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Abstract
In this study, we consider the stress-strength reliability and mean remaining strength of a
series system with cold standby redundancy at the component and system levels. Classical
and Bayesian approaches are studied in order to obtain the estimates when the underlying
stress, strength and standby components follow the exponential distribution with differ-
ent parameters. Bayes estimates are approximated by using Lindley’s approximation and
Markov Chain Monte Carlo methods. Asymptotic confidence intervals and highest prob-
ability density credible intervals are constructed. We perform Monte Carlo simulations
to compare the performance of proposed estimates. A real data set is analyzed for the
purpose of illustration.
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1. Introduction
In its simplest form, the stress-strength model describes the reliability of a component

or system in terms of random variables. In this case, the reliability is defined as P (X < Y )
where X is the random stress experienced by the system, and Y is the random strength
of the system available to overcome the stress. The system fails if the stress exceeds the
strength. This main idea was introduced by [8] and developed by [9]. Estimation problem
for the reliability of a coherent system such as simple, series, parallel, and multicomponent
systems has attracted a great deal attention in reliability literature. Some recent research
contributions to the topic can be found in [1, 2, 7, 11,23–25,36].

In the stress-strength model, it is possible to learn how long the component or system
can be safe under the stress on the average. The mean remaining strength (MRS) of the
component or system is defined as the expected remaining strength under the stress X,
i.e. Φ = E(Y −X |Y > X). The MRS of a system in stress-strength model is introduced
by [19]. There are no works on a study for the estimation of the MRS except [20] and [26].
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A coherent system is an important concept in reliability theory and survival analysis.
It contains well known systems such as series, parallel and k-out-of-n systems. Inter-
ested readers are referred to the excellent monograph by [6] for more details. An efficient
method for optimizing the lifetime of a coherent system is to add redundancy components
(or spares) to the system. Three types of redundancies are commonly used in the reliability
literature, i.e., active redundancy (hot standby), standby redundancy (cold standby), and
warm standby. In the hot standby, available redundancy components are put in parallel
with the original components and function simultaneously with them. In the cold standby,
redundancy components are put in standby and start functioning when the original com-
ponents fail. The warm standby is a redundancy type between the hot standby and the
cold standby. It is called general standby because it contains both the hot standby and
the cold standby. The warm standby case was studied by [12,16].

The structure function ϕ of n-component system maps the state vector of the compo-
nents of a given system to the state of system, i.e. ϕ : {0, 1}n → {0, 1} where 1 and 0
mean a component works and fails, respectively. A system is called coherent if its struc-
ture function ϕ is nondecreasing in each argument, and each component is relevant to
the performance of the system. The lifetime T of a coherent system based on compo-
nents with lifetimes X1, ..., Xn can be written as T = ϕ (X1, . . . , Xn). For example, the
structure function of series and parallel systems are ϕ (X1, . . . , Xn) = min(X1, . . . , Xn)
and ϕ (X1, . . . , Xn) = max(X1, . . . , Xn), respectively. For more details on the theory of
coherent systems, we refer the reader to the classic book Barlow and Proschan [6].

The performance of a coherent system consisting of n independent components can be
improved by adding n standby redundancy components to each of the original components
or creating a duplicate system consisting of standby components similar to the original
coherent system. For instance, we have a series system with n components with n standby
redundancy components. In this case, these standby components can be used either at
component level or system level (see Figure 1 in [41]).

Standby redundancy can be applied at system level or component level. The life-
time of the system after standby redundancy at system level is TS = ϕ (X1, . . . , Xn) +
ϕ (Y1, . . . , Yn), where Xi and Yi are the lifetime of component i and standby compo-
nent i, respectively. The lifetime of the system after standby redundancy at component
level is TC = ϕ(X1 + Y1, . . . , Xn + Yn). For the series system, the lifetimes become
TS = min (X1, . . . , Xn) + min (Y1, . . . , Yn) and TC = min (X1 + Y1, . . . , Xn + Yn).

It is clear that adding a standby component(s) to the system increases the system
reliability. That is why system engineers want to answer which type of standby redundancy
gives a longer lifetime for a n-component system. It is proved that standby redundancy
is more effective at the component (system) level for a series (parallel) system by [37].
Different studies have been considered by many researchers in the reliability literature.
For example, stochastic comparisons of the series and parallel systems which standby
redundancy at component and system levels were studied by [10,22,27]. Some properties of
multi-state series and cold standby systems consisting of two components was investigated
by [15]. The effectiveness of adding cold standby redundancy to a coherent system at
system and component level was investigated by [17]. How or where to allocate redundancy
components in a coherent system is another interesting problem. Interested readers may
refer to [13,40,41].

To the best of our knowledge, the reliability estimation problem of the stress-strength
model for cold standby in series or parallel systems has not been paying much attention
except the following two papers. Estimation of the stress-strength reliability for a parallel
system consists of active, warm and cold standby components was studied by [38]. When
the standby redundancy system consists of a certain number of same subsystems with
series structure, the reliability estimation of this system was considered by [30] for the
generalized half-logistic distribution based on progressive Type-II censoring sample.
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In this study, we consider the stress-strength reliability and MRS of the series system
when the standby components are applied at system level and component level. The
main contribution of this study is to investigate the performance of the stress-strength
reliability and MRS estimators for the series system for both cold standby cases. It is
assumed that all the system components and standby components are independent but
not identically distributed random variables belonging to the exponential distribution.
Moreover, the stress-strength reliability of the interested series system has been compared
with the series system without standby components.

The rest of this study is organized as follows. In Section 2, we present our model
and some distributional properties. In Section 3, we obtain maximum likelihood estimate
(MLE) and Bayesian estimate of the stress-strength reliability and MRS for the series
system with component level redundancy. Lindley’s approximation and Markov Chain
Monte Carlo (MCMC) methods using hybrid Metropolis-Hastings and Gibbs sampling
algorithm are implemented under Bayesian estimation. In Section 4, we derive ML and
MCMC estimates of the stress-strength reliability and MRS for the series system with
system level redundancy. The asymptotic confidence intervals and the highest probability
density (HPD) credible intervals of the stress-strength reliability and MRS are also con-
structed in Sections 3 and 4. In Section 5, we carry out a simulation study to compare the
performance of the aforementioned estimates for the stress-strength reliability and MRS.
In Section 6, we present analyses of a real data set for illustrative purposes. Finally, we
conclude the paper with some remarks in Section 7.

2. Model description
Consider a series system with n-components having independent and identically lifetime

distribution. In this system, it is assumed that X1, . . . , Xn are the lifetimes of strength
components and follow the exponential distribution with parameter α. Suppose that
Y1, . . . , Yn are the lifetimes of independent standby strength components in the series sys-
tem and follow the exponential distribution with parameter β. These standby redundancy
components can be added to the series system at component level or system level. Suppose
that T is the common stress variable that is experienced by the series system and follows
the exponential distribution with parameter θ.

For the series system at component level, the standby redundancy components are
added for each particular component of the series system. In this case, the total lifetime
of each strength component is denoted by Zi = Xi+Yi, i = 1, . . . , n. Then, the cumulative
distribution function (CDF) and probability density function (PDF) of Zi, i = 1, . . . , n
are given by

FZi(z) =
∫ z

0
Fx(z − y)fy(y)dy

=

 1 + αe−βz−βe−αz

β−α , α ̸= β

1 − e−αz(1 + αz), α = β
, (2.1)

and

fZi(z) =
{

αβ
β−α(e−αz − e−βz), α ̸= β

α2ze−αz, α = β
. (2.2)

It is clear that Zi, i = 1, . . . , n follow the Gamma distribution with parameters α and 2
when the active strength and standby redundancy components are identical, i.e. α = β.
Since T is the common stress variable in the series system consisting of Zi, i = 1, . . . , n,
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the stress-strength reliability of this system is obtained as

RComp = P
(
Z(1) > T

)
=

n∏
i=1

∫ ∞

0
(1 − FZi(t))fT (t)dt

=


1

(β − α)n
n∑
k=0

(
n

k

)
(−1)k αkβn−kθ

[α(n− k) + βk + θ]
, α ̸= β

n∑
k=0

(
n

k

)
Γ(k + 1) αkθ

(αn+ θ)k+1 , α = β

(2.3)

where Z(1) = min(Z1, ..., Zn) and Γ(.) is the Gamma function.
For the series system at system level, the standby redundancy components constitute

a duplicate series system for the original series system. In this case, the total lifetime of
these series systems becomes Z(1) = X(1) +Y(1) where X(1) and Y(1) follow the exponential
distributions with parameters nα and nβ, respectively. Then, the pdf and cdf of Z(1) are
given by

fZ(1)(z) =
∫ z

0
fX(1)(z − y)fY(1)(y)dy

= nαβ

β − α
(e−αnz − e−βnz), (2.4)

and

FZ(1)(z) =
∫ z

0

nαβ

β − α
(e−βtn − e−αtn)dt

= 1 + αe−βnz − βe−αnz

β − α
, (2.5)

for α ̸= β. Also, Zi, i = 1, . . . , n follow the Gamma distribution with parameters nα and
2 for α = β. Under the common stress variable T , the stress-strength reliability of this
system is obtained as

RSystem = P (Z(1) > T ) = θ (n(β + α) + θ)
(αn+ θ)(βn+ θ)

, (2.6)

for any α and β. In the following sections, the equal strength parameters case (α = β)
has not been considered. In that case, the reliability problem is similar to the simple
stress strength reliability of the Gamma components. For more details about this case,
see [4, 33].

Moreover, we consider n-components series system without standby components in the
stress-strength model. Let X1, . . . , Xn be the lifetimes of strength components which
follow the exponential distribution with parameter α, and T is the common stress variable
follow the exponential distribution with parameter θ. In this case, n strength components
constitute a series system, and the lifetime of series system is X(1) follow the exponential
distribution with parameter nα. Then, the stress-strength reliability of this series system
is

R = P (X(1) > T ) = θ

αn+ θ
. (2.7)

It is known that adding standby components increases system reliability. We want to
show how these standby components affect the stress-strength reliability of the system
in our case with graphs. In Figure 1, the stress-strength reliability values of the afore-
mentioned three different series systems are plotted by using Equations (2.3), (2.6) and
(2.7) based on different parameter sets. It is seen that standby redundancy increases sys-
tem reliability. Therefore, the standby systems can be preferable under suitable circums-
tances.
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Figure 1. Plots for the reliabilities of R, RComp and RSystem.

3. Estimation of RComp and ΦComp

In this section, point and interval estimations of the stress-strength reliability and MRS
of the series system with cold standby at component level are investigated.

3.1. MLE of RComp

Suppose that m systems are put on a test each with n original components and n
cold standby components in the series system. Then, the strength data is represented as
Zi1, . . . , Zin, i = 1, . . . ,m and stress is Ti, i = 1, . . . ,m. The likelihood function of α, β
and θ for the observed sample is

L(α, β, θ; z, t) =
m∏
i=1

 n∏
j=1

fZ(zij)

 fT (ti)

=
(

αβ

β − α

)nm
exp

 m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

) θme−θ
∑m

i=1 ti .

The corresponding log-likelihood function is
ℓ(α, β, θ; z, t) = nm (ln(αβ) − ln(β − α)) +m ln θ +

∑m
i=1

∑n
j=1 ln

(
e−αzij − e−βzij

)
− θ

∑m
i=1 ti. (3.1)

By partially differentiating Equation (3.1) with respect to α and β, we obtain the
following likelihood equations as

∂ℓ

∂α
= nm

( 1
α

+ 1
β − α

)
−

m∑
i=1

n∑
j=1

zije
−αzij

e−αzij − e−βzij
= 0, (3.2)

∂ℓ

∂β
= nm

( 1
β

− 1
β − α

)
+

m∑
i=1

n∑
j=1

zije
−βzij

e−αzij − e−βzij
= 0. (3.3)
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The MLEs of the parameters α and β, i.e. α̂ and β̂, can be obtained by solving the non-
linear equations in (3.2) and (3.3) simultaneously. This non-linear equation system can
be solved by using numerical methods such as Newton–Raphson and Broyden’s methods.
The MLE of θ is derived as θ̂ = m/

∑m
i=1 ti. After obtaining α̂, β̂ and θ̂, the MLE of

RComp, i.e. R̂MLE
Comp, is computed from Equation (2.3) by using the invariance property of

MLE.

3.2. Asymptotic confidence interval of RComp

The observed information matrix of τ = (α, β, θ) is defined as

J(τ) = −


∂2ℓ
∂α2

∂2ℓ
∂α∂β

∂2ℓ
∂α∂θ

∂2ℓ
∂β∂α

∂2ℓ
∂β2

∂2ℓ
∂β∂θ

∂2ℓ
∂θ∂α

∂2ℓ
∂θ∂β

∂2ℓ
∂θ2

 =


J11 J12 J13

J21 J22 J23

J31 J32 J33

 .

In our case, the elements of the observed information matrix are derived as J13 = J31 =
J23 = J32 = 0, J33 = m/θ2,

J11 = nm

( 1
α2 − 1

(β − α)2

)
+

m∑
i=1

n∑
j=1

z2
ije

−zij(β−α)

(1 − e−zij(β−α))2 ,

J12 = J21 = nm

(β − α)2 −
m∑
i=1

n∑
j=1

z2
ije

−zij(β−α)

(1 − e−zij(β−α))2 ,

and

J22 = nm

( 1
β2 − 1

(β − α)2

)
+

m∑
i=1

n∑
j=1

z2
ije

−zij(β−α)

(1 − e−zij(β−α))2 .

The expectation of the observed information matrix I(τ) = E (J(τ)) cannot be obtained
analytically. It can be evaluated by using numerical integration methods. Then, R̂MLE

Comp is
asymptotically normal with mean RComp and asymptotic variance

σ2
RComp

=
3∑
j=1

3∑
i=1

∂RComp
∂τi

∂RComp
∂τj

I−1
ij , (3.4)

where I−1
ij is the (i, j)th element of the inverse of I(τ), see [35]. Afterwards,

σ2
RComp

=
(
∂RComp

∂α

)2
I−1

11 + 2∂RComp

∂α
∂RComp

∂β I−1
12 +

(
∂RComp

∂β

)2
I−1

22 +
(
∂RComp

∂θ

)2
I−1

33 , (3.5)

Note that I(τ) can be replaced by J(τ) when I(τ) is not available in closed form. There-
fore, an asymptotic 100(1 − γ)% confidence interval of RComp is obtained as (R̂MLE

Comp ±
zγ/2σ̂RComp

), where zγ/2 is the upper γ/2th quantile of the standard normal distribution
and σ̂RComp

is the value of σRComp
at the MLE of the unknown parameters.

3.3. Nonparametric estimation of RComp

In this subsection, we consider the nonparametric estimator of RComp based on the
strength and stress data.

Let X1, ..., Xn1 and Y1, ..., Yn2 be two independent random samples from the distribu-
tions of X and Y , respectively. Birnbaum and McCarty [9] obtained the nonparametric
estimate of the simple stress-strength reliability R = P (X < Y ) using the Mann-Whitney
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U statistic where X and Y denote the stress and strength variables. This estimate is given
by

R̃ = 1
n1n2

n1∑
i=1

n2∑
j=1

I(Xi < Yj), (3.6)

where I(Xi < Yj) = 1 if Xi < Yj and 0 otherwise. It is known that R̃ is a consis-
tent, asymptotically normal and minimum variance estimate of R, see [3]. Nonparamet-
ric estimates of the simple stress-strength reliability and multicomponent reliability were
considered by several authors in the literature. Different nonparametric estimates were
introduced in this regard. For more details about these estimates, we refer [5, 31,32].

In our case, RComp = P
(
Z(1) > T

)
can be considered as the simple stress-strength.

Based on our strength Zi1, . . . , Zin, i = 1, . . .m and stress Ti, i = 1, . . . ,m samples, the
nonparametric estimate of RComp, i.e. R̃Comp, is given by

R̃comp = 1
m2

m∑
i=1

m∑
j=1

I(Tj < Zi(1)), (3.7)

using R̃ in Equation (3.6) where Zi(1) = min(Zi1, . . . , Zin), i = 1, . . .m.

3.4. Bayesian estimation of RComp

In this subsection, we consider Bayesian point and interval estimations of RComp. In
the Bayesian approach, it is assumed that we have prior information about the unknown
parameters. Suppose that α, β and θ have independent gamma priors with parameters
(ai, bi), i = 1, 2, 3, respectively. The pdf of a gamma random variable X with parameters
(a, b) is given by

f(x) = ba

Γ(a)
xa−1e−xb, x > 0, a, b > 0,

and denoted by Gamma(a, b). The joint posterior density function of α, β and θ is given
by

π(α, β, θ|z, t) = I(z, t)αnm+a1−1βnm+a2−1(β − α)−nmθa3+m−1e−αb1−βb2−θ(b3+
∑m

i=1 ti)zα,β, (3.8)

where I(z, t) is the normalizing constant

I(z, t)−1

Γ(a3 +m)

(
b3 +

m∑
i=1

ti

)a3+m

=
∫ ∞

0

∫ ∞

0

(
αβ

β − α

)nm
αa1−1βa2−1e−αb1−βb2zα,βdαdβ

and

zα,β = exp

 m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

) .
Bayes estimate of RComp, i.e. R̂BayesComp , under the squared error (SE) loss function is

R̂BayesComp =
∫ ∞

0

∫ ∞

0

∫ ∞

0
RCompπ(α, β, θ|z, t)dαdβdθ.

Since the above integral is not computed analytically, some approximation methods are
required to obtain approximate Bayes estimate. In the next part, we consider the Lindley’s
approximation and MCMC methods.
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3.4.1. Lindley’s approximation. Lindley proposed an approximate method in order
to obtain a numerical result for the computation of the ratio of two integrals in [29]. This
procedure, applied to the posterior expectation of the function u(θ) for a given x is

E(u(θ) |x) =
∫
u(θ)eQ(θ)dλ∫
eQ(θ)dλ

,

where Q(θ) = l(θ) + ρ(θ), l(θ) is the logarithm of the likelihood function and ρ(θ) is
the logarithm of the prior density of θ. Using Lindley’s approximation, E(u(θ) |x) is
approximately estimated by

E(u(θ) |x) =

u+ 1
2
∑
i

∑
j

(uij + 2uiρj)σij + 1
2
∑
i

∑
j

∑
k

∑
l

Lijkσijσklul


λ̂

+terms of order n−2 or smaller,

where θ = (θ1, θ2, ..., θm), i, j, k, l = 1, ...,m, θ̂ is the MLE of θ, u = u(θ), ui = ∂u/∂θi,
uij = ∂2u/∂θi∂θj , Lij = ∂2l/∂θi∂θj , Lijk = ∂3l/∂θi∂θj∂θk, ρj = ∂ρ/∂θj , and σij = (i, j)th
element in the inverse of the matrix {−Lij} all evaluated at the MLE of the parameters.

For the three parameter case θ = (θ1, θ2, θ3), Lindley’s approximation gives the approx-
imate Bayes estimate as

ûB = E(u(θ) |x) = u+ (u1a1 + u2a2 + u3a3 + a4 + a5) + 0.5 [A (u1σ11 + u2σ12

+u3σ13) +B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)] ,

evaluated at θ̂ = (θ̂1, θ̂2, θ̂3), where

ai = ρ1σi1 + ρ2σi2 + ρ3σi3, i = 1, 2, 3,

a4 = u12σ12 + u13σ13 + u23σ23, a5 = 0.5(u11σ11 + u22σ22 + u33σ33),

A = σ11L111 + 2σ12L121 + 2σ13L131 + 2σ23L231 + σ22L221 + σ33L331,

B = σ11L112 + 2σ12L122 + 2σ13L132 + 2σ23L232 + σ22L222 + σ33L332,

C = σ11L113 + 2σ12L123 + 2σ13L133 + 2σ23L233 + σ22L223 + σ33L333.

In our case, (θ1, θ2, θ3) ≡ (α, β, θ), and u ≡ u(α, β, θ) = RComp from Equation (2.3).
First, σij , i, j = 1, 2, 3 are computed by using the partial derivatives Lij = −Jij , i, j =
1, 2, 3. Second, we evaluate the constants as ρ1 = ((a1 − 1)/α) − 1, ρ2 = ((a2 − 1)/β) − b2
and ρ3 = ((a3 − 1)/θ) − b3 using the logarithm of the prior density, and L333 = 2m/θ,

L111 = 2nm
( 1
α3 + 1

(β − α)3

)
−

m∑
i=1

n∑
j=1

z3
ije

−zij(β−α)
(
1 + e−zij(β−α)

)
(
1 − e−zij(β−α)

)3 ,

L121 = L112 = −2nm 1
(β − α)3 +

m∑
i=1

n∑
j=1

z3
ije

−zij(β−α)
(
1 + e−zij(β−α)

)
(
1 − e−zij(β−α)

)3 ,

L122 = L221 = 2nm 1
(β − α)3 −

m∑
i=1

n∑
j=1

z3
ije

−zij(β−α)
(
1 + e−zij(β−α)

)
(
1 − e−zij(β−α)

)3 ,

L222 = 2nm
( 1
β3 − 1

(β − α)3

)
+

m∑
i=1

n∑
j=1

z3
ije

−zij(β−α)
(
1 + e−zij(β−α)

)
(
1 − e−zij(β−α)

)3 ·
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uij , i, j = 1, 2, 3 are computed by taking the partial derivative of RComp from Equation
(2.3). Lastly, we obtain A = σ11L111 + 2σ12L121 + σ22L221, B = σ11L112 + 2σ12L122 +
σ22L222, and C = σ33L333. Then, the approximate Bayes estimator of RComp is given by

R̂LindleyComp = RComp + [u1a1 + u2a2 + u3a3 + a4 + a5] + 1
2

[A(u1σ11 + u2σ12 + u3σ13)

+B(u1σ21 + u2σ22 + u3σ23) + C(u1σ31 + u2σ32 + u3σ33)], (3.9)

where all the parameters are evaluated at MLEs (α̂, β̂, θ̂).

3.4.2. MCMC method. The joint posterior density function of α, β and θ given data is
stated in Equation (3.8). Then, the marginal posterior density functions of the parameters
are given respectively as

θ |t ∼ Gamma
(
m+ a3, b3 +

m∑
i=1

ti

)
,

π(α |β, z) ∝ αnm+a1−1(β − α)−nme−αb1 exp

 m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

) , (3.10)

and

π(β |α, z) ∝ βnm+a2−1(β − α)−nme−βb2 exp

 m∑
i=1

n∑
j=1

ln
(
e−αzij − e−βzij

) . (3.11)

Hence, samples of θ can be readily generated by using a gamma distribution. Since the
marginal posterior distributions of α and β are not a well-known distribution, it is not
possible to generate sample directly by standard methods. Therefore, we use hybrid
Metropolis-Hastings and Gibbs sampling algorithm to generate samples from π(α |β, z)
and π(β |α, z), (for more details see [18,39]).
Step 1: Start with initial guess α(0), β(0).
Step 2: Set i = 1.
Step 3: Generate θ(i) from Gamma(m+ a3, b3 +

∑m
i=1 ti).

Step 4: Generate α(i) from π(α |β, z) using the Metropolis-Hastings algorithm with the
proposal distribution q1(α) ≡ N(α(i−1), 1) as follows.

(a) Let v = α(i−1).
(b) Generate w from the proposal distribution q.

(c) Let p(v, w) = min

1,
π(w

∣∣∣β(i−1), z) q(v)
π(v

∣∣β(i−1), z) q(w)

.

(d) Generate u from Uniform(0, 1). If u ≤ p(v, w), then accept the proposal and set
α(i) = w; otherwise, set α(i) = v.

Step 5: Similarly, β(i) is generated from π(β |α, z) using the Metropolis-Hastings algorithm
with the proposal distribution q2(β) ≡ N(β(i−1), 1).
Step 6: Compute the R(i)

Comp at (α(i), β(i), θ(i)).
Step 7: Set i = i+ 1.
Step 8: Repeat Steps 2-7, N times and obtain the posterior sample R(i)

Comp, i = 1, . . . , N .
This sample is used to compute Bayes estimate and to construct the HPD credible

interval for RComp. Bayes estimate of RComp under a SE loss function is given by

R̂MCMC
Comp = 1

N −M

N−M∑
i=M+1

R
(i)
Comp, (3.12)

where M is the burn-in period. The HPD 100(1 − γ)% credible interval of RComp is
obtained by the method of [14].
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3.5. Inference on ΦComp

The MRS of our series system under the stress T is the expected remaining strength,
and defined by the following conditional expectation ΦComp = E(Z(1) − T |Z(1) > T ). The
cdf of the conditional random variable ψ ≡ (Z(1) − T |Z(1) > T ) is

Fψ(x) = P (Z(1) − T ≤ x|Z(1) > T ) =
P (Z(1) ≤ T + x,Z(1) > T )

RComp
.

Then, conditioning on T = t, we have

P (Z(1) ≤ T + x,Z(1) > T ) =
∫ ∞

0
P (t < Z(1) ≤ t+ x) dFT (t)

=
∫ ∞

0
[FZ(1)(t+ x) − FZ(1)(t)] dFT (t)

=
∫ ∞

0

[
(βe−αt − αe−βt)n

(β − α)n
− (βe−α(t+x) − αe−β(t+x))n

(β − α)n

]
θe−θtdt

≡ I1 − I2
(β − α)n

,

for α ̸= β. After some computations, we obtain

I1 =
n∑
i=0

(
n

i

)
(−1)i αiβn−iθ

[α(n− i) + βi+ θ]

and

I2 = e−αnx
n∑
i=0

(
n

i

)
(−1)ie−ix(β−α) αiβn−iθ

[α(n− i) + βi+ θ]
.

Hence, the cdf and pdf of ψ are given by

Fψ(x) = 1
RComp(β − α)n

n∑
i=0

(
n

i

)
(−1)i

αiβn−iθ
(
1 − e−x(α(n−i)+βi)

)
[α(n− i) + βi+ θ]

,

and

fψ(x) = 1
RComp(β − α)n

n∑
i=0

(
n

i

)
(−1)iα

iβn−iθ[α(n− i) + βi]e−x(α(n−i)+βi)

[α(n− i) + βi+ θ]
,

for α ̸= β. Therefore, the MRS of the system is obtained as

ΦComp = E(ψ) =
∫ ∞

0
xfψ(x)dx

= 1
RComp(β − α)n

n∑
i=0

(
n

i

)
(−1)i αiβn−iθ

[α(n− i) + βi][α(n− i) + βi+ θ]
, (3.13)

for α ̸= β. Moreover, ΦComp can be easily derived as

ΦComp = 1
RComp

n∑
i=0

i∑
j=0

(
n

i

)
Γ(i+ 1) αj−1θ

ni−j+1 (αn+ θ)j+1 ,

for α = β.



Stress-strength reliability and MRS of series system with cold standby redundancy 1803

3.5.1. Estimation of ΦComp. The MLE of ΦComp, i.e. Φ̂MLE
Comp, is computed from Equa-

tion (3.13) by using the invariance property of MLE. It is clear that Φ̂MLE
Comp is asymptoti-

cally normal with mean ΦComp and asymptotic variance is computed by using the formula
in Equation (3.4). Hence, an asymptotic 100(1 − γ)% confidence interval for ΦComp is
given by (Φ̂MLE

Comp ± zγ/2σ̂ΦComp
) where σ̂ΦComp

is the value of σΦComp
at the MLE of the

parameters.
Under the setup made in Subsection 3.4, the Bayes estimator of ΦComp under the SE

loss function is given by

Φ̂Bayes
Comp =

∫ ∞

0

∫ ∞

0

∫ ∞

0
ΦComp π(α, β, θ|z, t) dαdβdθ.

Similar to the reliability case, since the above integral cannot be computed analytically,
the Bayes estimate of ΦComp under SE loss function is obtained by using Lindley’s ap-
proximation. It is omitted because of a similar procedure is mentioned in the reliability
case.

4. Estimation of RSystem and ΦSystem

In this section, point and interval estimations of the stress-strength reliability and MRS
of the series system with cold standby at system level are investigated.

4.1. MLE of RSystem

Suppose that m systems are put on a test each with n original components with n cold
standby components at system level in the series system. In this case, the strength data is
represented as Z(1),i, i = 1, . . . ,m and stress is Ti, i = 1, . . . ,m. Here, Z(1),i = X(1),i+Y(1),i
is the lifetime of ith system as in Section 2. Its pdf and cdf are obtained as in the Equations
(2.4) and (2.5), and the pdf of Z(1),i is denoted by fZ(1),i

(z(1),i), i = 1, . . . ,m. Then, the
likelihood function of α, β and θ for the observed sample is

L(α, β, θ|z, t) =
m∏
i=1

fZ(1),i
(z(1),i)fT (ti)

=
(
nαβθ

α− β

)m m∏
i=1

(e−βnz(1),i − e−αnz(1),i)e−θti .

The corresponding log-likelihood function is

ℓ(α, β, θ|z, t) = m[ln(nαβθ) − ln(α− β)] +
m∑
i=1

ln(e−βnz(1),i − e−αnz(1),i) − θ
m∑
i=1

ti. (4.1)

By partially differentiating Equation (4.1) with respect to α and β, we obtain the following
non-linear equations

∂ℓ

∂α
= m

( 1
α

+ 1
β − α

)
−

m∑
i=1

nz(1),i

1 − e−(β−α)nz(1),i
= 0, (4.2)

∂ℓ

∂β
= m

( 1
β

− 1
β − α

)
+

m∑
i=1

nz(1),i

e−(α−β)nz(1),i − 1
= 0. (4.3)

The MLEs α̂ and β̂ can be obtained by solving the non-linear equations in (4.2) and
(4.3) simultaneously. This non-linear equation system can be solved by using numerical
methods such as Newton–Raphson and Broyden’s methods. The MLE of θ is derived as
θ̂ = m/

∑m
i=1 ti. After obtaining α̂, β̂ and θ̂, the MLE of RSystem, i.e. R̂MLE

System, is given by

R̂MLE
System = θ̂[θ̂ + n(α̂+ β̂)]

(β̂n+ θ̂)(α̂n+ θ̂)
,
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from Equation (2.6) using the invariance property of MLE.

4.2. Asymptotic confidence interval of RSystem

The elements of the observed information matrix J(τ), in which τ = (α, β, θ) and
J(τ) = [Jij ] = [−∂2ℓ/∂τi∂τj ], are derived as J13 = J31 = J23 = J32 = 0, J33 = m/θ2,

J11 = m

( 1
α2 − 1

(β − α)2

)
+

m∑
i=1

n2z2
(1),i e

−(β−α)nz(1),i

(1 − e−(β−α)nz(1),i)2
,

J12 = J21 = m

(β − α)2 −
m∑
i=1

n2z2
(1),i e

−(β−α)nz(1),i

(1 − e−(β−α)nz(1),i)2
,

and

J22 = m

( 1
β2 − 1

(β − α)2

)
+

m∑
i=1

n2z2
(1),i e

−(α−β)nz(1),i

(e−(α−β)nz(1),i − 1)2
.

Since the Fisher information matrix E (J(τ)) cannot be obtained analytically, it is com-
puted by applying numerical integration methods. Then, R̂MLE

System is asymptotically normal
with mean RSystem and asymptotic variance is computed by using the formula in Equa-
tion (3.4). Hence, an asymptotic 100(1 − γ)% confidence interval of RSystem is given by
(R̂MLE

System ± zγ/2σ̂RSystem
) where zγ/2 is the upper γ/2th quantile of the standard normal

distribution and σ̂RSystem
is the value of σRSystem

at the MLE of the parameters.

4.3. Nonparametric estimation of RSystem

In this case, the nonparametric estimate of RSystem = P (Z(1) > T ) is given by

R̃System = 1
m2

m∑
i=1

m∑
j=1

I
(
Tj < Z(1),i

)
, (4.4)

using the similar way in Subsection 3.3 based on the samples Z(1),i and Ti, i = 1, . . . ,m
where Z(1),i = X(1),i + Y(1),i, i = 1, . . . ,m.

4.4. Bayesian estimation of RSystem

In Bayesian case, it is assumed that α, β and θ have independent gamma priors with
parameters (ai, bi), i = 1, 2, 3, respectively. Then, the joint posterior density function of
α, β and θ is

π(α, β, θ|z, t) ∝αm+a1−1βm+a2−1(β − α)−mθm+a3−1e−αb1−βb2−θ(b3+
∑m

i=1 ti)

· exp
(

m∑
i=1

ln(e−αnz(1),i − e−βnz(1),i)
)
. (4.5)

Bayes estimate of RSystem, i.e. R̂BayesSystem, under the SE loss function is

R̂BayesSystem =
∫ ∞

0

∫ ∞

0

∫ ∞

0
RSystem π(α, β, θ|z, t)dαdβdθ.

Since the R̂BayesSystem cannot be computed analytically, we resort to MCMC methods.
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4.4.1. MCMC method. The joint posterior density function of α, β and θ given data is
stated in Equation (4.5). Then, the marginal posterior density functions of the parameters
are given respectively as

θ |t ∼ Gamma

(
m+ a3, b3 +

m∑
i=1

ti

)
,

π(α |β, z) ∝ αm+a1−1(β − α)−me−αb1 exp
(

m∑
i=1

ln
(
e−αnz(1),i − e−βnz(1),i

))
,

and

π(β |α, z) ∝ βm+a2−1(β − α)−me−βb2 exp
(

m∑
i=1

ln
(
e−αnz(1),i − e−βnz(1),i

))
.

Therefore, samples of θ can be easily generated by using a gamma distribution. Since
the marginal posterior distributions of α and β are not well-known distributions, it is not
possible to generated sample directly by standard methods. Hence, Bayes estimate and
HPD credible interval of RSystem are computed by using the hybrid Metropolis-Hastings
and Gibbs sampling algorithm. Since this procedure is similar to in Subsection 3.4.2, it is
not detailed.

4.5. Inference on ΦSystem

The MRS of the series system under the stress T is defined by the following conditional
expectation ΦSystem = E(Z(1) − T |Z(1) > T ). The cdf of the conditional random variable
ψ ≡ (Z(1) − T |Z(1) > T ) is

Fψ(x) = P (Z(1) − T ≤ x |Z(1) > T ) =
P (Z(1) ≤ T + x,Z(1) > T )

RSystem
.

Then, conditioning on T = t, we have

P (Z(1) ≤ T + x,Z(1) > T ) =
∫ ∞

0
P (t < Z(1) ≤ t+ x) dFT (t)

=
∫ ∞

0
[FZ(1)(t+ x) − FZ(1)(t)] dFT (t)

= θ

(β − α)

[
α(e−βnx − 1)

βn+ θ
− β(e−αnx − 1)

αn+ θ

]
,

for α ̸= β. Hence, the cdf and pdf of ψ are given by

Fψ(x) = θ

RSystem(β − α)

[
α(e−βnx − 1)

βn+ θ
− β(e−αnx − 1)

αn+ θ

]
,

and

fψ(x) = θαβn

RSystem(β − α)

(
e−αnx

αn+ θ
− e−βnx

βn+ θ

)
,

for α ̸= β. Therefore, the MRS of our series system is obtained as

ΦSystem = E(ψ) =
∫ ∞

0
x fψ(x)dx

= αβθ

RSystem(β − α)n

[ 1
α2(αn+ θ)

− 1
β2(βn+ θ)

]
, (4.6)

for α ̸= β. Moreover, for α = β, ΦSystem is derived by using RSystem in (2.6) as

ΦSystem = 3αn+ θ

αn(2αn+ θ)
.
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4.5.1. Estimation of ΦSystem. The MLE of ΦSystem, i.e. Φ̂MLE
System, is computed from

Equation (4.6) by using the invariance property of MLE. It is clear that Φ̂MLE
System is asymp-

totically normal with mean ΦSystem and asymptotic variance is evaluated by using the
formula in Equation (3.4). Then, an asymptotic 100(1−γ)% confidence interval of ΦSystem

is obtained as (Φ̂MLE
System ± zγ/2σ̂ΦSystem

) where σ̂ΦSystem
is the value of σΦSystem

at the MLE
of the parameters. Under the setup made in Subsection 4.4, the Bayes estimate of ΦSystem

under the SE loss function cannot be computed analytically. Therefore, Bayes estimate and
HPD credible interval of ΦSystem are computed by using the hybrid Metropolis-Hastings
and Gibbs sampling algorithm as in the reliability case.

5. Simulation study
In this section, we perform a Monte Carlo simulation study to compare performance of

the all the proposed estimates. The point and interval estimates of RComp, RSystem, ΦComp

and ΦSystem are computed based on the Monte Carlo simulations. The performances of
the point estimates are compared by using mean square error (MSE) and estimated risk
(ER) for ML and Bayes estimates, respectively. The ER of θ for the θ̂ estimate is given
by

ER(θ) = 1
N

N∑
i=1

(θ̂i − θi)2,

under the SE loss function. Average length (AL) of the confidence interval and coverage
probability (CP) provide a comparison between the interval estimates. The CP of a
confidence interval is the proportion of time that the interval contains the parameter of
interest. All results are obtained based on 2500 replications. The simulation studies have
been carried out by using MATLAB and statistical software R [34].

In MLE case of the simulation study, we use the Broyden or Newton-Raphson methods
for solving the non-linear equations using the nleqslv [21] package in software R.

In Bayesian case of the simulation study, we have selected hyperparameters as a1 = α,
a2 = β, a3 = θ, b1 = b2 = b3 = 1 for the informative prior case and ai = bi = 0, i = 1, 2, 3
for the non-informative prior case. Bayes estimates of the stress-strength reliability and
MRS of the systems are computed by using Lindley’s approximation and MCMC method.
In the MCMC cases, we run two MCMC chains with fairly different initial values and
generate 5000 iterations for each chain. In order to reduce the effect of the starting
distribution, the first 2500 results of each sequence are discarded, which is called burn-
in. So as to cut off the dependence between the results in the Markov chain, only every
dth draw of the chain is saved, which is called thinning. In our cases, Bayesian MCMC
estimates are evaluated by the means of the every 5th sampled values after the discarding
procedure. Moreover, the convergency of the MCMC chains has been monitored by using
the scale reduction factor estimate in [18]. The estimate is given by

√
V ar(ψ)/W , where

ψ is the estimand of interest, V ar(ψ) = (n − 1)W/n + B/n with the iteration number n
for each chain, the between-sequence variance B and the within-sequence variance W . In
the following simulation studies, the scale factor values of all the MCMC estimators are
found to be below 1.1. It is an acceptable value for their convergence.

In Tables 1 and 2, we have reported the ML and Bayesian point estimates of RComp
and corresponding interval estimates for different component (n) and sample (m) sizes.
Bayes estimates of RComp are obtained by using both Lindley’s approximation and MCMC
method. The true values of the parameters are taken as (α, β, θ) = (1.5, 4, 6) and (5, 3, 15)
for n = 3, 5, 7 and 2, 4, 6, respectively. The results in Table 1 showed that Bayes estimates
of RComp based on informative prior have the best performance in terms of error ER.
We further observe that Bayes estimate using Lindley’s approximation provide relatively
better results than the MCMC method. In general, we can order the MSE and ER of
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estimates as ER(R̂LindleyComp ) < ER(R̂MCMC
Comp ) < MSE(R̂Comp) based on informative prior.

We also note that MSE, ER, and bias of the estimates tend to decrease as the sample size
increases. Table 2 indicates that the AL of the asymptotic confidence interval is wider
than the corresponding HPD interval. However, CPs of the HPD interval is not as close
to the nominal value 0.95 as the asymptotic confidence interval.

Table 1. Estimates of RComp for (α, β, θ) = (1.5, 4, 6) and (5, 3, 15).

MLE Bayes (Inf. prior) Bayes (Non-inf. prior).
n m RComp R̂Comp Bias MSE R̂LindleyComp Bias ER R̂MCMC

Comp Bias ER R̂LindleyComp Bias ER
(α, β, θ) = (1.5, 4, 6)

3 10 0.81070 0.80060 -0.01011 0.00643 0.82738 0.01667 0.00577 0.77493 -0.03577 0.00416 0.78825 -0.02245 0.01133
20 0.80149 -0.00921 0.00352 0.81933 0.00862 0.00273 0.78266 -0.02805 0.00283 0.79740 -0.01331 0.00528
30 0.80264 -0.00806 0.00230 0.81373 0.00303 0.00239 0.78807 -0.02264 0.00207 0.80134 -0.00936 0.00389
40 0.80636 -0.00435 0.00169 0.81332 0.00261 0.00146 0.79493 -0.01578 0.00151 0.80645 -0.00426 0.00245

5 10 0.73678 0.72864 -0.00812 0.00810 0.75074 0.01396 0.00461 0.70096 -0.03582 0.00470 0.71891 -0.01786 0.01120
20 0.73122 -0.00556 0.00452 0.73898 0.00220 0.00292 0.71362 -0.02316 0.00333 0.72801 -0.00877 0.00578
25 0.73088 -0.00589 0.00342 0.73575 -0.00102 0.00244 0.71706 -0.01972 0.00266 0.728037 -0.00874 0.00472
30 0.73212 -0.00466 0.00301 0.73538 -0.00140 0.00211 0.72085 -0.01593 0.00239 0.73041 -0.00637 0.00371

7 10 0.68197 0.67817 -0.00380 0.00935 0.68675 0.00478 0.00388 0.65023 -0.03174 0.00488 0.66882 -0.01315 0.01181
15 0.68079 -0.00118 0.00648 0.68360 0.00163 0.00334 0.65992 -0.02205 0.00393 0.67621 -0.00575 0.00808
20 0.68079 -0.00117 0.00477 0.68130 -0.00067 0.00293 0.66647 -0.01550 0.00321 0.67757 -0.00440 0.00595
25 0.68107 -0.00186 0.00396 0.67865 -0.00332 0.00258 0.66798 -0.01399 0.00288 0.67702 -0.00494 0.00454

(α, β, θ) = (5, 3, 15)
2 10 0.92298 0.92508 0.00210 0.00130 0.94869 0.02571 0.00128 0.90354 -0.01944 0.00085 0.92347 0.00049 0.00219

20 0.91514 -0.00784 0.00103 0.94305 0.02007 0.00081 0.90287 -0.02011 0.00083 0.91793 -0.00505 0.00147
30 0.91483 -0.00815 0.00072 0.93744 0.01446 0.00059 0.90500 -0.01798 0.00066 0.91807 -0.00491 0.00110
40 0.91666 -0.00632 0.00050 0.93325 0.01027 0.00043 0.90820 -0.01477 0.00049 0.92064 -0.00234 0.00079

4 10 0.86536 0.85788 -0.00747 0.00374 0.88763 0.02227 0.00248 0.83667 -0.02867 0.00179 0.85605 -0.00931 0.00554
20 0.85573 -0.00962 0.00223 0.87780 0.01244 0.00100 0.84288 -0.02247 0.00139 0.85868 -0.00667 0.00310
30 0.85518 -0.01017 0.00158 0.87155 0.00620 0.00080 0.84690 -0.01845 0.00109 0.86057 -0.00478 0.00218
40 0.85767 -0.00768 0.00115 0.86847 0.00312 0.00074 0.85068 -0.01468 0.00084 0.86212 -0.00323 0.00164

6 10 0.81959 0.80531 -0.01428 0.00563 0.83386 0.01426 0.00306 0.78646 -0.03313 0.00239 0.80384 -0.01575 0.00765
20 0.81071 -0.00888 0.00293 0.82620 0.00661 0.00112 0.79933 -0.02026 0.00153 0.81554 -0.00406 0.00403
25 0.81114 -0.00845 0.00247 0.82361 0.00401 0.00107 0.80216 -0.01743 0.00139 0.81661 -0.00299 0.00332
30 0.81246 -0.00713 0.00198 0.82236 0.00277 0.00106 0.80315 -0.01644 0.00137 0.81782 -0.00178 0.00274

Table 2. Average lengths and coverage probabilities of RComp for
(α, β, θ) = (1.5, 4, 6) and (5, 3, 15).

ACI HPD ACI HPD

n m RComp AL CP AL CP n m RComp AL CP AL CP
3 10 0.81070 0.32606 0.9220 0.17645 0.8740 2 10 0.92298 0.17323 0.9048 0.10566 0.9840

20 0.23470 0.9372 0.14606 0.8556 20 0.13639 0.9520 0.08727 0.9372
30 0.19238 0.9520 0.12798 0.8600 30 0.11246 0.9636 0.07693 0.9316
40 0.16526 0.9468 0.11430 0.8668 40 0.09582 0.9672 0.06842 0.9360

5 10 0.73678 0.36759 0.9296 0.18997 0.8444 4 10 0.86536 0.25642 0.9148 0.13519 0.9380
20 0.26308 0.9344 0.15209 0.8184 20 0.18603 0.9468 0.10784 0.8884
25 0.23681 0.9456 0.14059 0.8268 30 0.15288 0.9472 0.09178 0.8624
30 0.21599 0.9408 0.13353 0.8228 40 0.13120 0.9464 0.08378 0.8668

7 10 0.68197 0.38374 0.9520 0.19082 0.8380 6 10 0.81959 0.30389 0.9344 0.14710 0.9000
15 0.31606 0.9280 0.16546 0.8032 20 0.21484 0.9420 0.11246 0.8632
20 0.27551 0.9324 0.14867 0.8012 25 0.19232 0.9420 0.10379 0.8548
25 0.24735 0.9328 0.15226 0.8244 30 0.17534 0.9436 0.10582 0.8680

When the cold standby is applied at component level, we have encountered convergence
problems in the MCMC case for the large values of n and m. The nm is seen as a power
of some terms in the marginal posterior densities of α and β given in Equations (3.10) and
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(3.11). Therefore, this situation causes an indeterminate ratio in the Metropolis-Hastings
algorithm. Since the performance of Bayes estimate of RComp using Lindley’s approxima-
tion is generally better than the MCMC method in Table 1, Lindley’s approximation can
be considered as a good method. That is why Bayes estimates for the large values of n
and m are computed by using Lindley’s approximation in the Figure 2.

Figure 2. Plots for the RComp estimates.

In Figure 2, MSEs of two different ML estimates and ERs of Bayesian estimates based on
the informative and non-informative priors are plotted for different parameters and sample
sizes. The ML and Bayes estimates of RComp are evaluated by using Equations (2.3) and
(3.9) at the ML estimates of (α, β, θ) which are obtained from the log-likelihood function
in Equation (3.1). Moreover, another ML estimation of RComp, called MLE2, is evaluated
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at α̂MLE = 1/X, β̂MLE = 1/Y and θ̂MLE = 1/Z in Equation (2.3) for comparison of
other estimates. Since the ML estimates of α and β are the solution of the non-linear
equation system for our model, to use the ML estimate of the unknown parameter of
the random sample of the exponential distribution can be preferable with respect to the
error performances. It is observed that Bayes estimate under the informative prior has
the smallest error values in most cases. The performances of two ML estimates are very
similar to each other. Hence, the MLE2 estimate can be used as an alternative estimates
of RComp. Similar to the Table 1, Bayes estimate under the non-informative prior has
bigger error values than other estimates. Moreover, all the error values of the estimates
are large when RComp is around 0.5, and it is small when RComp is close to extreme values
0 and 1. This has also been obtained in similar stress-strength reliability studies in the
literature, one can refer to [7, 25].

In Table 3, we have presented ML and nonparametric estimates of RComp and their rel-
ative efficiency for different parameters and sample sizes. The relative efficiency of R̃Comp
relative to R̂Comp is evaluated as ratio of corresponding MSEs, i.e. RE =
MSE(R̂Comp)/MSE(R̃Comp). From Table 3, RE values are smaller than 1 in all cases,
hence the ML estimate performance is better than the corresponding nonparametric es-
timate. Since the MSEs of these estimates are getting close to each other as the sample
size increases, R̃Comp could be used under the violation of distributional assumptions.

Table 3. ML and nonparametric estimates of RComp and relative efficiency.

MLE Nonparametric

n m RComp R̂Comp Bias MSE R̃Comp Bias MSE RE
(α, β, θ) = (1.5, 4, 6)

5 10 0.73678 0.72797 -0.00881 0.00847 0.72964 -0.00714 0.01242 0.68226
20 0.73199 -0.00479 0.00426 0.73186 -0.00492 0.00587 0.72684
40 0.73617 -0.00061 0.00213 0.73552 -0.00126 0.00299 0.71097
80 0.73649 -0.00029 0.00113 0.73584 -0.00094 0.00147 0.76795
100 0.73692 0.00014 0.00091 0.73666 -0.00012 0.00121 0.75136

10 10 0.62067 0.62112 0.00045 0.01001 0.61013 -0.01054 0.01702 0.58814
20 0.62233 0.00166 0.00520 0.61749 -0.00318 0.00813 0.63911
40 0.62268 0.00201 0.00254 0.61953 -0.00113 0.00378 0.67376
80 0.62194 0.00127 0.00133 0.62017 -0.00049 0.00195 0.67965
100 0.62132 0.00065 0.00108 0.61967 -0.00099 0.00159 0.67732

(α, β, θ) = (5, 3, 15)
3 10 0.89234 0.86835 -0.02399 0.00438 0.87596 -0.01638 0.00610 0.71802

25 0.87886 -0.01348 0.00158 0.88196 -0.01038 0.00215 0.73148
50 0.88463 -0.00772 0.00071 0.88557 -0.00677 0.00106 0.67620
100 0.88847 -0.00387 0.00033 0.88963 -0.00271 0.00048 0.67162

6 10 0.81960 0.80174 -0.01785 0.00600 0.80427 -0.01532 0.00965 0.62247
25 0.81208 -0.00751 0.00233 0.81167 -0.00792 0.00373 0.62518
50 0.81266 -0.00694 0.00121 0.81288 -0.00672 0.00180 0.66983
100 0.81649 -0.00311 0.00059 0.81652 -0.00308 0.00091 0.65199

(α, β, θ) = (1.1, 1.25, 0.5)
4 10 0.27521 0.27647 0.00126 0.00591 0.26029 -0.01492 0.01324 0.44654

20 0.27028 -0.00493 0.00275 0.26341 -0.01181 0.00654 0.42125
40 0.27115 -0.00406 0.00139 0.26663 -0.00858 0.00333 0.41865
60 0.27120 -0.00401 0.00097 0.26721 -0.00800 0.00241 0.40168

8 10 0.19552 0.19666 0.00114 0.00341 0.18429 -0.01124 0.01093 0.31203
20 0.19425 -0.00127 0.00169 0.18890 -0.00662 0.00561 0.30082
40 0.19219 -0.00334 0.00077 0.18841 -0.00712 0.00268 0.28603
60 0.19303 -0.00249 0.00052 0.18908 -0.00644 0.00185 0.28094
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Table 4. Estimates of ΦComp for (α, β, θ) = (1.5, 4, 6).

MLE Bayes (Inf. prior) Bayes (Non-inf. prior)
n m ΦComp Φ̂Comp Bias MSE Φ̂Lindley

Comp Bias ER Φ̂Lindley
Comp Bias ER

8 20 0.17188 0.17054 -0.00134 0.00024 0.17649 0.00461 0.00036 0.17530 0.00342 0.00062
40 0.17156 -0.00031 0.00012 0.17338 0.00150 0.00014 0.17335 0.00147 0.00020
60 0.17219 0.00031 0.00009 0.17311 0.00123 0.00010 0.17318 0.00130 0.00012
80 0.17210 0.00022 0.00007 0.17283 0.00095 0.00011 0.17288 0.00100 0.00013
100 0.17226 0.00038 0.00005 0.17264 0.00076 0.00005 0.17268 0.00080 0.00006

12 20 0.13121 0.13042 -0.00079 0.00010 0.13279 0.00158 0.00013 0.13248 0.00127 0.00021
40 0.13151 0.00030 0.00005 0.13303 0.00182 0.00100 0.13311 0.00189 0.00105
60 0.13153 0.00032 0.00004 0.13186 0.00065 0.00004 0.13191 0.00070 0.00005
80 0.13140 0.00018 0.00003 0.13159 0.00037 0.00003 0.13160 0.00039 0.00003
100 0.13131 0.00009 0.00002 0.13143 -0.00022 0.00002 0.13144 0.00023 0.00002

16 20 0.10901 0.10890 -0.00011 0.00006 0.11069 0.00167 0.00092 0.11076 0.00175 0.00097
40 0.10922 0.00020 0.00003 0.10971 0.00070 0.00018 0.10976 0.00075 0.00020
60 0.10908 0.00008 0.00002 0.10922 0.00021 0.00002 0.10923 0.00022 0.00002
80 0.10910 0.00009 0.00001 0.10920 0.00018 0.00001 0.10921 0.00019 0.00002
100 0.10918 0.00016 0.00001 0.10924 0.00022 0.00001 0.10925 0.00023 0.00001

20 20 0.09472 0.09470 -0.00002 0.00004 0.09658 0.00186 0.00304 0.09669 0.00197 0.00327
40 0.09485 0.00013 0.00002 0.09516 0.00044 0.00006 0.09520 0.00047 0.00007
60 0.09487 0.00015 0.00001 0.09488 0.00016 0.00002 0.09490 0.00018 0.00002
80 0.09491 0.00019 0.00001 0.09498 0.00025 0.00001 0.09499 0.00027 0.00001
100 0.09480 0.00007 0.00004 0.09483 0.00011 0.00000 0.09484 0.00012 0.00000

24 20 0.08461 0.08453 -0.00008 0.00002 0.08580 0.00119 0.00076 0.08590 0.00129 0.00082
40 0.08477 0.00015 0.00001 0.08555 0.00094 0.00084 0.08559 0.00098 0.00087
60 0.08476 0.00015 0.00001 0.08495 0.00033 0.00006 0.08497 0.00036 0.00007
80 0.08471 0.00010 0.00001 0.08476 0.00014 0.00001 0.08476 0.00015 0.00001
100 0.08466 0.00005 0.00000 0.08469 0.00008 0.00000 0.08470 0.00008 0.00000

Table 5. Estimates of ΦComp for (α, β, θ) = (1.5, 0.5, 10).

MLE Bayes (Inf. prior) Bayes (Non-inf. prior)
n m ΦComp Φ̂Comp Bias MSE Φ̂Lindley

Comp Bias ER Φ̂Lindley
Comp Bias ER

5 10 0.77878 0.76043 -0.01834 0.01219 0.81123 0.03246 0.01579 0.78802 0.00924 0.02492
20 0.76574 -0.01304 0.00634 0.79147 0.01269 0.00837 0.78422 0.00544 0.01186
30 0.77424 -0.00453 0.00485 0.78916 0.01039 0.00629 0.78675 0.00797 0.00811
40 0.77578 -0.00300 0.00356 0.78563 0.00686 0.00455 0.78474 0.00597 0.00556
50 0.77783 -0.00095 0.00305 0.78437 0.00560 0.00369 0.78398 0.00520 0.00433

10 10 0.48849 0.48010 -0.00839 0.00353 0.49410 0.00561 0.00436 0.48989 0.00140 0.00689
20 0.48659 -0.00190 0.00201 0.49303 0.00454 0.00292 0.49276 0.00426 0.00369
30 0.48858 0.00008 0.00133 0.49077 0.00228 0.00158 0.49079 0.00230 0.00188
40 0.48865 0.00016 0.00104 0.48989 0.00140 0.00116 0.49001 0.00152 0.00131
50 0.48816 -0.00003 0.00083 0.48905 0.00056 0.00089 0.48906 0.00056 0.00099

15 10 0.37502 0.37090 -0.00412 0.00172 0.37656 0.00154 0.01063 0.37658 0.00155 0.01172
20 0.37453 -0.00049 0.00091 0.37604 0.00101 0.00194 0.37642 0.00139 0.00224
30 0.37487 -0.00014 0.00063 0.37561 0.00059 0.00159 0.37579 0.00076 0.00167
40 0.37578 0.00076 0.00048 0.37558 0.00056 0.00046 0.37579 0.00077 0.00052
50 0.37540 0.00037 0.00038 0.37527 0.00025 0.00038 0.37535 0.00032 0.00041

20 10 0.31185 0.31016 -0.00169 0.00095 0.31170 -0.00016 0.00783 0.31387 0.00202 0.00834
20 0.31184 -0.00001 0.00053 0.31263 0.00077 0.00170 0.31339 0.00153 0.00181
30 0.31198 0.00012 0.00035 0.31214 0.00029 0.00080 0.31243 0.00057 0.00085
40 0.31225 0.00039 0.00027 0.31192 0.00007 0.00026 0.31205 0.00020 0.00028
50 0.31211 0.00025 0.00022 0.31185 0.00001 0.00021 0.31193 0.00007 0.00023

25 10 0.27072 0.26943 -0.00129 0.00062 0.27669 0.00596 0.08434 0.27925 0.00852 0.08576
20 0.27080 0.00008 0.00034 0.27411 0.00339 0.00796 0.27470 0.00397 0.00791
30 0.27174 0.00101 0.00023 0.27162 0.00090 0.00061 0.27203 0.00130 0.00062
40 0.27144 0.00071 0.00017 0.27099 0.00027 0.00017 0.27121 0.00049 0.00019
50 0.27129 0.00056 0.00014 0.27095 0.00023 0.00013 0.27108 0.00036 0.00015
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In Tables 4 and 5, we have listed the ML and Bayesian Lindley estimates of ΦComp

based on informative and non-informative priors. The true values of the parameters are
taken as (α, β, θ) = (1.5, 4, 6) and (1.5, 0.5, 10) for n = 8, 12, 16, 20, 24 and 5, 10, 15, 20, 25,
respectively. From Tables 4 and 5, we conclude that ML estimates of ΦComp have relatively
better results than Bayes estimates. However, ERs of Bayes estimate based on informative
prior are close to MSEs of ML estimate as the sample size increases. From Table 6, we
observe that AL of the asymptotic confidence intervals of ΦComp decreases as the sample
size increases as expected, and all the CPs are satisfactory.

Table 6. Average lengths and coverage probabilities of ΦComp for
(α, β, θ) = (1.5, 4, 6) and (1.5, 0.5, 10).

n m ΦComp AL CP n m ΦComp AL CP
8 20 0.17188 0.06319 0.9504 5 10 0.77878 0.49134 0.9564

40 0.04459 0.9544 20 0.34783 0.9600
60 0.03649 0.9548 30 0.28497 0.9504
80 0.03160 0.9472 40 0.24706 0.9596
100 0.02826 0.9472 50 0.22136 0.9544

12 20 0.13121 0.04187 0.9592 10 10 0.48849 0.25506 0.9592
40 0.02960 0.9528 20 0.18026 0.9460
60 0.02416 0.9472 30 0.14749 0.9552
80 0.02091 0.9436 40 0.12775 0.9496
100 0.01871 0.9456 50 0.11424 0.9504

16 20 0.10901 0.03125 0.9648 15 10 0.37502 0.17181 0.9528
40 0.02207 0.9540 20 0.12134 0.9572
60 0.01797 0.9524 30 0.09924 0.9540
80 0.01555 0.9508 40 0.08603 0.9480
100 0.01391 0.9516 50 0.07706 0.9468

20 20 0.09472 0.02515 0.9616 20 10 0.31185 0.12999 0.9580
40 0.01752 0.9612 20 0.09311 0.9552
60 0.01425 0.9524 30 0.07509 0.9492
80 0.01234 0.9440 40 0.06496 0.9468
100 0.01103 0.9484 50 0.05808 0.9452

24 20 0.08461 0.02097 0.9644 25 10 0.27072 0.10507 0.9556
40 0.01462 0.9520 20 0.07542 0.9524
60 0.01190 0.9512 30 0.06064 0.9588
80 0.01022 0.9472 40 0.05224 0.9512
100 0.00913 0.9492 50 0.04671 0.9456

In Tables 7, 9 and 10, we have presented the ML, nonparametric and Bayesian MCMC
estimates of RSystem and ΦSystem based on informative and non-informative priors. In Ta-
bles 8 and 11, we have reported an %95 asymptotic confidence interval and HPD credible
intervals based on informative and non-informative priors. The true values of the param-
eters are taken as (α, β, θ) = (1.5, 2.5, 15), (6, 2, 3) and (3, 1, 10) for n = 2, 4, 8, and 3, 5, 7
and 3, 8, 12, 16, respectively. According to Table 7, MCMC estimate of RSystem based
on informative prior gives better result than non-informative prior and MLE in terms of
ER and MSEs. We also note that MSE, ER, and bias of the estimates tend to decrease
generally as the sample size increases. Table 8 indicates that AL of HPD credible inter-
vals based on informative prior are mostly narrower than the others. CPs of asymptotic
confidence interval and HPD credible interval based on informative prior are quite satis-
factory. However, in some cases, it is observed that CPs of HPD credible interval based
on non-informative prior are far away from the nominal value 0.95. All the intervals tend
to become narrower as the sample size increases.



1812 G. Cüran, F. Kızılaslan

Table 7. Estimates of RSystem.

MLE Bayes (Inf. prior) Bayes (Non-inf. prior)
n m RSystem R̂System Bias MSE R̂MCMC

System Bias ER R̂MCMC
System Bias ER

(α, β, θ) = (1.5, 2.5, 15)
2 10 0.95833 0.93500 -0.02333 0.00199 0.93220 -0.02613 0.00108 0.89034 -0.06800 0.00640

20 0.94298 -0.01536 0.00093 0.93892 -0.01941 0.00062 0.89957 -0.05876 0.00422
30 0.94618 -0.01215 0.00061 0.94176 -0.01657 0.00046 0.90108 -0.05725 0.00382
40 0.94889 -0.00944 0.00042 0.94445 -0.01388 0.00035 0.90361 -0.05473 0.00340

4 10 0.88571 0.85353 -0.03218 0.00551 0.84447 -0.04124 0.00317 0.79729 -0.08843 0.01214
20 0.86370 -0.02202 0.00273 0.85547 -0.03025 0.00185 0.80856 -0.07715 0.00799
30 0.86769 -0.01802 0.00183 0.85976 -0.02596 0.00139 0.81108 -0.07463 0.00691
40 0.87031 -0.01540 0.00140 0.86287 -0.02285 0.00113 0.81262 -0.07309 0.00637

8 10 0.74603 0.71911 -0.02692 0.00931 0.70264 -0.04339 0.00472 0.66527 -0.08077 0.01356
20 0.72145 -0.02459 0.00549 0.71189 -0.03415 0.00335 0.67112 -0.07492 0.00942
30 0.72785 -0.01817 0.00374 0.71809 -0.02794 0.00257 0.67523 -0.07080 0.00764
40 0.73065 -0.01538 0.00264 0.72167 -0.02436 0.00200 0.67667 -0.06936 0.00669

(α, β, θ) = (6, 2, 3)
3 10 0.42857 0.43662 0.00805 0.01096 0.41822 -0.01035 0.00620 0.41333 -0.01524 0.00914

20 0.42963 0.00106 0.00564 0.42101 -0.00756 0.00404 0.41156 -0.01701 0.00491
30 0.42767 -0.00090 0.00380 0.42076 -0.00782 0.00296 0.40928 -0.01929 0.00348
40 0.42880 0.00023 0.00294 0.42270 -0.00587 0.00239 0.41028 -0.01829 0.00276

5 10 0.30070 0.31192 0.01122 0.00822 0.29893 -0.00177 0.00442 0.30076 0.00006 0.00685
20 0.30523 0.00453 0.00407 0.30005 -0.00065 0.00287 0.29691 -0.00379 0.00348
30 0.30475 0.00405 0.00276 0.30090 0.00020 0.00215 0.29600 -0.00470 0.00237
40 0.30286 0.00216 0.00212 0.29951 -0.00119 0.00174 0.29364 -0.00706 0.00187

7 10 0.23137 0.24538 0.01401 0.00623 0.23500 0.00362 0.00333 0.23959 0.00821 0.00527
20 0.23687 0.00550 0.00288 0.23333 0.00195 0.00204 0.23275 0.00138 0.00251
30 0.23585 0.00448 0.00197 0.23354 0.00216 0.00155 0.23136 -0.00001 0.00174
40 0.23389 0.00252 0.00145 0.23205 0.00068 0.00120 0.22900 -0.00237 0.00129

(α, β, θ) = (3, 1, 10)
3 10 0.89069 0.86467 -0.02602 0.00466 0.85425 -0.03644 0.00292 0.81347 -0.07722 0.00986

20 0.87467 -0.01601 0.00238 0.86338 -0.02730 0.00175 0.82398 -0.06671 0.00635
30 0.87745 -0.01324 0.00161 0.86625 -0.02443 0.00134 0.82496 -0.06573 0.00553
40 0.88015 -0.01054 0.00120 0.86943 -0.02126 0.00108 0.82728 -0.06341 0.00497

8 10 0.68627 0.66996 -0.01631 0.01055 0.65079 -0.03548 0.00556 0.62519 -0.06108 0.01225
20 0.67488 -0.01140 0.00573 0.66104 -0.02523 0.00360 0.63176 -0.05452 0.00741
30 0.67730 -0.00898 0.00373 0.66482 -0.02145 0.00267 0.63321 -0.05307 0.00571
40 0.67731 -0.00897 0.00300 0.66572 -0.02056 0.00232 0.63210 -0.05417 0.00516

12 10 0.57312 0.56849 -0.00463 0.01154 0.54860 -0.02452 0.00540 0.53273 -0.04039 0.01073
20 0.56501 -0.00811 0.00631 0.55263 -0.02049 0.00378 0.53165 -0.04147 0.00659
30 0.56960 -0.00352 0.00414 0.55765 -0.01547 0.00278 0.53468 -0.03844 0.00469
40 0.56853 -0.00460 0.00342 0.55865 -0.01447 0.00247 0.53365 -0.03947 0.00424

16 10 0.49071 0.49218 0.00147 0.01154 0.47313 -0.01758 0.00504 0.46464 -0.02607 0.00985
20 0.48786 -0.00285 0.00604 0.47677 -0.01395 0.00348 0.46241 -0.02831 0.00563
30 0.48829 -0.00243 0.00425 0.47908 -0.01164 0.00275 0.46204 -0.02867 0.00417
40 0.48929 -0.00143 0.00326 0.48076 -0.00995 0.00230 0.46202 -0.02869 0.00340
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Table 8. Average lengths and coverage probabilities of RSystem.

Asymptotic HPD (Inf. prior) HPD (Non-inf. prior)
n m RSystem AL CP AL CP AL CP

(α, β, θ) = (1.5, 2.5, 15)
2 10 0.95833 0.17487 0.9640 0.11561 0.9972 0.17728 0.7904

20 0.11381 0.9628 0.09018 0.9916 0.12449 0.5484
30 0.08917 0.9748 0.07851 0.9884 0.10427 0.3632
40 0.07423 0.9688 0.06998 0.9900 0.09210 0.2816

4 10 0.88571 0.29261 0.9588 0.21676 0.9932 0.28100 0.8876
20 0.20376 0.9562 0.17112 0.9488 0.19995 0.7176
30 0.16490 0.9616 0.14935 0.9876 0.16671 0.6116
40 0.14170 0.9592 0.13464 0.9868 0.14730 0.4980

8 10 0.74603 0.40249 0.9484 0.31619 0.9904 0.37564 0.9308
20 0.29071 0.9444 0.25256 0.9824 0.27272 0.8700
30 0.23800 0.9412 0.22001 0.9784 0.22543 0.8272
40 0.20681 0.9580 0.19859 0.9828 0.19800 0.7692

(α, β, θ) = (6, 2, 3)
3 10 0.42857 0.42022 0.9324 0.37913 0.9712 0.41144 0.9552

20 0.30100 0.9440 0.28668 0.9700 0.29596 0.9568
30 0.24683 0.9448 0.24024 0.9664 0.24235 0.9548
40 0.21460 0.9500 0.21188 0.9656 0.21070 0.9472

5 10 0.30070 0.35666 0.9340 0.32110 0.9752 0.35610 0.9572
20 0.25214 0.9416 0.24157 0.9688 0.25390 0.9612
30 0.20629 0.9488 0.20201 0.9700 0.20728 0.9592
40 0.17805 0.9484 0.17691 0.9652 0.17890 0.9568

7 10 0.23137 0.30498 0.9296 0.27387 0.9720 0.30904 0.9604
20 0.21225 0.9508 0.20387 0.9748 0.21697 0.9660
30 0.17301 0.9428 0.17004 0.9660 0.17641 0.9592
40 0.14889 0.9516 0.14846 0.9656 0.15193 0.9616

(α, β, θ) = (3, 1, 10)
3 10 0.89069 0.27973 0.9556 0.21038 0.9908 0.26180 0.9096

20 0.19395 0.9556 0.16615 0.9852 0.18698 0.8052
30 0.15795 0.9576 0.14597 0.9868 0.15650 0.6664
40 0.13610 0.9576 0.13174 0.9868 0.13792 0.5804

8 10 0.68627 0.42078 0.9380 0.34216 0.9868 0.38808 0.9364
20 0.30398 0.9456 0.27039 0.9792 0.28263 0.9228
30 0.25102 0.9528 0.23481 0.9800 0.23486 0.9032
40 0.21867 0.9484 0.21163 0.9760 0.20630 0.8648

12 10 0.57312 0.44064 0.9464 0.36177 0.9880 0.40890 0.9496
20 0.31877 0.9476 0.28567 0.9788 0.29917 0.9284
30 0.26295 0.9512 0.24700 0.9784 0.24801 0.9336
40 0.22848 0.9400 0.22159 0.9708 0.21677 0.9048

16 10 0.49072 0.43492 0.9312 0.35790 0.9844 0.40695 0.9440
20 0.31331 0.9428 0.28182 0.9776 0.29723 0.9468
30 0.25773 0.9396 0.24273 0.9768 0.24588 0.9360
40 0.22418 0.9424 0.21761 0.9736 0.21450 0.9284
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Table 9. ML and nonparametric estimates of RSystem and relative efficiency.

MLE Nonparametric

n m RSystem R̂System Bias MSE R̃System Bias MSE RE
(α, β, θ) = (1.5, 2.5, 15)

3 10 0.92308 0.89514 -0.02794 0.00350 0.89848 -0.02460 0.00471 0.74310
20 0.90225 -0.02083 0.00190 0.90787 -0.01521 0.00204 0.93217
40 0.90930 -0.01377 0.00094 0.91385 -0.00923 0.00096 0.97985
80 0.91550 -0.00758 0.00039 0.91848 -0.00460 0.00041 0.95857
100 0.91726 -0.00582 0.00032 0.91915 -0.00393 0.00035 0.91624

6 10 0.81250 0.78207 -0.03043 0.00776 0.77801 -0.03449 0.01024 0.75781
20 0.78829 -0.02421 0.00427 0.79158 -0.02092 0.00481 0.88739
40 0.79485 -0.01765 0.00231 0.79796 -0.01454 0.00239 0.96530
80 0.80250 -0.01000 0.00109 0.80439 -0.00810 0.00114 0.95630
100 0.80394 -0.00856 0.00087 0.80559 -0.00691 0.00090 0.96693

(α, β, θ) = (1.25, 0.75, 2)
5 10 0.50593 0.50155 -0.00437 0.01160 0.48538 -0.02055 0.01579 0.73423

25 0.50081 -0.00512 0.00500 0.49544 -0.01049 0.00668 0.74891
50 0.50059 -0.00534 0.00258 0.49835 -0.00757 0.00329 0.78543
100 0.50297 -0.00296 0.00125 0.50193 -0.00400 0.00160 0.78236

10 10 0.31942 0.32743 0.00801 0.00835 0.31459 -0.00483 0.01369 0.60973
25 0.32065 0.00123 0.00340 0.31651 -0.00291 0.00553 0.61470
50 0.31902 -0.00040 0.00171 0.31654 -0.00288 0.00301 0.56752
100 0.31937 -0.00005 0.00088 0.31831 -0.00111 0.00145 0.60584

(α, β, θ) = (5, 4, 20)
7 10 0.62879 0.60628 -0.02251 0.01165 0.59318 -0.03561 0.01575 0.73946

20 0.60885 -0.01994 0.00615 0.60567 -0.02311 0.00763 0.80560
40 0.61695 -0.01184 0.00315 0.61654 -0.01225 0.00366 0.86228
60 0.61840 -0.01039 0.00222 0.61773 -0.01106 0.00254 0.87294

14 10 0.42690 0.42672 -0.00018 0.01002 0.41210 -0.01480 0.01466 0.68345
20 0.41992 -0.00698 0.00527 0.41135 -0.01555 0.00789 0.66786
40 0.42296 -0.00395 0.00284 0.42029 -0.00661 0.00411 0.69081
60 0.42322 -0.00368 0.00182 0.42109 -0.00581 0.00263 0.69271

ML and nonparametric estimates of RSystem, and their relative efficiency RE =
MSE(R̂System)/MSE(R̃System) are given in Table 9. It is seen that the performance
of these estimates is similar to the component level case. RE values are very close to 1
in some cases. Hence, larger sample sizes were also considered in these cases, but the RE
values did not exceed 1.

From Table 10, we see that performances of the MLE and MCMC estimate of ΦSystem

based on informative prior are similar. In some cases, MSEs of ML estimates are smaller
than ERs of MCMC estimates, and vice versa. Hence, we can not give a general order for
these estimates. However, these errors are close to each other as the sample size increases.
From Table 11, we observe that AL of the asymptotic confidence intervals is generally
smaller than that of both HPD credible intervals. Furthermore, AL of all the intervals
decreases as the sample size increases, and all CPs are quite satisfactory.

Moreover, some plots are presented for easily comparing the performance of the esti-
mates of RSystem. In Figure 3, ML and MCMC Bayesian (under the informative prior)
estimates of RSystem are plotted for different parameters and sizes. It is observed that
Bayes estimate under the informative prior has smaller error than that of ML estimate
similar to the Table 7.
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Table 10. Estimates of ΦSystem.

MLE Bayes (Inf. prior) Bayes (Non-inf. prior)
n m ΦSystem Φ̂System Bias MSE Φ̂MCMC

System Bias ER Φ̂MCMC
System Bias ER

(α, β, θ) = (1.5, 2.5, 15)
2 10 0.48986 0.50810 0.01825 0.01510 0.51325 0.02340 0.01255 0.56352 0.07366 0.02344

20 0.50222 0.01236 0.00745 0.50699 0.01714 0.00678 0.54361 0.05376 0.01108
30 0.49983 0.00997 0.00498 0.50423 0.01438 0.00469 0.53750 0.04765 0.00756
40 0.49850 0.00864 0.00367 0.50211 0.01226 0.00351 0.53372 0.04386 0.00583

4 10 0.23441 0.24933 0.01493 0.00386 0.25146 0.01706 0.00327 0.28236 0.04795 0.00687
20 0.24478 0.01037 0.00184 0.24732 0.01291 0.00170 0.27173 0.03732 0.00338
30 0.24185 0.00744 0.00117 0.24437 0.00996 0.00114 0.26723 0.03282 0.00234
40 0.24103 0.00662 0.00091 0.24337 0.00896 0.00089 0.26571 0.03130 0.00195

8 10 0.11206 0.12193 0.00988 0.00090 0.12288 0.01082 0.00078 0.14087 0.02881 0.00187
20 0.11940 0.00734 0.00050 0.12048 0.00843 0.00046 0.13544 0.02338 0.00106
30 0.11754 0.00548 0.00031 0.11890 0.00685 0.00030 0.13329 0.02124 0.00078
40 0.11657 0.00451 0.00024 0.11795 0.00589 0.00023 0.13222 0.02016 0.00065

(α, β, θ) = (6, 2, 3)
3 10 0.18518 0.20419 0.01900 0.00322 0.20540 0.02022 0.00260 0.23341 0.04823 0.00589

20 0.19845 0.01326 0.00156 0.20227 0.01708 0.00147 0.22498 0.03980 0.00314
30 0.19397 0.00878 0.00105 0.19935 0.01416 0.00105 0.22055 0.03536 0.00231
40 0.19221 0.00702 0.00077 0.19780 0.01261 0.00080 0.21842 0.03323 0.00188

5 10 0.11008 0.12169 0.01161 0.00115 0.12261 0.01254 0.00095 0.13997 0.02989 0.00219
20 0.11759 0.00751 0.00057 0.12001 0.00993 0.00053 0.13415 0.02407 0.00114
30 0.11577 0.00569 0.00040 0.11903 0.00895 0.00041 0.13233 0.02225 0.00091
40 0.11435 0.00427 0.00029 0.11803 0.00796 0.00031 0.13116 0.02108 0.00074

7 10 0.07829 0.08684 0.00855 0.00061 0.08742 0.00913 0.00050 0.10006 0.02178 0.00116
20 0.08355 0.00526 0.00029 0.08545 0.00716 0.00028 0.09569 0.01740 0.00061
30 0.08255 0.00426 0.00020 0.08483 0.00655 0.00020 0.09447 0.01618 0.00046
40 0.08152 0.00323 0.00015 0.08417 0.00588 0.00016 0.09358 0.01529 0.00038

(α, β, θ) = (3, 1, 10)
3 10 0.39899 0.42901 0.03002 0.01292 0.44142 0.04243 0.01321 0.48432 0.08533 0.02240

20 0.41915 0.02016 0.00650 0.42812 0.02913 0.00676 0.46161 0.06262 0.01081
30 0.40992 0.01093 0.00402 0.41761 0.01862 0.00415 0.44913 0.05014 0.00682
40 0.40809 0.00910 0.00311 0.41486 0.01587 0.00323 0.44566 0.04667 0.00546

8 10 0.14286 0.15399 0.01113 0.00170 0.15880 0.01595 0.00174 0.17769 0.03483 0.00320
20 0.15168 0.00882 0.00088 0.15547 0.01262 0.00094 0.17165 0.02879 0.00177
30 0.15009 0.00723 0.00064 0.15370 0.01084 0.00068 0.16927 0.02642 0.00134
40 0.14696 0.00410 0.00044 0.15034 0.00748 0.00046 0.16587 0.02302 0.00100

12 10 0.09387 0.10265 0.00878 0.00079 0.10594 0.01207 0.00082 0.11950 0.02563 0.00158
20 0.09952 0.00565 0.00039 0.10224 0.00837 0.00042 0.11366 0.01979 0.00081
30 0.09800 0.00413 0.00026 0.10077 0.00690 0.00028 0.11194 0.01807 0.00060
40 0.09733 0.00346 0.00020 0.09975 0.00588 0.00021 0.11096 0.01709 0.00049

16 10 0.06982 0.07641 0.00659 0.00044 0.07896 0.00914 0.00046 0.08946 0.01964 0.00091
20 0.07417 0.00435 0.00022 0.07622 0.00640 0.00023 0.08507 0.01525 0.00046
30 0.07345 0.00363 0.00015 0.07548 0.00566 0.00016 0.08418 0.01436 0.00036
40 0.07261 0.00279 0.00117 0.07461 0.00479 0.00013 0.08339 0.01357 0.00303
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Table 11. Average lengths and coverage probabilities of ΦSystem

Asymptotic HPD (Inf. prior) HPD (Non-inf. prior)
n m ΦSystem AL CP AL CP AL CP

(α, β, θ) = (1.5, 2.5, 15)
2 10 0.48986 0.56874 0.9620 0.58449 0.9936 0.71627 0.9964

20 0.38614 0.9652 0.42406 0.9900 0.47991 0.9928
30 0.30793 0.9656 0.35356 0.9916 0.38510 0.9908
40 0.26294 0.9672 0.31009 0.9936 0.33028 0.9904

4 10 0.23441 0.28581 0.9676 0.28971 0.9916 0.36000 0.9932
20 0.19345 0.9687 0.20992 0.9512 0.24057 0.9512
30 0.15352 0.9772 0.17427 0.9940 0.19242 0.9872
40 0.13109 0.9724 0.15308 0.9928 0.16569 0.9744

8 10 0.11206 0.14426 0.9796 0.14248 0.9952 0.18005 0.9924
20 0.09849 0.9772 0.10352 0.9912 0.12056 0.9836
30 0.07771 0.9804 0.08597 0.9924 0.09651 0.9692
40 0.06604 0.9788 0.07536 0.9944 0.08310 0.9488

(α, β, θ) = (6, 2, 3)
3 10 0.18518 0.25661 0.9760 0.25099 0.9928 0.31665 0.9912

20 0.17554 0.9788 0.17901 0.9916 0.20879 0.9824
30 0.13921 0.9728 0.14606 0.9884 0.16538 0.9592
40 0.11918 0.9732 0.12727 0.9856 0.14127 0.9508

5 10 0.11008 0.15535 0.9772 0.15012 0.9916 0.19003 0.9908
20 0.10559 0.9776 0.10674 0.9936 0.12488 0.9792
30 0.08468 0.9792 0.08785 0.9860 0.09949 0.9472
40 0.07218 0.9716 0.07652 0.9876 0.08500 0.9272

7 10 0.07829 0.11151 0.9796 0.10716 0.9952 0.13589 0.9900
20 0.07567 0.9796 0.07616 0.9916 0.08907 0.9732
30 0.06091 0.9764 0.06276 0.9864 0.07103 0.9512
40 0.05205 0.9720 0.05483 0.9800 0.06084 0.9312

(α, β, θ) = (3, 1, 10)
3 10 0.39899 0.50010 0.9628 0.52019 0.9884 0.60748 0.9908

20 0.33781 0.9640 0.36919 0.9844 0.40582 0.9820
30 0.26611 0.9640 0.29954 0.9892 0.32152 0.9796
40 0.22839 0.9596 0.26066 0.9836 0.27609 0.9664

8 10 0.14286 0.18717 0.9700 0.18994 0.9908 0.22384 0.9920
20 0.12862 0.9800 0.13698 0.9880 0.15153 0.9748
30 0.10322 0.9656 0.11319 0.9848 0.12205 0.9532
40 0.08682 0.9632 0.09736 0.9844 0.10367 0.9464

12 10 0.09387 0.12669 0.9736 0.12742 0.9900 0.15040 0.9880
20 0.08601 0.9744 0.09063 0.9840 0.10060 0.9748
30 0.06858 0.9692 0.07488 0.9872 0.08088 0.9552
40 0.05885 0.9676 0.06541 0.9876 0.06960 0.9316

16 10 0.06982 0.09541 0.9824 0.09514 0.9940 0.11296 0.9884
20 0.06508 0.9780 0.06787 0.9872 0.07533 0.9732
30 0.05228 0.9728 0.05638 0.9872 0.06092 0.9444
40 0.04450 0.9696 0.04915 0.9836 0.05236 0.9172
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Figure 3. Plots for the RSystem estimates when m = 40.

6. Real data analysis
In this section, the lifetime of steel specimens under the different stress levels has been

considered for a real-life example. This data set represents the lifetime data for the steel
specimens under fourteen different stress levels. All data sets are available in [28]. In
the literature, these data sets have been studied many times by researchers for the stress-
strength model.

We consider the series system which has n active components with corresponding n
standby components. It is assumed that active (X) and standby (Y) components are
tested at 32.5 and 35 stress levels. Let us assume that an engineer wants to compare
that the series system which is constructed by X and Y with another component (T)
which is tested at 33 stress level. The reliability of this series system is estimated by
using these data sets. Then, he/she decides that which system or component is used in
the production processes. Different situations can be created according to this scenario.
For example, if the reliability of this series system exceeds 0.80, the series system with
standby components will be preferred.

We have 20 observations for each data set. For two different (n,m) cases, the original
data is divided by 100 based on the aforementioned scenario. The strength data sets X
and Y are partitioned into m parts and each one has n unit. T is obtaining as the average
value of each part. We check whether data sets X, Y, T1 (stress data set for n = 4, m = 5)
and T2 (stress data set for n = 5, m = 4) come from the exponential distribution or not.
Kolmogorov-Smirnov (K-S), Anderson-Darling (A-D) and Cramer-von Mises (C-VM) tests
are carried out for the goodness-of-fit test. Their test statistics values and corresponding
p−values are listed in Table 12. It is observed that the exponential distribution provides
a good fit to these data sets.
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Table 12. Goodnes-of-fit test for the real data set.

Data MLE K − S p − value A − D p − value C − V M p-value
X α̂ =0.0907 0.1629 0.6067 0.4343 0.8123 0.0503 0.8799
Y β̂ =0.2909 0.2843 0.0635 1.8888 0.1064 0.3439 0.1015
T1 θ̂ =0.1099 0.5023 0.1090 1.4018 0.2017 0.2963 0.1372
T2 θ̂ =0.1099 0.4726 0.2396 0.8944 0.4099 0.1816 0.3141

The observed data at component level (Z,T1) for n = 4, m = 5 and T2 for n = 5,
m = 4 are given by

Z =



44.87 10.48 9.77 16.59
4.00 8.76 21.88 5.07
6.52 9.95 22.55 6.78
9.84 3.73 10.41 6.93
20.47 26.42 11.18 33.06


, T1=



6.3500
7.9750
8.9400
13.3800
8.8575


T2=


5.822
7.094
13.474
10.012

 .

In this case, the MLE of the parameters are (α̂, β̂, θ̂) = (0.1872, 0.1096, 0.1099). The ML
and Bayes estimates of RComp and ΦComp along with 95% asymptotic confidence and HPD
credible intervals (given in bracket under the estimates) are presented in Table 13. We
need to determine the hyperparameters for the Bayes estimate. If a practitioner has not
any knowledge about the hyperparameters of the prior distributions, he/she can be use
the moment estimates of the gamma distribution for each sample. Next, we present the
results based on three different priors. The moment estimates of data sets X, Y, T1 are
used as Prior 1: a1 = 1.1229, b1 = 0.1018, a2 = 2.1986, b2 = 0.6395, a3 = 15.2068(9.5378),
b3 = 1.6710(1.0480) for n = 4(5), m = 5(4). Then, Bayes estimates are computed based
on the informative priors Prior 1, Prior 2: ai = bi = 1, i = 1, 2, 3 and non-informative
prior Prior 3: ai = bi = 0, i = 1, 2, 3.

Table 13. Estimates of RComp and ΦComp for the real data set.

(n,m) MLE MLE2 MCMC (Prior 1) MCMC (Prior 2) MCMC (Prior 3)
RComp (4,5) 0.42711 0.40395 0.83871 0.60608 0.59900

(0.09230,0.76192) (0.08959,0.71831) (0.71668,0.95150) (0.35220,0.84807) (0.32209,0.86436)
ΦComp 4.22900 4.00617 13.9646 13.36341 17.31083

- (3.87442,4.13791) (5.82671,29.75366) (5.71158,24.46485) (6.43095,37.48032)
RComp (5,4) 0.38948 0.36612 0.80318 0.61540 0.60619

(0.07360,0.70536) (0.07597,0.65627) (0.64387,0.94009) (0.34135,0.88631) (0.30222,0.90935)
ΦComp 3.62949 3.40479 13.75202 14.07141 20.60584

- (3.35311,3.45647) (4.97322,29.62783) (5.33867,29.95478) (6.64036,51.85836)

The observed data at system level Z1 for n = 4, m = 5 and Z2 for n = 5, m = 4 are
given by

Z1= min(X) + min(Y) =



9.68
3.42
6.32
3.73
11.18


, Z2 =


4.00
3.42
3.73
6.18

 .
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The stress data sets are the same as in component level case. In this case, the MLE of the
parameters are (α̂, β̂, θ̂) = (0.07282, 0.07281, 0.10988) and (0.092326, 0.092325, 0.109880)
for n = 4, m = 5 and n = 5, m = 4, respectively, based on system level. The ML and
Bayes estimates of RSystem and ΦSystem along with 95% asymptotic confidence intervals
and HPD credible intervals (given in bracket under the estimates) are listed in Table 14.
Moreover, Bayes estimates are computed based on the same priors as in the component
level.

Table 14. Estimates of RSystem and ΦSystem for the real data set.

(n,m) MLE MLE2 MCMC (Prior 1) MCMC (Prior 2) MCMC (Prior 3)
RSystem (4,5) 0.47279 0.29870 0.70654 0.43288 0.42911

(0.16274,0.78283) (0.04816,0.54923) (0.52938,0.87513) (0.16807,0.72397) (0.16960,0.70405)
ΦSystem 5.42190 3.00456 6.45067 6.48932 8.10311

(1.91364,8.93015) (0.30430,5.70483) (2.48701,11.69452) (0.57635,12.20563) (2.83643,15.15230)
RSystem (5,4) 0.34757 0.25158 0.55486 0.33495 0.33862

(0.04645,0.64869) (0.00312,0.50004) (0.32318,0.78846) (0.08286,0.606934) (0.07420,0.63406)
ΦSystem 3.36457 2.39699 3.94688 4.12537 5.66156

(0.95960,5.76955) (0,4.82559) (1.12749,7.56060) (0.66982,8.79625) (1.37796,11.58791)

7. Conclusions
In this study, statistical inference for the stress-strength reliability and MRS are con-

sidered for the series system when cold standby components are used both component
level and system level. The classical and Bayesian approaches have been used to estimate
the stress-strength reliability and MRS of the system. In Bayesian case, estimates are
obtained by using Lindley’s approximation and MCMC method.

Our simulation results show that Bayes estimate of the stress-strength reliability based
on informative prior has better performance than other estimates. The ML estimate of the
MRS generally provides better results as compared with Bayes estimates for small sample
sizes. However, the performance of Bayes estimate based on informative prior gets closer
to ML as the sample size increases. From the real data analysis, we observe that classical
and Bayesian (based on informative prior) methods for both the stress-strength reliability
and MRS have similar point and interval estimates.

In our model, the total lifetime of the strength component and corresponding standby
component is a convolution of the two independent and non-identical random variables. It
is known that the convolution of random variables have mixed form except for some well-
known distributions under the certain conditions. For this reason, when we consider the
lifetime distributions except for the exponential one, we will encounter the lifetime of the
related system that has not a closed form. Moreover, when the standby components are
considered as warm standby in the system, the similar problem will arise. We will consider
these problems as future studies. We hope to report our new results in this regard in the
future.
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