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1. INTRODUCTION

The law of quadratic reciprocity is one of the cornerstones of the classical theory of num-
bers. The theorem on primes in arithmetic progressions was a key ingredient in Adrien-Marie
Legendre’s (1752-1833) attempted proof of the law of quadratic reciprocity. He coined the term
"reciprocity". The most penetrating classical approach of quadratic reciprocity which is sug-
gestive of substantial generalizations is due to Carl Friedrich Gauß (1777-1855). His very first
proof of the law of quadratic reciprocity by means of a remarkable induction argument over the
primes was published in the treatise Disquisitiones Arithmeticæ of 1801. The concept of Gaussian
sum for quadratic forms has included the laws of quadratic and biquadratic reciprocity into the
field of constructive mathematical analysis.

In a letter to the astronomer Heinrich Wilhelm Matthias Olbers, Gauß wrote in 1805:

"This lack of sign has overcast everything else I have found, and since four years hardly a week has
passed in which I did not make an attempt to no avail of resolving this knot. But all the brooding, all
the searching was in vain, and each time I was forced to put down the pen in sorrow. Finally, a few
days ago, I was successful - but not by my arduous search but only by the grace of God, as I would
say. Like lightening strikes the riddle was solved; I myself would be unable to tell you the connection
between what I knew before, in my last attempts - and the idea by which I finally succeeded. Curiously
the solution of the problem now appears to be easier than many other results which have not cost me as
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many days as the present problem cost me years, and certainly no one will get any idea about the tight
squeeze of feeling which besieged me for so a long time when I eventually present this matter."

The original form of the law of quadratic reciprocity that Gauß proved reads(
p

q

)
=

(
(−1)

q−1
2 q

p

)
for any distinct odd primes {p, q}. This equation makes already the quantum entanglement
phenomenon apparent. However Gauß never explicitly employed the concept of group, but
many group theoretical results are found in the treatise Démonstration de quelques théorèmes con-
cernants les périodes des classes de formes binaires du second degré of 1876. The concept of symplectic
Lie group Sp(2,R) ∼= SL(2,R), its two-fold covering group which is formed by the metaplectic
Lie group

Mp(2,R) ↪→ U
(
L2(R),C

)
and its strong operator action as a deus ex machina of the analytic theory of quadratic forms
remained outside his way of mathematical reasoning. This has been done later on by the in-
vestigations of Carl Ludwig Siegel (1896-1981) ([39], [21]). The present paper offers a Galois
cohomology approach to the metaplectic Schaar-Landsberg construction. It can be considered
as an outgrowth of local class field theory and the third order principle of spinor triality which
emphasizes impressively the extraordinary role of the finite place 2 of the prime field Q of
rational numbers corresponding to the embedding Q ↪→ Q2 into the quasifactor Qv of the
topological ring of adéles QA belonging to the associated 2-adic valuation v ([8], [38]).

The motivation of Gauß in seeking new proofs of the law of quadratic reciprocity was to de-
velop methods for treating higher reciprocity laws. This can be read off the treatise Theorematis
fundamentalis in doctrina de residuis quadraticis demonstrationes et amplicationes novæ of 1817 ([7]).
The metaplectic group realization

Mp(4,R) ↪→ U
(
L2(R⊕ R),C

)
suggests an extension to the law of biquadratic reciprocity on C⊕C ↪→ O. In his second memoir
on biquadratic residues, Gauß stated, without proof, the law of biquadratic reciprocity in 1832.
Subsequently, Ferdinand Gotthold Max Eisenstein (1823-1852) published several proofs of the
mysteries of the higher arithmetic in 1844.

The merit of the approach of Gauß and Eisenstein is that they pointed out the way of the
laws of reciprocity of classical number theory to Artin’s law of reciprocity and the duality
determined by Hilbert’s symbol. Hasse’s law of reciprocity is in close connection with Artin’s
law. Actually, Helmut Hasse (1898-1979) opened the road jointly with Hensel to the work of
Chevalley and Artin.

2. THE LEGENDRE-HILBERT-ARTIN SYMBOLIC TOWER

The ability to detect ultra-precisely the interaction of light and matter at the single-particle
level represents a particular important application of the formalism of local class field theory
to quantum optics and quantum information processing. In terms of class field theory over the
local fields R and C of characteristic zero, ultra-precise ion clocks represent a type of factor-sets
which are attached to the cyclic Galois extension of degree 2 of the groundfield

R ∼= Q∞.
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FIGURE 1. Cyclotomographic visualization of a two-fold covering of the two-
dimensional torus T2. The leaves of the foliation define pairs of gradient con-
trollable Villarceau circles. The fundamental group is π1(T2) = Z ⊕ Z ↪→
WQ(Q2) to implement the law of rational biquadratic reciprocity by the spinor
triality and the action of the Witt quartic group WQ(Q2) ∼= Z2 × Z8 × Z2.

According to Galois cohomology, it is sufficient to use a quantum entangled state to amplify
the momentum an ion receives upon scattering a photon. In this vein, the following result of
Galois cohomological quantum metrology arises:

Theorem 2.1. Every equivalence class of simple central associative algebras over the groundfield Q∞ ∼=
R contains a cyclic algebra

[
C |R; {χ, θ}

]
of non-trivial character χ of the Galois group G of C over R

given by χ(ς) = eπi = −1, and the coboundary factor θ ∈ R× of quantum entanglement so that the
mapping θ  {χ, θ} is a morphism of R× into the group H(R) of cyclic factor-classes of R with kernel
formed by the group of norms of C× of the cyclic Galois extension C = C |R of ramification index 2
over R attached to the character χ ∈ Ĝ of second order, and the coboundary factor θ which corresponds
to the four-fold half-spinor Maslov index.

The only non-trivial cyclic algebra over the groundfield R ∼= Q∞ of this kind is the four-
dimensional real division algebra of classical quaternions

H ∼= C⊗R C ∼=
[
C |R; {χ,−1}

]
with non-trivial character χ ∈ Ĝ of second order, and non-trivial coboundary factor
θ = −1 ∈ R×− induced by reflection of the norm imageNC |R

(
C×
)

= R×+ which is a subgroup of
R× of index 2. Corresponding to the Pauli spin matrices in SU(2,C), the vectors of the canonical
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basis of H satisfy the same relations as the matrices{(
+1 0
0 +1

)
,

(
+1 0
0 −1

)
,

(
0 +1

+1 0

)
,

(
0 +1
−1 0

)}
.

With exception of the matrix of the identity transformation with trace 2, the other matrices
are traceless. The last matrix of the quadruple is the symplectic matrix

−J =

(
0 +1
−1 0

)
with J−1 = tJ = −J ∈ Sp(2,R) ∼= SL(2,R). Referring to the nomenclature of the Steinberg
symbolic calculus ([29], [30]), the real division algebra H takes the form

(+1,+1)R ∼= (+1,−1)R ∼= (−1,−1)R ∼= (−1,+1)R

provided the symbols on right hand side represent a skew field, or equivalently, their mul-
tiplicative norm form is non-isotropic and therefore hyperbolic. In particular, the symbolic
calculus involves the isomorphies

(a, b)R ∼=
(
aa′

2
, bb′

2)
R

for {a, a′, b, b′} ⊂ R×.
In view of the third order principle of spinor triality, it is a remarkable observation that the

non-zero pure quaternions in H ↪→ O are characterized by the fact that they are not belonging
to the groundfield R ∼= Q∞, but their squares are. Thus, the three-dimensional vector subspace
of H consisting of the pure quaternions takes the form{

q ∈ (a, b)R | q2 ∈ R, q /∈ R×
}
.

In accordance with the theorem of Alexander Merkurjev concerning the quaternion symbol
([23], [32]), the central simple algebra H gives rise to the:

Corollary 2.1. The coboundary factor θ ∈ R× of quantum entanglement attached to the quaternion
quantization procedure is given by the quaternion symbol

(•, •′)R : R× × R× −→ Br(R) ∼= Z2
∼=

1

2
Z/Z ↪→ Q/Z.

It is universal in the sense that every other quaternion symbol can be factored over it in the third Galois
cohomology H3(R,Z2) of the third order principle of spinor triality.

A standard functorial argument establishes the fact that a universal symbol is uniquely de-
termined up to a unique isomorphism. Since the half-spinor norm form of the metaplectic
coadjoint orbit model determines completely its quaternion algebra, the following result arises
in the rational case:

Theorem 2.2. Up to an isometry the quaternion symbol (−1.− 1)Q2
defines the only non-split quater-

nion algebra over the commutative field of 2-adic rational numbers Q2.

Notice that the quasifactor Q2 of the adélic ring QA is either the completion Qv of the prime
field Q of rational numbers with respect to the ultrametric distance associated to the 2-adic
valuation

v = | • |2
or Qv denotes for v = ∞ the completion Q∞ = R. Of course, the topology associated to the
ultrametric distance is locally compact and not discrete. The closure Z2 of the rational integers
Z ↪→ Q in Q2 defines a compact neighborhood of 0 in Q2. The algebraic theory of quadratic
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forms originated in a seminal paper of 1937 by Ernst Witt (1911-1991) ([30], [32]). The Witt
quartic group WQ(Q2) will help to detect the pure half-spinors acting by rational quantum
entanglement according to the third order principle of spinor triality.

3. THE SYMPLECTIC SPINOR PAIR OF GROUPS
(
Mp(2,R),Br(R)

)
Let N̂ denote the unitary dual of the (2+1)-dimensional real unipotent Heisenberg Lie group

N consisting of the equivalence classes of irreducible unitary linear representations of N in
complex Hilbert spaces ([15]). The geometric model of N̂ derives in spherical contact geome-
try from the first maxim of the geometric quantization principle:

"Never look at the orbits of the adjoint action - rather always look at the orbits of the coadjoint action".

Actually, it is the quantization maxim which permits the transition from number theory
to symplectic spectroscopy at molecular level in terms of the third order principle of spinor
triality.

Let the subgroup G ↪→ U
(
L2(R),C

)
be the covariance group associated with N̂ . Then, the

exact sequence

{1} −→ T −→ G
ν−→ Sp(2,R) −→ {1}

arises, where T = R/Z ∼= U(1,C) denotes the one-dimensional compact torus group. The
mapping ν : G −→ Sp(2,R) is a Lie group homomorphism and the differential ν∗ a real Lie
algebra isomorphism. Concerning the inverse Fourier transforms FR and F̄R, it is important to
note the spin echo projections

ν
(
FR
)

= J, ν
(
F̄R
)

= J−1.

The restriction µ = ν|Mp(2,R) defines the exact sequence

{1} −→ Z2 −→ Mp(2,R)
µ−→ Sp(2,R) −→ {1}.

Taking into account the half-spinor Maslov index − 1
2 of Mp(2,R), the 2-cocycle e−

πi
4 of

Sp(2,R), the bijective differential µ∗ of µ : Mp(2,R) −→ Sp(2,R) and the symplectic spinor
configuration inside the real dual vector space Lie(N )∗ of the real nilpotent Heisenberg Lie
algebra Lie(N ), the universal quaternion symbol (•, •′)R affords by character composition of
the entangled ingredients the metaplectic Schaar-Landsberg construction of the third Galois
cohomology H3(R,Z2) of the third order principle of spinor triality ([5], [8]).

Theorem 3.3. For any integral numbers p and q ≥ 1, the metaplectically entangled Schaar-Landsberg
identity

e−
πi
8

√
p

∑
0≤m≤p−1

e2πim2 q
p =

e
πi
8

√
2q

∑
0≤n≤2q−1

e−
πin2

2
p
q

holds. The opposite 22.5◦ phase factors on both sides of the equality derive from the Galois cohomological
meaning of the 2-cocycle as an octonionic half-spinor root of unity. The action of the symplectic spinor
can be visualized by the Picard tori of the Hopf principal circle bundle.

The metaplectically entangled Schaar-Landsberg identity was first discovered in 1850 by
Mathieu Schaar (1817-1867) who proved it using the Poisson summation formula, and pro-
ceeded to derive from it the law of quadratic reciprocity. In 1893, Georg Landsberg (1865-1912),
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FIGURE 2. Cyclotomography of the Riemann-Roch structure on the torus T2:
The Hopf principal circle bundle visualizing the cyclic factor-sets of the first
Galois cohomology H1

(
R,Spin(3,R)

)
in the context of the third cohomology

H3
(
R,Z2

)
which represents the third order principle of spinor triality and im-

plements the law of quadratic reciprocity. In terms of the linear theory of theta
functions with T-valued quadratic characters, the Hopf fibration receives its
Riemann-Roch structure on tori from the cyclic extension of the Poisson sum-
mation formula to the adélic ring of the field R. For the period sublattice Λ1 ↪→
C, the coordinatization by the affine C-basis

{
1, ℘Λ1 , ℘

′
Λ1

}
defines a projective

embedding of the two-dimensional Picard torus (modΛ1) by a non-singular el-
liptic curveE(C) in the complex projective plane P2(C) ↪→ PC

(
Lie(N )∗

)
inside

the projectivized dual of the real nilpotent Heisenberg Lie algebra Lie(N ).
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who was the coauthor of Hensel’s treatise on algebraic functions of one variable and was un-
aware of Schaar’s work, rediscovered a slightly more general version of the relation. The arith-
metician Kurt Hensel (1861-1941) created the p-adic methodology which places the theory of
quadratic reciprocity in the natural frame of modern number theory ([40]). Then, its adélic lan-
guage permits to unify the various techniques of significantly stepping forward. In Section 6
infra, an interpretation of the metaplectically entangled Schaar-Landsberg construction will be
given in terms of theta differential idéles of module 1.

The evaluation of the basic Gaussian quadratic sum is performed by putting q = 1:∑
0≤n≤p−1

e
2πin2

p =

√
p

2
e
πi
4

(
1 + e−

πi
2

)
=
√
p i(

p−1
2 )2 .

Due to the congruence modulo 4(
pq − 1

2

)2

−
(
p− 1

2

)2

−
(
q − 1

2

)2

=
(p− 1)(q − 1)

2
,

the law of quadratic reciprocity for any distinct odd primes {p, q} takes the standard form in
terms of the Legendre quadratic symbol(

p

q

)
=

(
p

q

)
2

=

{
1 : p is a quadratic residue mod q
−1 : p is a quadratic nonresidue mod q

over the field Q of rational numbers

(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
4

as the product of multiplicative characters of Z×p and Z×q , respectively. The Legendre quadratic
symbol

( •
•′
)

=
( •
•′
)

2
, invariably so written by most classical authors is defined whenever the

lower variable is a prime and the upper variable an integer prime to the lower variable, which
admits the value + 1 when the upper variable is a quadratic residue modulo the lower variable,
and - 1 otherwise ([2]). The quantum entangled Schaar-Landsberg identity can also used to
establish the so-called supplementary theorem which includes the first supplement(

−1

p

)
= (−1)

p−1
2

and the second supplement (
+2

p

)
= (−1)

p2−1
8

on the quadratic residue behaviour of -1 and + 2, respectively. The multiplicativity of the
Legendre quadratic symbol implies the equation(

−1

q

) p−1
2
(
p

q

)
=

(
q

p

)
so that the first supplement affords the law of quadratic reciprocity. Tensoring rational quater-
nion algebras over the field of p-adic numbers Qp including Q∞ ∼= R provides by means of
the quaternion symbol (•, •′)Z the Hilbert reciprocity law which generalizes the quadratic reci-
procity law. The global reciprocity law which relies on normic aspects of class field theory
forms a monumental generalization of the classical law of quadratic reciprocity.
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In terms of class field theory, the classical quadratic reciprocity law is equivalent to the as-
sertion that an extension of the field of rational numbers Q admits a Hecke L-function. Over
the years, however, the L-functions have been expunged from class field theory and have been
replaced by an algebraic edifice based on Galois cohomology. The avoidance of the concepts
of cohomology theory gives rise to an artificial flair. In the context of harmonic analysis on
Abelian groups, the universal quaternion symbol (•, •′)R allows to circumvent the standard
reference of the famous functional equation for Jacobi’s theta function as a special case of the
Poisson summation formula and its cyclic Eisenstein extension ([38]).

Remark 3.1. The induction arguments of Gauß to prove the Theorema Aureum are closely related
to the calculations of the Witt quartic group isomorphisms by splitting off metabolic subspaces ([32]).
Using the conventions of basic number theory ([38], [32]), the Witt geometric method yields

WQ(F2) ∼= Z2 , WQ(2) ∼= Z2 ⊕ Z8 , WQ(Q2) ∼= Z2 × Z8 × Z2

in terms of the half-spinor Maslov index associated as an octonionic root of unity

e
πi
4 =

1 + e
πi
2

√
2

=
1 + i√

2

with the generic coadjoint orbit O1 ∈ Lie(N )∗/CoAd(N ). Thus, the Witt quartic groups WQ(2) ↪→
WQ(Q2) are adapted to the third order principle of spinor triality by the projection onto the direct factor
relative to the direct product representation

WQ(Q) −→WQ(Q2) −→ Z8

which actually is a Gaussian sum. The invariant of the order 23 = dimR O of the alternative and
biassociative division R-algebra of octonions O on the Cayley-Dickson scale

R ↪→ C ↪→ H ↪→ O

with continuous module function modR of respective Haar measures

| • |, | •′ |2, | •′′ |4, | •′′′ |8

is due to Johann Peter Gustav Lejeune Dirichlet (1805-1859) ([31], [35]). Moreover, the module function
of the 2-adic case affords the identity

modQ2
(2) =

1

2

which defines a WQ(Q2)-invariant model of the plane coadjoint orbit O 1
2
∈ Lie(N )∗/CoAd(N ) in

concordance with Theorem 1 supra. Due to the third order principle of spinor triality, the coadjoint orbit
model Lie(N )∗/CoAd(N ) of the unitary dual N̂ of the (2+1)-dimensional real unipotent Heisenberg
Lie group N implements the non-invasive imaging modality of gradient controlled clinical magnetic
resonance tomography and angiography of radiological diagnostics in current clinical use ([1], [4], [33]).
To include dynamical phenomena into the spherical contact geometry of Lie(N )∗/CoAd(N ), functional
magnetic resonance permits the modalities of diffusion and perfusion magnetic resonance imaging ([18],
[19], [25], [36], [37]).

Just as in the earlier studies of Legendre, Gauß distinguishes eight separate cases accord-
ing to the different nature of the individual primes in order to present a natural crystallization
of the special cases that had been discovered earlier by Leonhard Euler (1707-1783). It was
Dirichlet’s modification of the Gaussian proof which completed in 1854 the induction proce-
dure over the upper and lower sequences of prime variables {P,Q} that are enumerated by the
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FIGURE 3. Gradient controlled clinical magnetic resonance tomography:
Non-invasive image of the musculoskeletal anatomy of a normal right shoul-
der joint (Articulatio glenohumeralis). The supraspinatus, infraspinatus and
teres minor muscles and tendons are shown. They all attach to the greater
tuberosity. The tendons and rotator cuff muscles act to stabilize the shoulder
joint during movements.

Witt quartic group WQ(Z) ∼= WQ(R) ∼= Z in the idélic product(
P

Q

)(
Q

P

)
=
∏
{p,q}

(
p

q

)(
q

p

)
.

Finally, the inductive conclusion over the primes reads(
P

Q

)(
Q

P

)
= (−1)

(P−1)(Q−1)
4

as desired ([2], [11]). The seventh proof of Gauß is based on cyclotomy which anticipates the
idélic procedure of pasting together local cyclic data into a global object. Originally these global
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FIGURE 4. Gradient controlled clinical magnetic resonance angiography: In-
tercranial time-of-flight non-invasively performed on a healthy male adult ac-
quired at a 3.0 Tesla magnetic field density. Maximum intensity projection in
the axial direction demonstrates excellent blood to background contrast and
depiction of small peripheral intercranial vessels. The high resolution of the
angiogram can be enhanced by electrocardiogram gating and the administra-
tio of a contrast agent. Higher static magnetic field density permits to increase
the spatial resolution in time-of-flight and the temporal resolution in dynamic
magnetic resonance angiography.



Congruence and metaplectic covariance: rational biquadratic reciprocity and quantum entanglement 71

objects were known as ideal elements or idéles. In modern terms partly due to the seminal work
of Chevalley and Weil, the cyclotomic extension to cyclotomography combines the factor-sets
of quadratic periods of the cylotomographic equation

Xp−1 − 1

X − 1
= 0

for positive odd primes p with cyclic Galois extensions. Gauß’s seventh proof, which has been
admired by Dirichlet, introduces theta type data of a Frobenius decomposition of quadratic
periods by means of the inverse affine linear tomographic gradient mapping

X  2X + 1 = Y

of metaplectically invariant quadratic periods within the generic coadjoint orbitO1 ∈ Lie(N )∗/CoAd(N )
([21]). The discriminant-congruence mod q of the cylotomographic equation transforms into
the solvability condition in original form of Gauß(

(−1)
p−1
2 p

q

)
= + 1

for positive odd primes p and q, or into the condition

(−1)
p−1
2

q−1
2 p

q−1
2 ≡ + 1 (mod q).

However, if the solvability condition mod q does not admit integral roots, then

(−1)
p−1
2

q−1
2 p

q−1
2 ≡ − 1 (mod q)

holds. By comparison with David Hilbert’s Theorem 90 of group cohomology theory ([24], [26],
[29]), applied to the quaternionic Galois extension

H = (1, 1)R =

(
−1,−1

R

)
of degree 2, the law of quadratic reciprocity with its supplements follows. In the same vein, the
law of quadratic reciprocity is a consequence of the statement that all quadratic fields are con-
tained in cyclotomic fields. More general, the celebrated Kronecker-Weber theorem states that
every Abelian field extension of the rational numbers Q extends to a subfield of the cyclotomic
field, so expressible in terms of roots of unity. In other words, a maximal Abelian extension of
the field Q is generated by the torsion points of the action of the ring of integers

Z 3 m wm ∈ C×

on w ∈ C× ([10], [27]).
The exponents of the primitive roots modulo p separated within the primitive root power

difference of quadratic residues and quadratic non-residues

Y1 − Y2 = i(
p−1
2 )2√p

provides the Gaussian theta series(
p

q

)(
Y1 − Y2

)
=

∑
0≤n≤q−1

(
n

q

)
e

2πip
q n2

and the Mp(2,R) invariant square (
Y1 − Y2

)2
= (−1)

p−1
2 p
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so that the quadratic pairing
((
Y1 − Y2

)2
, Y1 − Y2

)
permits to derive the law of quadratic reci-

procity by virtue of the identity

i(
pq−1

2 )2√pq =

(
p

q

)(
q

p

)
i(
p−1
2 )2+( q−1

2 )2√p√q

and in accordance with the third order principle of spinor triality. In accordance with the
half-spinor Maslov index, the law of quadratic reciprocity implies for the Legendre quadratic
symbols (

p

q

)
=

(
q

p

)
if either p ≡ 1 (mod 4) or q ≡ 1 (mod 4), and(

p

q

)
= −

(
q

p

)
if both p ≡ 3 (mod 4) and q ≡ 3 (mod 4).

The fourth and seventh proofs of Gauß are able to open a route to the cohomological as-
pect of the law of quadratic reciprocity as indicated earlier in connection with the half-spinor
Maslov index which appeared in the context of the two-fold Brauer group Br2(R) ∼= Br(R) of
order 2. Nevertheless, the half-spinor Maslov index of the metaplectically entangled Schaar-
Landsberg demonstrates that the central extension Mp(2,R) of the symplectic Lie group Sp(2,R)
has nothing lost of its "mysterious" character as a deus ex machina of quantum field theory.

The R-linear independence of the generators of the Brauer group Br(R) ∼= Z2 gives rise to:

Theorem 3.4. The cyclotomographic procedure of the proof of the law of quadratic reciprocity imple-
ments the trivial first cohomologies

H1
(
C,Z2

)
= {0},

and correspondingly
H1
(
C×,Z2

)
= {1}.

It is known that the Hilbert symbol over the local field of p-adic numbers Qp and denoted
by (

a, b

p

)
is completely determined once its values are known, first for all rational integers {a, b} that are
prime to p, and secondly for all rational integers a that are prime to p with b = p. For an odd
prime number p and rational integers {a, b} prime to p, one obtains the equations over Qp(

a, b

p

)
= 1,

(
a, p

p

)
=

(
a

p

)
.

In the context of global class field theory, the Hilbert symbol determines a duality between
the quotient group of the quadratic reciprocity law and itself by means of which it can be
identified with its own dual. The Hilbert symbol over 2-adic numbers Z2

∼= G of rational
integers {a, b} prime to p = 2 yields(

a, b

2

)
= (−1)

(a−1)(b−1)
4 ,

(
a, 2

2

)
= (−1)

a2−1
8 .
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The Hilbert reciprocity law adopts the product form

(3.1)
∏
n

(
p, q

n

)
= 1,

where n runs through all prime places including∞ with
(•,•′
∞
)

= 1. For any prime number n
distinct from {p, q, 2}, it follows

(
p,q
n

)
= 1. Hence,(
p, q

p

)(
p, q

q

)
=

(
p, q

2

)
.

The equation implies the classical law of quadratic reciprocity including the two supplement
theorems that are obtained from the product equations∏

n

(
−1, p

n

)
= 1,

∏
n

(
+2, p

n

)
= 1.

The duality between the quotient group of the power reciprocity law and itself gives rise to the
equivalence of the power reciprocity law and the classical quadratic reciprocity law based on
the Abelian field extension by the formalism of local class field theory over the field of rational
numbers

Q

(√
(−1)

p−1
2 p

)
|Q

and Galois group G ∼= Z2, where p is a positive odd prime ([6], [10], [14], [38]); the field ex-
tension of Q is only ramified at p > 2. The generalization of the power residue symbol to the
Artin symbol and the closely related Hasse’s law of reciprocity is regarded as the central result
in global class field theory. In the Abelian case, the Artin symbol coincides with the Frobenius
symbol.

Theorem 3.5. The classical law of quadratic reciprocity

1 = (−1)
(p−1)(q−1)

4

(
p

q

)(
q

p

)
follows for any distinct odd primes p and q 6= 2 from purely local data.

In his fundamental paper [39], Weil wrote in 1964: Contrary to its appearances, the proof of the
law of quadratic reciprocity exposed above does not differ in substance of the classical proof in terms of
theta functions and Gaussian sums.

The Artin symbol gives rise to the idélic group epimorphism JQ −→ G with normic kernel in
the associated multiplicative idélic vector group JQ and image of the vector (1, . . . , 1, q, 1, . . . ) ∈
JQ, where the qth place is in the component at pth valuation. The image of the vector (−1, 1, 1, . . . ) ∈
JQ, where - 1 is in the component at∞, is given by the Legendre symbol

(−1)
p−1
2 =

(
−1

p

)
.

For q = 2, the supplementary identity

1 =

(
2

p

)
(−1)

p2−1
8

is a consequence of the fact that (−1)
p−1
2 p ≡ 1 (mod 8) if and only if p ≡ ±1 (mod 8).
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It is known from the formalism of global class field theory that the locally compact topologi-
cal group JQ contains the discrete subgroup Q×. Algebraically, the idéles of the field of rational
numbers Q can be regarded as a subset of the adéles under the natural injection. As pastings
together of local cyclic data, the idéles form the units of the topological ring of adéles QA, which
is the locally compact adélic ring equipped with the restricted direct product topology and the
discrete subring Q under the diagonal embedding. The duality theory of idéles and adéles en-
dowed with their own restricted direct product topologies represent a natural global extension
of the harmonic analysis and Schwartz-Bruhat distribution theory on the adélic ring QA ([38],
[11]).

As has been emphasized by Weil in his studies of Siegel’s work on quadratic forms, a com-
plicated mathematical theory is not simplified by its specialization, but by neither superficial
nor artificial generalizations ([40]). A generalization of this kind is given by the concept of
idélization. The idéles are defined in terms of all of the places of a number field K as a finite
extension of the field Q. Because the idéles of K carry global information about K in terms
of local information about K at each of its places, they are a successful implementation of the
local-global principle, which is a recurring theme in quantum field theory and modern number
theory, whereby harmonic analysis on the unipotent Heisenberg Lie group N and its compan-
ions have been seen to play an increasingly important role.

4. CYCLOTOMOGRAPHIC EXTENSIONS

In his two-part treatise on the theory of biquadratic residues, entitled Theoria residuorum
biquadraticorum of 1828, Gauß claims that the theory of quadratic residues had been brought to
such a state of perfection that nothing more could be wished. On the other hands, "the theory of
cubic and biquadratic residues is by far more difficult . . . the previously accepted principles of arithmetic
are in no way sufficient for the foundations of a general theory, that rather such a theory necessarily
demands that to a certain extent the domain of higher arithmetic needs to be endlessly enlarged . . . "
In modern language, Gauß is calling for the algebraic theory of spinors and Clifford algebras
which culminates in the principle of spinor triality which is due to Élie Cartan (1865-1951). An
elegant metaplectically invariant spinor version is due to Claude Chevalley (1909-1984) ([5],
[8]).

To derive the law of biquadratic reciprocity in the Euclidean ring Z[i] ↪→ C of Gaussian
integers with units {−1,−i, 1, i} by use of the symplectic machinery, the (4 + 1)-dimensional
real unipotent Heisenberg Lie group N2 and real nilpotent Heisenberg Lie algebra Lie(N2)
yields the identity

ν
(
FR⊕R

)
= J4,

where the inclusion

J4 =

 0 −
(

1 0
0 1

)
(

1 0
0 1

)
0

 ∈ Sp(4,R)

holds. If

N : w  ww̄ = |w|2

denotes the lattice norm in Z[i], the half-spinor Maslov index -1 of Mp(4,R) and relatively
prime primary elements {ρ, σ} of Z[i] give rise to the general law of biquadratic reciprocity,



Congruence and metaplectic covariance: rational biquadratic reciprocity and quantum entanglement 75

which adopts in terms of the quartic Legendre symbols
( •
•′
)

4
the following form(

ρ

σ

)
4

(
σ

ρ

)
4

= (−1)
Nρ−1

4
Nσ−1

4 .

In the context of biquadratic reciprocity, the equation
(
ρ
σ

)
4

= 1 holds if and only if the
congruence X4 ≡ ρ modulo σ is solvable in the ring Z[i] of Gaussian integers, and

(
ρ
σ

)
4

=
−1,−i or i otherwise. Thus

Theorem 4.6. The metaplectic coadjoint orbit model Lie(N2)∗/CoAd(N2) of nilpotent harmonic anal-
ysis implements the law of biquadratic reciprocity.

A closely related approach to the law of cubic reciprocity by way of the third order principle
of spinor triality proceeds by the ring Z[ω] ↪→ C, where

ω = e
2πi
3 =

1

2
(−1 +

√
−3), ω̄ = e−

2πi
3 = ω2 =

1

2
(−1−

√
−3)

and 1 + ω + ω2 = 0. The units {1,−1, ω,−ω, ω2,−ω2} of Z[ω] form a cyclic group of order 3. If
the rational integer p ∈ Z satisfies the congruence p ≡ 1 (mod 3), then p = ρρ̄, where ρ ∈ Z[ω]
is prime in Z[ω]. If p ≡ 2 (mod 3), then p is prime in Z[ω]. The half-spinor isomorphism
of the triality principle can be applied to the residue characters of order three

( •
•′
)

3
or cubic

residue characters which play the same role in the theory of cubic residues as the Legendre
symbols play in the theory of quadratic residues. The behaviour of cubic residue characters
under complex conjugation reads(

•
•′

)
3

=

(
•̄
•̄′

)
3

=

(
•
•′

)2

3

=

(
•2

•′

)
3

.

A decomposition of the third power Gaussian sums yields:

Theorem 4.7. For primary prime elements {ρ1, ρ2} ↪→ Z[ω] with Nρ1 6= 3, Nρ2 6= 3, and Nρ1 6=
Nρ2 the order three cubic residue character equation(

ρ1

ρ2

)
3

=

(
ρ2

ρ1

)
3

.

In terms of quantum optics, the cubic residue character equation embodies the quantum entanglement
concept of spherical contact geometry.

Remark 4.2. Galois cohomology on the real dual Lie(N )∗ of the (2 + 1)-dimensional real nilpotent
Heisenberg Lie algebra Lie(N ) gives rise to an imaginative background of the multiplicative group
H(R) of cyclic factor-classes by the quotient of cyclic factor-sets of degree 2

covariant factor− sets

coboundary factor− sets

of the groundfield R ([38], [14]). On smooth differentiable manifolds, the de Rham cohomology is based
on the quotient

closed differential forms

exact differential forms
to define the de Rham cohomology groups in terms of the coboundaries of closed differential forms. It
opens the way to the Kronecker diophantine approximation in number theory via symplectic spinors as
symbols of the Fourier integral operators associated with metaplectic mappings ([20], [12]).
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The quaternions represent a quantum field theoretic analogue of the Foucault spherical pen-
dulum device with an open-book foliation of spin echo-stabilized, symplectic swing-planes
([34]). Using a single molecular ion confined in a laser cooled cavity of a linear trap, interfer-
ometry experiments permit to ultrasensitively detect the frequency and phase displacement
of the pendulum’s quantum-enhanced dynamical states which are excited by a sequence of
laser-beam driven bichromatic sideband pulses. A calibrated displacement is implemented by
exposing the ion to an electric field oscillating at the trapping frequency. The displacement am-
plitudes of the two-level qubits are in correspondence to the reduced norm of the quaternions.

5. RATIONAL BIQUADRATIC RECIPROCITY

It is known that the field of rational numbers Q has one infinite place corresponding to the
embedding

Q ↪→ Q∞ = R;

as mentioned supra this place is denoted by∞. The finite places of Q are in bijective correspon-
dence with the rational primes, with which they will be identified, the place p corresponding
to the embedding Q ↪→ Qp ↪→ Q∞. Due to these embeddings, the metaplectic coadjoint orbit
model Lie(N2)∗/CoAd(N2) of the unitary dual N̂2 of the (4 + 1)-dimensional real unipotent
Heisenberg Lie group N2 ↪→ SL(5,R) is able to derive by means of quantum entanglement
the law of rational biquadratic reciprocity. This law answers the following problem: If distinct
primes p ≡ 1 (mod 4) and q ≡ 1 (mod 4) are given so that p is a fourth power modulo q, es-
tablish necessary and sufficient conditions that q is a fourth power modulo p ([3]). Actually,
the spinor triality principle leads to a number theoretic interpretation of the second Kepplerian
law of planetary dynamics through its spherical contact geometry.

The multiplicative group Z×p admits a unique subgroup of order p−1
4 consisting of the residues

of fourth powers of integers. Let
(
ρ
p

)
4

denote the biquadratic residue character defined by an
irreducible ρ ∈ Z[i] dividing p. Then,

(
ρ
q

)
4

= 1 if and only if the quartic congruence

X4 ≡ q (mod p)

admits a solution X ∈ Z ↪→ Z[i].

Theorem 5.8. For the quadratic residue character assume
(
p
q

)
= 1 the law of rational biquadratic

reciprocity (
ρ

q

)
4

(
σ

p

)
4

= (−1)
q−1
4

(
p ∧ q
q

)
holds in terms of the Witt invariant −1 of the symbol of norm • •̄ of the four-dimensional involutive
central simple R-algebra of quaternions H ∼= C⊕C under quantum entangled cyclotomographic spinor
coordinates.

In the context of the spherical contact geometry of the real dual Lie(N )∗, the group isomor-
phisms

Spin(4,R) ∼= Spin(3,R)× Spin(3,R)

and
Spin(3,R) ∼= SU(2,C) ∼= SL(1,H) ∼= Aut(H)

emphasize the spinor character of the law of rational biquadratic reciprocity. In view of the
fact that there is no algebra of quaternions over the field C, the quantum optical phenomenon
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of entanglement is attached to the local field R and the locally compact connected R-field H of
classical quaternions. The quaternion group Q8 with cyclic center Z8 represents a non-Abelian
2-group.

6. COHERENT THETA DIFFERENTIAL IDÉLES

Similarly to the theory of zeta-functions of number theory, the metaplectic Schaar-Landsberg
construction depends essentially on the concept of Fourier transforms of the metaplectic coad-
joint orbit model Lie(N )∗/CoAd(N ) of the unitary dual N̂ of the (2 + 1)-dimensional real unipo-
tent Heisenberg Lie group N ↪→ SL(3,R).

Let E denote a vector space of finite dimension over an A-field k and topological ring kA
of adéles of k in the sense of number theory ([38]). A Haar measure on the tensor product
EA = E⊗kkA can be defined by choosing a Haar measure αv on the tensor productEv = E⊗kkv
with symplectic basis E◦v for each place v so that αv

(
E◦v
)

= 1 for almost all v. Then, the product
measure

α =
∏
v

αv

and its dual are coherent measures. The measure α on EA for which α(EA/E) = 1 is known as
the Tamagawa measure on EA. Its dual is the Tamagawa measure on E∗A.

The field of rational numbers k = Q admits maximal order Z and discriminant 1, kv = R =
Q∞ for each place v, ER = E ⊗Q R, and the generic flat coadjoint orbit

O1 = ER ⊗R C = EC

inside the foliation Lie(N )∗/CoAd(N ) of the unitary dual N̂ ; the one-dimensional center of the
real nilpotent Heisenberg Lie algebra Lie(N ) is able to parametrize N̂ .

Theorem 6.9. The embedding of the metaplectic coadjoint orbit model Lie(N )∗/CoAd(N ) into the
octonionic triality principle of spinor algebra in terms of the coherent dual Tamagawa measure on the
dual group Z× Z of the compact two-dimensional torus group T× T = T2 ↪→ H of the Hopf principal
circle bundle with unitary theta characters attached to the rectangular lattice Λ1 = Z⊕ Z ↪→WQ(Q2)
as collection JQ ∈ QA of second order differential idéles of module |JQ|A = 1 on EC = O1 affords the
metaplectic Schaar-Landsberg identity.

The concepts of coherent measure and metaplectic entanglement underline the connection
of number theory to the laser realization of spherical contact geometry in the field of quantum
optics ([28]).

7. ENTANGLEMENT OF THE RATIONAL HALF-SPINOR NORM GROUP

Every rational number is a p-adic number, whereby p is a rational prime. A direct calculation
of the half-spinor norm with formal power series yields:

Theorem 7.10. The half-spinor norm group Q×2 /Q
×2
2 which is realized by the law of rational bi-

quadratic reciprocity consists of eight elements represented by {1,3,5,7,2,6,10,14}.

The ensuing multiplication table for the square classes of Q×2 reads ([32]):
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1 3 5 7 2 6 10 14

1 1 3 5 7 2 6 10 14
3 1 7 5 6 2 14 10
5 1 3 10 14 2 6
7 1 14 10 6 2
2 1 3 5 7
6 1 7 5

10 1 3
14 1

Theorem 7.11. In terms of the Witt quartic group WQ(Q2) ∼= Z2 × Z8 × Z2, the symmetries of the
spinor primciple of triality are represented by the generators

< −1, 2 >, < 1 >, < −1, 5 > .

Since the Witt quartic group WQ(Q2) contains 32 elements, the square class < 1, 7 > of two-
dimensional quadratic forms over Q2 endows number theoretically the generic flat coadjoint
orbit O1 inside the tomographic foliation Lie(N )∗/CoAd(N ) of quantum field theory with the
structure of a hyperbolic plane ([9]).

Corollary 7.2. The action of Z2 × Z2 ↪→ WQ(Q2) generates the phenomenon of rational quantum
entanglement on the two-dimensional hyperbolic space over O1 ∈ Lie(N )∗/CoAd(N ) in terms of the
Klein four-group V4.

Thus, the Witt arithmetics admits unexpected applications to the area of quantum field the-
ory.

8. BY WAY OF CONCLUSION

When Hermann Weyl (1885-1955), one of the pioneers in introducing non-commutative har-
monic analysis of the unipotent Heisenberg Lie group N into quantum mechanics, wrote his
book "The classical groups" in 1939, he overlooked the natural occurrence of the Heisenberg
group and the compact, triality conformally triangulated, homogeneous Heisenberg nilman-
ifold Λ\N , exploitation of which opens the gateway to results which one feels Weyl and his
former assistant Brauer, the authors of the paper 1935 paper on "Spinors in n Dimensions",
would have liked very much. The symbolic calculus of the spherical contact geometry of sym-
plectic spectroscopy at molecular level can be considered as a heritage of Weyl and Brauer ([16],
[17]).

Brauer was a former doctoral student of Issai Schur (1875-1911) who supervised his disser-
tation devoted to the representations of the rotation group by groups of linear transformations.
Brauer and Weyl gave a much simpler presentation over Cartan’s theory of spinors, based on
the close ties with the structures of associative Clifford/Graßmann algebra models. It prepared
the portal of the algebraic theory of spinors to the fields of de Rham cohomology theory and
supersymmetry ([5], [13]). Brauer’s earlier results have opened the way for his definition of the
Abelian group of classes of central simple algebras over a commutative groundfield k, today
called the Brauer group, and denoted by Br(k) ([38], [32]). Two central simple algebras are
said to belong to the same class if the division algebras associated with them by Wedderburn’s
fundamental theorem are isomorphic. The isomorphy of Br(k) with the equivalence classes of
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factor-sets over k, along with other results of importance for the study of cyclic field extensions
such as David Hilbert’s Theorem 90, led to the highly elaborate machinery known today as
Galois cohomology of local class field theory ([14]). Together with the Stone-von Neumann-
Segal theorem, the Brauer group Br(R) and the twofold Brauer group Br2(R) give rise to an
implementation of the basic concepts of quantum entanglement and spin echo, respectively, as
outlined in Sections 3 and 7 supra.

A summary of the paper can be given by a quotation of Weyl whose formulation is in his
lucid style that only to him was available:
"The problems of Mathematics are not problems in a vacuum. There pulses in them the life of ideas which
realize themselves in concreto through our human endeavours in our historical existence, but forming
an indissoluble whole transcending any particular science."

The geometric quantization principle mentioned above fits to this philosophy.
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