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Abstract 

Edge computing is the concept where the computation is handled at edge-devices. The transfer of 

the computation from servers to edge-devices will decrease the massive amount of data transfer 

generated by edge-devices. There are several efficient management tools for setup and connection 

purposes, but these management tools cannot provide a unified programming system from a 

single source code/project. Even though it is possible to control each device efficiently, a global 

view of the computation is missing in a programming project that includes several edge-devices 

for computation and data analysis purposes, and the devices need to be programmed individually. 

A generic workflow engine might automate part of the problem using standard interfaces and 

predefined objects running on edge-devices. Nevertheless, the approach fails in fine-tuning each 

edge-device since the computation cannot be moved easily among devices. This paper introduces 

a new compiler architecture to control and program edge-devices from a single source code. The 

source code can be distributed to multiple edge-devices using simple compiler directives, and the 

transfer and communication of the source code with multiple devices are handled transparently. 

Fine-tuning the source code and code movement between devices becomes very efficient in 

editing and time. The proposed architecture is a lightweight system with fine-tuned computation 

and distribution among devices. 
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1. INTRODUCTION 

 

Cloud systems are improving themselves, and the community becomes aware of several advantages of these 

systems. One of the advantages is the reduced cost for the same computation and system. The performance 

benefit of the cloud system is also essential with the increased d,iğistributed computational capability. Edge 

computing is another research area where there are fundamental differences compared to cloud computing. 

Cloud computing is trying to remove the computation from the end-user, whereas edge computing focuses 

on moving the calculation to the edges, i.e., devices that collect the data. Edge-computing is promoting a 

local computation. This approach has several advantages, one of them being a reduced transmission load 

and latency. Edge computing applications can use local calculations and improve the rate of moving data 

from/to devices [1-5]. On the other hand, software developers do not have a unified tool to fine-tune edge 

applications [6-8]. 

 

Several papers analyze research opportunities in edge-computing. At the same time, edge development is 

considered one of the difficult challenges and problems in computing. A direct communication method is 

used in many models like P2P, which is based on exchanging messages. The development is per component 

in these models, and functionalities and communication are coded for any distributed component [6, 8-9]. 

To succeed in this model, each execution platform may need resources that are fixed. 
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The research question is how we can remove the code's dependency and user from edge-device and make 

the process transparent. This paper presents a novel and lightweight architecture for developing reliable 

and efficient programs to be deployed in mixed-edge device environments.     

 

Chapter 2 discusses previous work. Chapter 3 describes the need for edge-management, and chapter 4 

describes the multi-target compiler architecture. In chapter 5, the compilation and execution stages are 

explained. Chapter 6 describes the state diagrams and the complete flow of the process. Chapter 7 describes 

several implementation details of the prototype, and sample input and output codes are also given. Chapter 

8 gives a comparison table and discussion, including future research directions. Finally, chapter 9 

summarizes the advantages of the multi-target compilation. 

 

2. RELATED WORK 

 

There are several models proposed in recent years, like microservices [10]. Microservices are designed to 

coordinate different computing devices. There are several problems with the proposed architecture. A pre-

deployment of all executable resources is necessary for the model. The setup of each edge environment is 

different. This fact makes the usage of any standard very difficult, if not impossible. Therefore, for an edge 

application to be robust, it should be able to utilize different runtime environments simultaneously. This is 

also needed to be efficient as well. In another model [11], application replicability is identified, where 

recurring patterns are identified, and different components' reusability is utilized. Still, a global view is 

missing in the model. Although a global view is missing, this model can be utilized in our approach. A 

lightweight named object (LNO) solution is described where the solution depends on an ICN-based 

abstraction. It can provide IoT management and programmability with a flexible interface without any 

persistent communication links or bindings [12]. Still, the programming concept is per device without any 

global view. A formal approach is defined to create an entity service working at the edge-device [13]. 

Although the approach can parse user requirements and take the necessary action to detect or modify the 

physical entities' status information, the approach still depends on single devices. A combined approach is 

still missing. Another system defines a distributed and flexible protocol to create a location-independent 

identifier [14]. Another defined framework is the closest study for our proposed solution [15]. The model 

depends on Intents that are distributed to the cloud. It needs a predefined control and monitor tasks, and 

these need to be provided in the domain library. Individual control of each edge-device is not provided in 

the solution. General abstraction layers are also given without any details [16]. The work uses microservices 

described above, but it provides Technical-Units and Development-Units, and it keeps track of these units 

to ease the development lifecycle [17]. A new architectural model is defined, which is derived from current 

standards [18]. On top of that, there are several additions like "IoT Data Flow Dynamic Routing Entity," 

"IoT Topology Management Entity," and "IoT Visualization Entity."  An object representation is proposed, 

which creates an abstract view of the edge devices and simplifies the development [19]. In another study, 

prototyping tools and virtualization techniques are summarized and reviewed [20]. All these tools help the 

development but controlling the whole project from a single project or source code is not available. 

 

Several review papers explain development tools [7, 21-24]. Several tools are compared, and the problems 

are summarized [22]. The problems exist in several categories: standard interfaces, heterogeneous 

environments, awareness of the context, middleware, node identity, fault tolerance, and energy 

management. Most of the solutions depend on isolating the edge-device from the picture and create objects 

or interfaces so that the programmer can ignore the details of the edge-device. In many cases, this approach 

increases productivity, but it also removes the opportunity to fine-tune the computation among devices. 

The edge-devices are reviewed in terms of technology rather than development tools [24]. The secure 

update protocols and tools are also reviewed [25]. This is another problem, but it is not related to our 

research question. The operating systems running on edge-devices are reviewed [26]. Although an OS 

simplifies the operation using threads and other interfaces, it puts an extra burden on the device, and for 

simple edge-devices, programming may be impossible. The MOLE compiler using micro-services 

architecture is defined and given [27]. Fine-tuning may not be available because the code distribution 

depends on microservices' functionality, and individual edge-device access may not be available. The 

taxonomy, standardization issues, and networking are reviewed [28]. In contrast, another paper reviews the 

issue in terms of domains [29]. Another paper reviews edge-devices in terms of architecture layers [30]. 
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The approach may simplify the programming problems but putting extra layers on low-capacity devices 

creates other performance problems. A different approach reviews sensing as a paradigm, but it fails to 

provide a solution to our research question [31]. An Attribute-driven design is also proposed [32]. A 

different approach is also presented, where the programming model distributes individual instructions to 

edge-devices instead of distributing the functionality [33]. 

 

3. EDGE-DEVICE MANAGEMENT AND PROGRAMMING 

 

Because of the increased deployment of IoT devices, there is a massive amount of data obtained from 

devices. The data is usually transferred to servers to be processed. The edge computing concept is trying to 

minimize the data movement and the computational load on servers to reduce the data transfer problems. 

The processing is moved to edge-devices as much as possible to accomplish these goals, where the data is 

collected.  

 

From the management perspective, there are two main issues here. One of them is deployment and setup, 

and the other is to program the edge device. There are many tools to install, setup, and manage edge devices 

like Microsoft Azure and others to fulfill the first requirement.  

 

In terms of programming, each edge-device program should be designed and programmed one-by-one in 

most cases. The system is given in Figure 1. Individual compilation for different architectures poses no 

problem since there are compilers for any typical architecture and processor/controller. The data transfer to 

each device needs a different design as well. The computation should be divided between edge devices and 

servers manually. The development and deployment of these modules are independent of each other. In this 

model, the computation's continuous design between devices is difficult to manage because of several 

independent phases. 

 

 
Figure 1. A common computational structure 

 

The missing link is a global view and management of the computation among the edge devices and servers. 

To streamline a computation among different architectures and devices, we need an automatic separation, 

compilation, and execution paradigm from a single source. A block view of the proposed paradigm is given 

in Figure 2. The proposed model gives a flexible and powerful approach to program heterogeneous edge-

devices from a single project/source code. Individual programming and fine-tuning are implemented, and 

at the same time, edge-device listeners provide device-specific information during coding, compilation, and 

execution. 
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Figure 2. Proposed architecture 

 

An example view of the single-source multiple-target programming is given in Figure 3. In this paradigm, 

the code line(s) can be moved from one edge device code section to another by modifying a single source 

code. The remaining process is transparent. In this approach, the user can concentrate on the source code's 

functionality instead of communicating with the edge device, designing individual programs for each 

device, and transferring the data. 

 

Single source code is a symbolic representation, and it means that there is a single project defined for all 

edge-devices and servers. Obviously, the project may consist of several source codes, which is typical in 

Object-Oriented Development. 

 

 
Figure 3. Sample source code 

 

The data transfer that may be needed between devices is handled in the background during the execution. 

The Listener programs are written and transferred to each edge device only once. Compiled pieces of code 

are transferred to each device again only once unless they are modified. By handling all data transfer, code 

separation, compilation, code transfer, and execution transparently, the user can focus on the computation 

functionality. 

 

4. MULTI-TARGET EDGE DEVICE COMPILER ARCHITECTURE 

 

A Multi-Target Edge Device compiler (MTED) is proposed and implemented to provide the proposed 

functionality. The MTED compiler is a framework to create/compile, and execute a program where the 

computation is distributed between several edge devices and servers transparently. The MTED compiler 

architecture consists of several components, which are given in Figure 4. 
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Figure 4. MTED Compiler architecture 

 

There are two main components in the architecture. One of them is an edge-listener, which provides all the 

communication between the edge device and the MTED compiler. Also, during the execution, it connects 

the edge-device and the executable on the server. The second part of the architecture is the MTED compiler. 

The compiler's job is to parse the source code and separate the edge device code from the rest. It also needs 

to find out the required compilers to compile edge-specific code on top of the server code. In detail, MTED 

is a pre-compiler and management program. It is using the available compilers already installed. 

 

4.1. Edge-Listener 

 

The edge-device needs to run a simple edge-listener to communicate with the compiler and executable 

during compilation and execution. The purpose of the edge-listener is to communicate with the server where 

the compilation takes place. 

 

Before edge-device specific compilation, there are several parameters to be determined. For example, the 

available memory, the target architecture (CPU type, clock speed, register sets, etc.), transfer speed to/from 

the device, and sensor types connected to edge-device, can be given. An edge-code working on the edge-

device will provide these parameters to the compiler in real-time as to upload the code; the device needs to 

be alive.  

 

Another functionality of the edge-code is installing the compiled code to the device, transfer data between 

edge-device and server, and execute the installed code when a request arrives from the server. The required 

functions are listed in Table 1. There is a specific protocol between the compiler and edge-listener to 

send/retrieve data, start execution, and connect/disconnect. 

 

Table 1. Edge-Listener functionality   

Function Purpose 

Parameters The pre-compiler will communicate with the edge-listener to learn edge-

specific parameters. This information can be provided to the compiler in 

real-time to display live-help during coding using a plugin. 

Data 

Transfer 

During execution, the edge-function at the server will transfer the data to 

the edge-device. The data will be considered as a byte stream. 

Execution During execution, the edge-function at the server calls the installed code 

at the edge-device with the listener's help. The listener will pass the 

request to the installed code and execute it. 



469  Erhan GOKCAY/ GU J Sci, 35 (2): 464-483 (2022) 

 
 

4.2. Edge-Listener Commands 

 

The communication with the edge-listener is accomplished using a predefined set of commands. A sample 

command list is given in Table 2. These commands will be used after initiating the connection to the device. 

The command set can be extended as necessary. 

 

Table 2. Edge-listener commands 

Parameter Purpose 

Transfer funcname 

binfile 

The executable code at the server will transfer 

the binary file to be executed at the edge-device. 

Send data len The data will be considered as a byte stream. 

“len” parameter indicates # of bytes to send. For 

example, when we need to send a floating-point 

number, “len” becomes 4. 

Execute funcname This command will execute the previously sent 

“funcname”. 

Stop funcname Stop the execution 

Pause funcname Pause the execution 

Resume funcname Restart the previously paused execution 

Receive data len The command will be used to receive the data 

generated at the edge-device as a byte stream. 

Get DeviceParam The command will be used to receive device-

specific parameters like CPU, memory, etc. 

 

4.3. Edge-Listener Parameters 

 

The edge-listener is installed on the edge-device once. After the installation, it provides a communication 

bridge between the server and the edge-device. The MTED compiler needs several parameters. These are 

listed in Table 3. 

 

Table 3. Edge-device parameters 

Parameter Purpose 

Available memory The compiler will use the available memory to decide if 

the edge-specific code can fit edge-device or not. 

Depending on the compiler, this parameter can be used 

during compilation. 

CPU info (# of cores, speed, clock, 

availability) 

The compiler needs this information to determine the 

computation performance of the edge-device. 

Transfer speed This information may not be available directly by the 

edge-listener, but it can be calculated using a test transfer 

between server and edge-device. 

Sensor information (connections, 

types, data types) 

The available sensor types and connections on the edge-

device will help the compiler to minimize conflicts on the 

edge-device during execution. 

 

The parameters are transferred from the edge device using JSON format to save space compared to XML. 

A sample output from an Arduino device is given below in Table 4. 

 

Table 4. Edge-device parameters 

{ 

   "edge-device-1": [  

      { 

         "Model": "Arduino UNO R3 - USB ChipCH340", 

         "Microcontroller": "ATmega328", 
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         "Flash Memory": "32 KB", 

         "SRAM": "2 KB" 

         "EEPROM": "1 KB" 

      }    

   ] 

} 

 

4.4. Edge-Listener Implementation 

 

The implementation of the Edge-Listener depends on the model and OS of the edge device. If the edge 

device runs an OS that is multitasking, like Raspberry Pi, a background process can be written easily. On 

the other hand, if the device is not running a multitasking OS, i.e., a single-threaded device like Arduino, 

the implementation is more difficult. In that case, there are a few possibilities. 

 

Case A: The device communication port generates an interrupt upon receiving data: In this case, the edge-

listener routine can be installed as a communication interrupt vector, and it will wake up whenever there is 

a request that arrives at the device. Since the listener is an interrupt routine, the main thread can be reserved 

for the program transferred to the device. Each time the listener wakes up because of a communication 

request, it will process the request, and the main thread will resume. 

 

Case B: When the device cannot generate an interrupt because of the communication port, the edge-listener 

can be installed as a timer interrupt routine, which wakes up periodically and processes incoming requests, 

if any. This solution may be more time-consuming compared to A) because of the difficulty of finding an 

optimal timer expiration value. A timer expiration value, which is too long, will slow down the response of 

the device. On the other hand, a value that is too short will slow down the main thread. But this solution 

does not depend on a communication port interrupt, which may be available or not. Almost all 

microcontrollers have a timer interrupt. Therefore, solution B) is more generic and easily implementable 

compared to A). In the initial test implementation, solution B) is used. 

 

4.5. Compiler 

 

The MTED compiler is required to separate the edge-device code from the rest. Except for redesigning the 

compiler from scratch, one solution is to introduce a pre-compiler phase where the code separation is 

accomplished a priori to the actual compilation. 

 

The code that needs to be separated and sent to an edge-device is replaced with an edge-function during 

pre-compilation. The function assumes that the edge-device code is compiled and installed on the edge-

device by a suitable compiler. The purpose of the edge-function is to create a connection with the edge-

device, transfer the data, and send the required commands to the edge-device listener to execute the installed 

code and collect/transfer any data generated. 

 

The pre-compiler phase is controlled using compiler directives specific to the operation. These specific 

compiler directives are removed from source code after processing so that the source code can be compiled 

as usual. 

 

4.6. Directives 

 

In order to pre-process the code, several compiler directives are defined. These directives are listed in Table 

5. 

 

Table 5. Pre-compiler directives 

Directive Purpose 

#device begin It indicates the beginning of the description phase for device-specific 

compilation. 
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#device end It indicates the end of a device-specific compilation. 

#device label It assigns a label or identification number to the device. 

#device offline It means that the edge device is offline. The compiler should continue 

with the available information about the device. 

#device type xxxxx It defines the type like PIC18, ARM, etc. 

#device ip xxx.xxx.xxx.xxx It sets the IP number of the device. 

#device dns abc.def It sets the DNS name of the device. 

#device complexity The user may prefer to indicate the complexity of the calculation. 

Otherwise, the complexity will be derived from the code if possible. 

#device input inputlist This directive indicates the input variables to the device-specific 

code.  

#device output outputlist This directive indicates the output variables to the device-specific 

code 

#device codetype  

{C,C++,ASM} 

The code language for the edge-specific target. With this directive, 

an assembler code inside the source code can be inserted as well. 

#device constraintT time This directive is used to instruct the MTED compiler to use edge-

devices if the timing constraint can be satisfied by the device. For 

example, a long computation should not be sent to a prolonged 

device. 

#device constraintM size This directive is used to instruct the MTED compiler to use edge-

devices if the data transfer constraint can be met by the device. For 

example, a long array should be processed in place, and only the 

result should be transferred. This can be accomplished by limiting 

the data transfer size. 

 

4.7. Restrictions 

 

The pre-compiler needs to compile the device-specific code and install it at the edge-device. Therefore, the 

limitations of the edge-device become crucial. To use these limitations, there are some restrictions in the 

device-specific code section. The first restriction is that all array allocations need to be static. No dynamic 

memory allocation is allowed here. This requirement is needed to compute the memory requirements and 

compare them with the memory of the edge-device.  

 

The second restriction is that all loop variables need to be static or finally-static (a value is assigned only 

once). With this information, the pre-compiler can calculate the computational requirements and compare 

them with the edge-device speed. 

 

5. EDGE –DEVICE COMPILATION AND EXECUTION STAGES 

 

The MTED compiler separates edge-specific code from the source code, and it replaces the code with a 

function call. The separated code needs to be compiled with respect to the edge-specific target. The system 

will use an existing compiler executable for this purpose. During the setup of the MTED compiler, available 

compilers will be detected. If an existing compiler is not detected, the user can change the setup to register 

the compiler executable manually. For example, Microchip has a compiler for PIC18 microcontrollers 

called MPLAB® C Compiler for PIC18 MCUs (C18). The compiler can be added to the system manually 

if not detected automatically. 

 

Rewriting a new compiler for a specific target is not considered at this stage since several compilers exist 

for the most popular target types. 

 

5.1. Stage-1: Source Code 

 

The first stage is to write the source code using pre-compiler directives. An example source code is given 

in Figure 5. The single source code includes all the functionality, including all edge-devices. The compiler 

directives isolate the code that needs to be sent to a specific edge-device. The IP-number/DNS-name of the 
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edge-device and a label need to be set as well. The IP number setting is optional as by setting the DNS 

name, the mapping can be implemented outside the source code. The MTED compiler will communicate 

with the device to learn operational parameters and transfer data/code. When the device is not available, 

the MTED compiler will give an error to indicate that this device cannot be included during the compilation. 

The user is responsible for finding a solution or for replacing the device with another one. 

 

 
Figure 5. Sample source code 

 

When the edge device is offline, it is still possible to compile the code using pre-existing information. 

Still, this option may introduce incorrect or missing information about the edge device. In order to 

compile with an offline device, the status should be indicated with another compiler directive. 

 

5.2. Stage-2: Edge-Code 

 

The edge code (the code that needs to be executed at the edge-device) is separated from the main source 

code using compiler directives as given in Figure 6. The edge code can be coded in the original language 

as the server, but the edge code can be in assembly as well. The type of code should be given using another 

compiler directive. The MTED compiler will choose the correct compiler depending on the type of the 

source code. To compile a code that supports multiple targets and languages, the user needs to obtain all 

the required compilers. 

 

 
Figure 6. Sample edge code 

 

The architecture does not define a new compiler but a new approach to combine several different targets 

and languages in a single framework. 

 

There are several additions to the edge code. All variables inside the edge code need to be redefined if 

necessary. Since these variables' definition is left in the server code, the MTED compiler will add the 



473  Erhan GOKCAY/ GU J Sci, 35 (2): 464-483 (2022) 

 
 

definitions to the separated code piece. Another addition is the code that is needed to transfer the data in/out 

of the device. The edge device code is compiled after these additions. The build binary file is transferred 

by the edge-compiler to the edge-device using the edge-listener. The edge-listener will allocate memory 

and install the binary to the memory. 

 

5.3. Stage-3: Input/Output Parameters 

 

The input/output variables and parameters to the edge-code should be determined. The user can define these 

parameters using compile directives. If not defined, the MTED compiler will scan the code to find out the 

parameters. Therefore, the definition of the user will speed-up the process. All arrays used in the edge code 

should be statically defined to evaluate memory restrictions and complex calculations. Dynamic variable 

allocations are not allowed here. All external input variables should also be defined as final (static) or 

effectively final to make complex calculations. The limitation will help the pre-compiler to determine loop 

boundaries and calculate the complexity of the calculation. 

 

Case A: The input/output variables in the edge code are known. Depending on the compiler, it is possible 

to give absolute memory locations to these variables at the edge-device. Since the location is known, the 

Edge-listener can transfer any data in/out from/to these locations. For example, using MPLAB XC8 

compiler, the __at specifier can be used to fix the location: int myVariable __at(0x400); The data transfer 

is handled by edge-listener, and afterward, the edge code is started. 

 

Case B: Another option is to add the extra code to transfer the data in front of the edge-device code. The 

extra code will initialize the network card, open the connection, and transfer data before proceeding with 

the original computation. Code portions are given in Table 6. The extra code will copy the data from the 

network directly into the input variable and continue. The output variable is also initialized similarly. The 

data transfer is handled by the edge code directly. The edge listener is not involved during the transfer in 

this case. 

 

Table 6. Sample communication 
Ethernet.begin(macAddr,ipAddr); 

Udp.begin(localPortNumber); 

Serial.begin(9600); 

IPAddress remoteIP = Udp.remoteIP(); 

Udp.read(buffer,MAX_SIZE); 
 

5.4. Stage-4: Edge-Function Generation 

 

After processing the directives and locating the devices, the MTED compiler will replace the edge-code 

with a function call generated by the compiler. An example is given in Figure 7. The generated function 

will make the necessary connection to the edge-device, transfer data, and send the necessary command to 

execute the function installed at the edge-device. 
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Figure 7. Sample function 

 

5.5. Stage-5: Source-Code Compilation 

 

The remaining source code is compiled at the server. All edge-code segments are replaced with edge-

function calls. All pre-compiler directives are also removed. The compile errors are displayed separately 

for each device since each device has a different compiler. A plugin running in Eclipse or NetBeans IDE 

can display all different messages using the same error output window. 

 

5.6. Stage-6: Execution 

 

The binary file created at the server can now be executed. The edge-functions created during compilation 

will create all connections to edge-devices and execute the functions installed at each edge-device. During 

the execution, all communication code is embedded in the binary file. MTED compiler is not involved in 

the execution. 

 

6. THE COMPLETE PROCESS 

 

6.1. State Diagrams 

 

The state transitions are given below as a summary. The diagrams are summarizing the essential primary 

states where there are other side-states as well. The state diagram of the edge-listener is given in Figure 8. 

The edge-listener needs to be active all the time. Therefore after the initialization, there is no ending state 

in the flow. 

 

 
Figure 8. State diagram of the edge-listener 
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The state diagram of the MTED compiler is given in Figure 9. The MTED compiler is active during code 

development and code generation. 

 

 
Figure 9. State diagram of the compiler 

 

6.2. Process Flow 

 

The flow of the compilation and execution is given in Figure 10. Until the execution stage, the process is 

controlled by the MTED compiler, and after the compilation, the compiled program starts talking to edge-

devices and execute. 

 

 
Figure 10. Process flow 

 

7. IMPLEMENTATION HIGHLIGHTS 

 

The MTED compiler is implemented as a prototype using Java language, and it is tested in a small network 

that includes Arduino and Raspberry-Pi boards as edge devices. The language used to program the edge-

devices and the server is C/C++. All devices (PC and edge devices) are connected to the internet. The 

listener running on edge device is written using C/C++ only once for every device type. 

 

7.1. MTED Compiler 

 

The MTED compiler is written in Java to process the source code that is written in C/C++. The source code 

includes server and device-specific code.  

 

7.1.1. Parser 

 

The MTED compiler reads the source code written in C/C++ to program the server and edge devices, and 

it parses the input accordingly depending on compiler directives. A simple parser is implemented using 

Java libraries to process tokens and patterns. The StringTokenizer class is used to extract individual tokens 

and, Matcher and Pattern objects are using regular expressions to differentiate different tokens. The parser 
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reads the source code line by line, processes compiler directives, and separates input and output variables 

from device-specific code. For example, the regular expression to recognize a variable is given as “([a-zA-

Z_][a-zA-Z0-9_]*)”. All edge device information and code are given between #device begin and #device 

end directives. Once a #device begin compiler directive is processed, the remaining information obtained 

from other compiler directives is stored in an object. The object is stored in a HashMap using the device IP 

number as an index.  

 

The variables and their types need to be parsed because the MTED compiler needs to make the following 

modifications to the device-specific source code. Simple variables are considered in the prototype, and the 

type of the variables is limited to byte. 

 

A) All byte variables are parsed and stored in another HashMap indexed by the variable name. This 

list is needed to insert extra variable definitions to device-specific code if the variables in the 

device-specific code are not defined between compiler directives as described in Figure 7. This 

process is required since the device-specific code will be separated from the original source code 

and compiled separately. We need to keep two different HashMap’s to keep the variables outside 

and inside the device-specific code differently. When a variable is parsed inside the device-specific 

code, first, the HashMap of the inner variables is searched. If the variable is found here, the 

definition is added to the original source code. If not found, in that case, the variable definition is 

obtained from the outer HashMap table and inserted to the top of the device-specific code. 

 

B) The device-specific code is parsed to find out input and output variables to the device-specific 

code section. An input variable to the code section is the variable that is used only on the right 

side of an assignment. Similarly, an output variable is used only on the left side of an assignment. 

The information to an input variable is coming from the remaining part of the code. Therefore, 

the value of an input variable needs to be transferred to the edge device, and the necessary code to 

transfer the data needs to be added to the device-specific code. The transfer will take place during 

the execution of the device-specific code. Similarly, an output variable needs to be copied to the 

original source code after executing the device-specific code. The code to transfer the value of an 

output variable is also added to the device-specific source code by the MTED compiler. 

 

As an option, the input and output variables can also be given using compiler directives. In that 

case, the code is not scanned for input and output variables. 

  

The byte restriction simplifies the data transfer since byte transfers are handled by a socket 

connection directly. Longer size variables can be transferred one byte at a time or as a stream as 

well if needed. 

  

The input and output variables are also used to define the device-specific stub function since the 

MTED compiler needs to pass all input variables to the function and return all output variables. 

 

All code sections (all lines without a compiler directive) between #device begin, and #device end directives 

are dumped to a text file for further processing. This file will be compiled using a cross-compiler depending 

on the edge device. For example, the command-line version of the Arduino IDE compiler is used to compile 

programs for Arduino. 

 

7.1.2. Network access 

 

The MTED compiler will use java.net.InetAddress object to implement DNS lookups (to learn the IP 

number of edge devices if not given) and java.net.* library to implement all socket connections (to connect 

to edge devices to send commands and transfer code). 
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7.2. Edge Device Listener 

 

The listener program needs to be developed only once for each device type. Once the listener is running, 

the programming of the edge device can be controlled by the MTED compiler for different computational 

purposes. 

 

The listener has 3 basic functionalities. The first one is to provide the edge device type, and other edge 

device features to the MTED compiler when requested. This information is used by the MTED compiler to 

decide the cross-compiler and to get online help for device port names and other hardware features. The 

second job is to transfer the binary code compiled at the server using a cross-compiler to the edge device. 

This transfer requires binary data communication. Once the binary executable file is transferred to the local 

file system, the edge device program is ready to be executed. As a third functionality, the listener will create 

a background job from the transferred program when requested by the server program. 

 

7.2.1. Raspberry Pi 

 

The device uses an operating system based on Linux (Debian), which is modified for Raspberry hardware. 

Therefore it is relatively straightforward to create a listener program and to execute background jobs. 

Although it is possible to override the OS completely by burning your own bootloader, this option is not 

exercised in the prototype. 

 

The listener program is implemented using C/C++, and it is compiled using g++ running on Raspberry Pi 

OS. The socket communication is using <sys/socket.h> and <netinet/in.h> libraries with standard methods 

like socket(…), gethostbyname(…), connect(…), accept(…), read(…) and write(…). The listener will read 

the commands by the MTED compiler and respond accordingly, as given in Table 2.  

 

7.2.2. Arduino 

 

The Arduino device is using an Ethernet Shield board to implement network connections. The Arduino 

device does not contain an operating system but a bootloader that transfers the desired program to the device 

and executes it. The original bootloader is listening to USB connections, and it is used to upload a modified 

bootloader program to the device. On the other hand, the modified bootloader is listening to socket 

connections to communicate with the MTED compiler. On the Arduino side, the <Ethernet.h> library is 

used with C/C++ to create socket connections.  

 

A background job is created by installing the modified bootloader (edge-listener) as an ISR (Interrupt 

Service Routine) triggered by the Timer. This way, the edge-listener will wake up periodically and execute 

commands coming from the MTED compiler. 

 

The edge-listener is writing the device-code transferred by the MTED compiler to Arduino’s flash memory 

using spm instruction. 

 

7.3. Server Code 

 

The server code is written in C/C++. The reason for the choice is that the C/C++ language is ported to many 

platforms and devices and widely available. The server code also contains device-specific code, which is 

separated by using compiler directives. There are no limitations in the server code except that all variable 

types used inside the device code are chosen to be bytes for simplicity. 

 

The device code will be converted to a function call, and for the server code, the execution of the device 

code is transparent. The function call is created using the input and output variables extracted by the parser, 

as explained above.  

 

The function call has the following features. 1) Start the device code, which is copied to the device by the 

MTED compiler. This is accomplished by sending a start command to the edge listener. 2) Create a socket 
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connection to transfer the input and output variables. This socket connection is between the server code and 

device code, and it is initiated by the device code. After obtaining the output variable, the function call 

returns to the calling server code. 

 

7.4. Device Code 

 

The device code embedded in the server code is extracted from the source code using compiler directives. 

The language is chosen to be C/C++ for the device code for the unified flow of the computation. Since the 

device code will be extracted and compiled separately, a different language like assembler language can be 

chosen as well.  

 

The device code will be dumped to a file to be compiled by a cross-compiler for the target device. Several 

modifications are added to the device code. The device code needs to make a socket connection to the 

server code to get its input variables and another socket connection to the server to transfer the output 

variables after the execution. The socket connection code is added to the start and the end of the device 

code. During this addition, the device-specific libraries are considered, which are different for the Arduino 

and for the Raspberry Pi. 

 

7.5. Sample Codes Generated for Arduino Edge-Device 

 

A server code transformation generated by the MTED compiler is given in Tables 7, 8 and 9. The sample 

code is working on an Arduino device. The Arduino edge-code is compiled using the command-line version 

of the Arduino IDE compiler, and the binary file is transferred to the edge device by the MTED compiler. 

Several error checks, structures, and other extra information in the code are not given for simplification 

purposes. The stub function uses the WinSock library to make socket connections because the server code 

is running on a Windows machine. If the server code needs to run on a Linux machine, the socket code 

should be modified accordingly.  

 

Table 7. Sample server code 

Server-Code 
int main () { 

   char input; 

   char output;  

  

   scanf("%c",&input); 

#device begin 

#device label edge_1 

#device ip 192.168.2.17 

    char temp; 

    temp = input * 2; 

    PORTD = temp;  

    output = PORTC; 

#device end 

    printf("%c",output); 

} 

 

Table 8. Modified server code and stub function 

Modified Server Code Stub-function (WinSock socket connections) 
int main () { 

   char input; 

   char output;  

  

   scanf("%c",&input); 

   output = edge_function_1(input); 

   printf("%c",output); 

} 

char edge_function_1(char input){ 

...... 

edgeSocket=socket(AF_INET , SOCK_STREAM , 0 )) ; 

edge_device.sin_addr.s_addr = inet_addr("192.168.2.17"); 

// Edge-Device listener 

edge_device.sin_port = htons( 8880 ); 

....... 

connect(edgeSocket,(struct sockaddr *)&edge_device, 

sizeof(edge_device)); 

// The edge function is transferred to edge device after 

compilation. 

message = "start edge_function_1"; 

send(edgeSocket , message , strlen(message); 

...... 

// Start listening to the edge-device code 
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edge_device.sin_addr.s_addr = INADDR_ANY; 

// Server-code listener 

edge_device.sin_port = htons( 8885 );  

bind(s ,(struct sockaddr *)&edge_device , 

sizeof(edge_device)); 

listen(edgeSocket , 3); 

edge_socket = accept(edgeSocket , (struct sockaddr 

*)&edge_code, &c)); 

// Send the input value of the function to the edge code 

send(edge_socket , &input , 1 , 0); 

...... 

// Get the output value (1 byte) from the edge code and 

return it 

recv(edgeSocket , outputBuffer , 1 , 0)); 

...... 

return outputBuffer[0];} 

 

Table 9. Device code 

Device-Code extracted/modified by MTED compiler and compiled for Arduino 
// -------- Added by MTED compiler --------- 

#include <Ethernet.h> 

 

byte mac[] = { 0xDD, 0xAA, 0xEE, 0xFF, 0xAB, 0xCD }; 

byte ip[] = { 192, 168, 2, 17 };     // Edge-Device IP Number 

byte server[] = { 192, 168, 2, 1 }; // Server-Code IP Number 

 

EthernetClient client; 

void setup() { 

  char out; 

  char inp1; 

  // Connect to the server-code 

  Ethernet.begin(mac, ip); 

  client.connect(server, 8885); 

  // Transfer the input variable from the stub-function 

  if (client.available()) { 

    inp1 = client.read(); 

  } 

  // -------- END ------- 

  // --- EDGE-CODE: Code extracted from server-code ---------- 

  char temp; 

  temp = inp1 * 2; 

  PORTD = temp;  

  out = PORTC; 
  // --------- END ---------- 

  // -------- Added by MTED compiler --------- 

  // Transfer the output variable to the stub-function 

  if (client.available()) { 

    client.write(out); 

  } 

  // --------- END ---------- 

} 

 

8. DISCUSSION and COMPARISON 

 

Having the fact that the first version is not a commercial product, the system may not be compared one-to-

one with commercial tools. The system is developed to answer the research paradigm, and the tool can be 

commercialized in the future. 

 

It could be argued that there are cross-platform systems like Java where the Java run-time will take care of 

running the programs on different systems and devices. Two cases need to be considered.  

 

The first concern is that using Java will not provide a unified approach to the distributed computation. The 

Java code running on the server and the edge devices needs to be designed individually, and the 

communication needs to be taken care of by the user. There is no code separation in Java, as provided by 

the MTED compiler. Technically the MTED compiler can be modified to use Java as a destination language 

instead of C/C++. The MTED compiler is a framework independent of the compiler language. 
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The second problem of Java is that it needs to run (even if possible) on small device architectures with 

extreme memory limitations. Accessing the device hardware is more difficult by using a simulated 

language. The MTED compiler will generate native code that will run directly on the device hardware, 

unlike Java byte code. The performance difference could be ignored on a computer system, but the 

resources are minimal on an edge device.  

 

In [22], the tools are compared in terms of management domains. The proposed MTED compiler is 

evaluated and compared in terms of the given domains. A comparison in Table 10 is provided using the 

information in [22] to evaluate the proposed system. 

 

Table 10. Comparison chart 
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Ayla's cloud 
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Echelon * *     +    
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Exosite  * +     *   
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InfoBright     * +     
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things 
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MTED 
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the 
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System 
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proposed 

system 
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compiler 
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transfers 
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execution 
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system is not 
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There is no 
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the system 

but any 
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nt 
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of the 

proposed 
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by other 
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supported as 

the compiler 
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*: full, +: partial 

 

A significant contribution can be stated as follows. Many systems are trying to isolate the edge-device using 

standard interfaces, objects, modules, and these abstractions help the programmer create a global model. 

Nevertheless, at the same time, the user is losing precise control of the edge-device. The proposed model 

is using edge-device listeners to help the programmer in terms of creating abstract models. Still, at the same 

time, it also helps the programmer to program each edge-device precisely. The proposed architecture does 

not override previous models, and these models can be integrated into the MTED compiler. 
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There are several places where the system can be improved. In the Arduino prototype, the edge-listener is 

installed as a timer interrupt routine to generalize the solution. On the other hand, the timer value seems to 

be difficult to set correctly for different programs. There is a need to find a relationship between the timer 

value and the edge-function duration (complexity).  

 

Socket connections can be maintained by the MTED compiler globally and kept open to speed up the 

process during compilation and editing. During the execution, a connection manager can open and maintain 

all socket connections so that the execution of the compiled binary will not slow down because of socket 

operations. 

 

The prototype can be improved, and the edge-device types should be increased by including different 

devices like PIC series devices and others.  During the development, the required pre-compiler directives 

will also be improved as necessary. Another improvement is to merge the MTED compiler with other 

development methodologies. There are several approaches that are using objects, interfaces, and other 

abstract access methods. MTED compiler can also use these approaches in an integrated manner. In the 

future, a plugin version to NetBeans or Eclipse development environment will also improve the usage with 

an integrated GUI. 

 

8. CONCLUSIONS 

 

The proposed MTED compiler will streamline the whole edge-device executions and compilations using a 

single source code. The term “single source code” is used to represent a single project development phase. 

There is only one source code that needs to be modified. The edge-devices can be defined easily using 

compiler directives. The source code can be fine-tuned and moved between edge-devices easily. IoT 

management utilities concentrate on device control. For example, the Nokia IoT platform provides the 

security of the edge devices. It also has an authorization feature for edge device management. The 

Authentication is also provided by the platform. The analysis of the device is another feature listed. The 

platform simplifies deployment and management functions, but it fails to provide a unified code 

development. On the other hand, the MTED compiler is providing a transparent distribution of the code 

between the edge devices. Another solution for IoT management is the Microsoft Azure system. The 

platform can define user roles to control the devices. It can also reconfigure the devices remotely. Security 

is one of the main features of the Azure platform. Monitoring the devices and managing them remotely is 

also given as a basic feature. The problems can also be detected. The platform still fails to provide a single 

source code where the computation is divided automatically between devices.  

 

In terms of management, the MTED compiler is not competing with management tools in general. Still, it 

provides a unified view of the project in addition to the management of IoT devices. Using the proposed 

approach, the user will start thinking about the programming project as a single process. The data transfers 

and program logic are generated automatically in the background, and there is no need for these operations 

to be designed individually for each edge-device.  
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