap-BCa seems to be the 
best one.  

4.3. Relative Efficiencies 

Table 6 shows the relative efficiencies of the location 
estimators calculated by the conventional, sufficient and 
balanced bootstrapping approaches. The first value in 
each cell of Table 6 is the relative efficiency of the 
sufficient bootstrap estimate with respect to the 
conventional bootstrap estimate (e.g. the variance of the 
estimator from the conventional bootstrap is divided by 
the variance estimated by the sufficient bootstrap). The 
second value is for the relative efficiency of the first-
order balanced bootstrap estimate with respect to the 
conventional bootstrap estimate. With the relative 

efficiencies greater than 1, the sufficient bootstrap 
estimators are more efficient than conventional 
bootstrap estimators under the considered scenarios. 
The first-order balanced bootstrap and conventional 
bootstrap estimators seem to behave equally in terms of 
efficiency. 
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Table 6. The relative efficiencies of the bootstrap estimates 

Estimator n 
Distribution Real Data 

Normal(0,1) g-and-h 
(g=0.5,h=0.4) 

Total AA Degrees GRE Verbal 

𝑥̅ 
20 

1.6396 1.6383 1.6504 1.5508 
0.9904 0.9672 1.0575 1.0439 

50 
1.8016 1.7578 1.7041 1.6476 
1.0291 0.9373 1.0256 0.9586 

 
𝑥̅𝑡𝑟=0.1 

20 
1.8244 2.8370 1.6345 1.6626 
0.9785 0.9411 1.0551 1.0391 

50 
1.9155 2.1441 2.0174 1.7174 
1.0449 1.0150 0.9596 0.9575 

𝑥̅𝑡𝑟=0.2 
20 

1.8310 2.2398 2.0871 1.6983 
0.9720 0.9821 1.0749 1.0529 

50 
1.9058 1.9864 1.7360 1.6342 
1.0531 1.0470 0.9722 0.9530 

 
𝑀 

20 
1.7109 1.8055 1.8822 1.4682 
0.9888 0.9743 1.0955 1.0244 

50 
2.7719 2.6824 2.6799 1.4953 
1.0428 1.0499 1.1372 0.9632 

One step  
M-estimator 

20 
1.7126 1.9645 2.8121 1.6184 
0.9751 0.9658 1.2143 1.0412 

50 
1.8891 2.0034 1.9873 1.5353 
1.0530 1.0401 1.0309 0.9395 

Modified  
One step 
M-estimator 

20 
1.7916 1.8567 3.6037 1.9142 
0.9656 0.9874 1.5260 1.0580 

50 
1.9358 2.0353 2.2577 1.4475 
1.1020 1.1240 1.0729 0.9439 

First row= 𝑣𝑎𝑟𝑐𝑜𝑛
∗ (𝑒𝑠𝑡) 𝑣𝑎𝑟𝑠𝑢𝑓

∗ (𝑒𝑠𝑡)⁄  , second row= 𝑣𝑎𝑟𝑐𝑜𝑛
∗ (𝑒𝑠𝑡) 𝑣𝑎𝑟𝑏𝑎𝑙

∗ (𝑒𝑠𝑡)⁄  where the subscript 

shows the resampling approach under which estimator was computed. 

 

 
Figure 3. Density plots of bootstrap sampling distributions for 𝑥̅𝑡𝑟=0.2 . The vertical solid line indicates the population 
parameter. The black dashed lines show confidence interval limits obtained with conventional bootstrapping and the 

grey dashed lines show confidence interval limits obtained with sufficient bootstrapping. 

5. Conclusion 

We compared the sufficient, balanced and conventional 
bootstrapping approaches in terms of efficiency for 
estimating three different bootstrap confidence interval 
methods using the coverage accuracy and the average 
interval length criteria. We considered both symmetric 
and skewed distributions.  

The variances of the sampling distribution of all the 
estimators calculated by the sufficient bootstrapping 
approach is smaller than the variances estimated by the 
conventional bootstrapping approach. Figure 3 
illustrates the sampling distributions of the 20% 
trimmed means calculated with both approaches, and the 
limits of the confidence interval obtained using the 
percentile bootstrap method. 
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As a result of smaller variance of an estimator obtained 
by the sufficient bootstrap method, the length of the 
confidence intervals obtained via sufficient 
bootstrapping is always narrower than the one obtained 
using conventional bootstrapping. The small leftward or 
rightward shifts of the sampling distribution on the X 
scale, which can result from randomness, might easily 
yield a confidence interval not containing the targeted 
parameter when the sufficient bootstrapping approach 
was used. For these reasons, the coverage accuracies of 
the confidence intervals calculated using the samples 
generated with the sufficient bootstrapping approach are 
lower values compared to conventional bootstrapping 
approach, and the actual coverage accuracies could not 
be preserved between the (1 − 𝛼) ± (0.2𝛼) range for any 
of the confidence intervals obtained using sufficient 
bootstrapping. Having a low coverage accuracy always 
means having high actual significance levels in terms of 
one sample statistical inference for the sufficient 
bootstrap approach. All the actual significance levels 
were larger than the nominal level (0.05) which means 
the sufficient bootstrapping approach caused a liberal 
one sample inference about the population parameters 
included in the study. In general, conventional approach 
was successful in 98 and balanced approach was 
successful in 97 cases out of 144 different experimental 
situations investigated. The percentile bootstrap 
confidence intervals worked better than the other two 
when samples are generated from theoretical 
distributions whereas the bootstrap-BCa worked better 
when samples are generated from real data sets. 20% 
and 10% trimmed means were the best two robust 
estimators regarding the number of coverage accuracies 
that controlled within the desired limits. Using sufficient 
bootstrapping approach while generating bootstrap 
samples resulted in small standard errors for estimators 
but this did not create any advantage in terms of one 
sample inference and any type of bootstrap confidence 
interval’s coverage accuracy in particular. 
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Appendix - R codes used in the simulation study 
#R codes used in the simulation study are provided for 
#only 20% trimmed mean. 
#Distribution: N(0,1), estimator: 20% trimmed mean 
#initial values 
alpha<-0.05; B<-1500 #bootstrap replications 
k<-5000 #iteration number 
n<-20 #sample size 
tr=0.2 #trim value 
theta<-0 # parameter value 
#functions 
trmean.f<-function(d,i){z<-mean(d[i], trim=0.2) 

return(z)} 
coverage <- function(ci, value,kr=nrow(ci)) { 
#function that takes a matrix of confidence intervals and 
#the true value of parameter 
#and returns the coverage level. 
  coverage<-(kr-(sum((ci[,1]>value)|(ci[,2]<value))))/kr 
  below<-(sum(ci[,2]<value))/kr 
  over<-(sum(ci[,1]>value))/kr 
  return(list("coverage" = coverage, "below" = below,  
"over"= over))   } 
# BCa bootstrap CI 
boot.BCa <-function(data, statistic, statistic.vector, fun, 
conf = .95) {  
  data <- as.matrix(data);  n <- nrow(data) 
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  N <- 1:n;  alpha <- (1 + c(-conf, conf))/2 
  zalpha <- qnorm(alpha) 
  z0<-qnorm(sum(statistic.vector<statistic)/ 
length(statistic.vector)) 
  statistic.vector.jack <- numeric(n) 
  for (i in 1:n) { J <- N[1:(n-1)] 
    statistic.vector.jack[i] <- fun(data[-i, ], J)   } 
  L <- mean(statistic.vector.jack) - statistic.vector.jack 
  a <- sum(L^3)/(6 * sum(L^2)^1.5) 
  adj.alpha <- pnorm(z0 + (z0+zalpha) / (1-a* (z0 + 
zalpha))) 
  limits <- quantile(statistic.vector, adj.alpha, type=6) 
  return(list("estimated"=statistic, "BCa"=limits))    } 
# (Bootstrap-t CI) 
boot.t<-function(statistic, statistic.vector, se, conf = .95) { 
  t.stats <- (statistic.vector - statistic) /se 
  se0 <- sd(statistic.vector) 
  Qt <- quantile(t.stats, c((1-conf)/2,(1+conf)/2),type = 6) 
  names(Qt) <- rev(names(Qt)) 
  CI <- rev(statistic - Qt * se0) 
  return(list("estimated"=statistic, "t"=CI))  } 
# (Bootstrap percentile CI) 
boot.perc <-function(statistic,statistic.vector, conf=.95){ 
  CI <- quantile(statistic.vector,c((1-conf)/2, (1+conf)/2), 
type = 6);  names(CI)<-names(quantile(statistic.vector, 
c((1-conf)/2, (1+conf)/2))) 
  return(list("estimated"=statistic, "percentile"=CI))  } 
ci.width <- function(cis) {  # function that takes a matrix   
#of conf. int. and computes the average of ci width. 
  z<-mean(cis[,2]-cis[,1]);  return(z) } 
bootse<-
function(x,nboot=1000,est=median,SEED=TRUE,...){ 
#  Wilcox, R.R. (2017). Introduction to Robust Est. and 
#Hypothesis Testing. 4th Ed.   
#   Rallfun-vxx.txt can be downloaded from  
#  http://dornsife.usc.edu/labs/rwilcox/software/  
#   Compute bootstrap estimate of the standard error of 
# the estimator est 
  if(SEED)set.seed(2) # set seed of random number 
#generator so that results can be duplicated. 
  data<-matrix(sample(x,size=length(x)*nboot, 
replace=TRUE), nrow=nboot) 
  bvec<-apply(data,1,est,...); bootse<-sqrt(var(bvec)) 
  bootse} 
#simulation 
con.theta <- numeric(B) 
suf.theta <- numeric(B) ; bal.theta <- numeric(B) 
con.theta.se<-numeric(B) 
suf.theta.se<-numeric(B) ; bal.theta.se<-numeric(B) 
con.bs.bca<-matrix(nrow=k,ncol=2)  
suf.bs.bca<-matrix(nrow=k,ncol=2) 
bal.bs.bca<-matrix(nrow=k,ncol=2) 
con.bs.t<-matrix(nrow=k,ncol=2) 
suf.bs.t<-matrix(nrow=k,ncol=2) 
bal.bs.t<-matrix(nrow=k,ncol=2) 
con.bs.perc<-matrix(nrow=k,ncol=2) 
suf.bs.perc<-matrix(nrow=k,ncol=2) 
bal.bs.perc<-matrix(nrow=k,ncol=2) 

clist<-list() ; set.seed(100) 
for (i in 1:k) { x<-rnorm(n) 
  theta.hat <- mean(x,trim=tr) 
#Randomly permute the indices for balanced bootstrap 
  bal.ind<-sample(rep(1:n,B),B*n) 
  for (b in 1:B) {  
    ind.con <- sample(1:n, size = n, replace = TRUE) 
    resample.x <- x[ind.con] 
    con.theta[b] <- mean(resample.x,trim=tr) 
    con.theta.se[b]<-bootse(resample.x,nboot=500, 
est=mean,SEED=F, trim=tr)  
#bootse computes bootstrap estimate of the standard 
#error of the estimator est 
    ind.suf <- unique(ind.con)#sufficient bootstrapping 
    resample.x <- x[ind.suf] 
    suf.theta[b] <- mean(resample.x, trim=tr) 
    suf.theta.se[b]<-bootse(resample.x,nboot=500, 
est=mean,SEED=F, trim=tr)  
    #balanced bootstrapping     
    ind.bal<-bal.ind[((b-1)*n+1):(b*n)]  
    resample.x <- x[ind.bal] 
    bal.theta[b] <- mean(resample.x,trim=tr) 
    bal.theta.se[b]<-bootse(resample.x,nboot=500, 
est=mean,SEED=F, trim=tr)   } 
con.bs.bca[i,]<-boot.BCa(x, statistic = theta.hat, 
statistic.vector = con.theta, fun = trmean.f, conf=1- 
alpha)$BCa[c(1,2)] 
suf.bs.bca[i,]<-boot.BCa(x, statistic = theta.hat, 
statistic.vector = suf.theta, fun = trmean.f, conf=1-
alpha)$BCa[c(1,2)] 
bal.bs.bca[i,]<-boot.BCa(x, statistic = theta.hat, 
statistic.vector = bal.theta, fun = trmean.f, conf=1-
alpha)$BCa[c(1,2)] 
con.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector = 
con.theta, se=con.theta.se, conf=1-alpha)$t[c(1,2)] 
suf.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector = 
suf.theta, se=suf.theta.se, conf=1-alpha)$t[c(1,2)] 
bal.bs.t[i,]<-boot.t(statistic = theta.hat, statistic.vector = 
bal.theta, se=bal.theta.se, conf=1-alpha)$t[c(1,2)] 
con.bs.perc[i,]<-boot.perc(statistic = theta.hat, 
statistic.vector = con.theta, conf=1-
alpha)$percentile[c(1,2)] 
suf.bs.perc[i,]<-boot.perc(statistic = theta.hat, 
statistic.vector = suf.theta, conf=1-
alpha)$percentile[c(1,2)] 
bal.bs.perc[i,]<-boot.perc(statistic = theta.hat, 
statistic.vector = bal.theta, conf=1-
alpha)$percentile[c(1,2)] 
print(paste(i,".completed",sep=""))    } 
ci.list<-list(con.bs.bca=con.bs.bca, suf.bs.bca=suf.bs.bca, 
bal.bs.bca=bal.bs.bca, con.bs.t=con.bs.t, suf.bs.t=suf.bs.t, 
bal.bs.t=bal.bs.t, con.bs.perc=con.bs.perc, 
suf.bs.perc=suf.bs.perc, bal.bs.perc=bal.bs.perc) 
result <- lapply(ci.list, coverage, value=theta, kr=k) 
ci.widths<-lapply(ci.list, ci.width) 
result 
ci.widths 


