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1. Introduction 

Diesel engines are more efficient and durable than spark ignition 

engines. Thus, they are frequently used in industrial applications, 

marine transportations and agricultural machines. On the other 

hand, exhaust emissions of the Diesel engines like NOx, smoke and 

SOx cause environmental pollution. Stringent governmental regu-

lations on exhaust emissions provide strong encouragement for re-

search into cleaner fuels. Therefore, decreasing the emissions lev-

els of exhaust gases from internal combustion engines has been 

always regarded as an important problem. Researches on Diesel 

engine have been focused to approach ideal combustion conditions 

and many applications were performed to reduce exhaust emis-

sions and improve engine performance. But, exhaust emissions 

have been existing problems. Required levels from strict legisla-

tive regulations are difficult to achieve with only changing of the 

engine design or exhaust after-treatments. In addition, the high 

price of diesel fuel is still a disadvantage. As a result, researching 

suitable and cleaner alternative fuels has been reinforcing its place. 

Suitable alternative fuels must be found from renewable sources 

and they should be used without technical modifications in present 

engine technology. 

Diesel engine emissions can be improved by adding organic ox-

ygenated compounds to the No.2 diesel fuel. Ethanol as an oxy-

genated fuel is biomass based alternative renewable fuel and can 

be produced from different agricultural products [1-2]. The appli-

cation of ethanol as a supplementary diesel fuel may reduce envi-

ronmental pollution, strengthen the agricultural economy, and cre-

ate job opportunities [3]. The use of ethanol in compression-igni-

tion engines has received considerable attention in recent years [4-

6]. 

An advantage of ethanol-diesel fuel blends is that a few compo-

nent changes in the engine are required for their usage. Ethanol-

diesel blends homogeneity and phase separation effects depend on 

hydrocarbon concentrations, wax contents and the ambient tem-

perature of diesel fuels [7-12]. Water concentration of blends also 

affects solubility of ethanol. For this reason, anhydrous ethanol has 

a higher miscibility with diesel fuel. Solubilizer addition may be 
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required for homogeneity of fuel blends when phase separation oc-

curs [12]. Ethanol addition to diesel fuel results in different phys-

ico-chemical changes on diesel fuel properties, particularly reduc-

tion in cetane number, viscosity and heating value [1, 7-9]. These 

alterations influence the spray characteristics, combustion and 

emissions. It is well known heating value can affect engine torque 

and power. Ethanol addition results in decreasing in power and 

torque due to its lower heating value and density [1]. Specific fuel 

consumption increases with ethanol addition due to these effects. 

In addition, small adjustments can be required on the injection tim-

ing and fuel delivery system or intake air system to obtain restore 

full power [13, 14]. The adjustments depend on the ethanol con-

centration and the resultant effect on it. 

Oxygenated diesel fuels can improve exhaust emissions espe-

cially soot, particulate matter and CO emissions [1,2, 5, 9, 15,16]. 

This effect can be explained with several ways: Oxygenated fuels 

can reduce local fuel/air ratio with additional oxygen for rich re-

gions in premixed combustion phase [16, 17, 18]; separation of 

some carbon via C-O bounds from soot formation process 

[17,18,20,21]; oxidations soot precursors via OH radicals in the 

disassociation of oxygenated fuel [17,18, 20-22]. The addition of 

ethanol to diesel fuel naturally reduces the amount of sulfur in the 

fuel while causes high NOx because of the low cetane number of 

ethanol [1, 2]. Lowering cetane number raises ignition delays and 

reduces pressure rates. This effect influences higher peak cylinder 

pressures, higher peak combustion temperatures and noise. An-

other approach is that the high latent heat of vaporization of ethanol 

lowers the flame temperature, resulting in lower NOx emissions [9, 

23]. 

In internal combustion engines, the combustion process is a 

complex engineering process. Experimental investigations to 

measure the performance and emissions from a Diesel engine are 

complex, time consuming and costly. Mathematical models can be 

used to predict the emissions from engines. But, their accuracy 

may not always be satisfactory. One alternative to the mathemati-

cal model is the experiment-based approach: for example in Can 

et al. [1] we presented the results of such a study, which provided 

the necessary data for the present study. However, although pro-

ducing good reliable results, this approach itself is expensive and 

time consuming. The other side, there may be differences between 

the experimental based studies due to engine fuel metering tech-

nology, different measurement devices, test procedures, test con-

ditions, age of vehicles and maintenance history. But they will al-

ways give general approach for neural network modeling studies. 

Advances have been made in the use of artificial neural-net-

works (ANNs) and these have been used to predict the exhaust 

emissions and performance of internal combustion engines [24-29]. 

In a previous paper, different parameters affecting fuel consump-

tion have been studied by applying neural networks [26]. Another 

study investigated the effects of different injection pressures and 

throttle openings on the engine performance and emissions of Die-

sel engines using ANNs [30]. Neural networks are nonlinear com-

puter algorithms, which can model the behavior of complicated 

nonlinear processes. They do not need an explicit formulation of 

physical relationships of concerned problems. In other words, they 

work on the previous results to make predictions. 

In this paper, the performance and exhaust emission values in a 

Diesel engine running on ethanol fuel as an additive were investi-

gated by using ANN. For this, all the experiments have been per-

formed for both full and partial loads without any modification on 

a turbocharger Diesel engine with 4-cylinder, 4-stroke, indirect in-

jection by changing injection pressures. 

2. Experimental Apparatus, Test Procedure and Data Col-

lecting 

In this study, engine performance and emissions measurements 

were taken with IDI turbocharged Diesel engine (Ford XLD 418T), 

test bed (Cussons P8653) and exhaust measurement devices (Loy-

Gaco SN gas analyzer and VLT 2600 smoke meter). The sche-

matic view of the test rig and exhaust analyzers are shown in Fig-

ure 1. Some of the specifications of the Diesel engine are summa-

rized in Table 1. 

 

 
 

Fig. 1. Schematic of experimental test rig and emissions analyzers. 

 

A Cussons P8653 type engine test bed consists of an air-cooled 

Eddy-Current electrical dynamometer. The dynamometer operat-

ing range area is a maximum of 90 kW (135 bhp) power absorption, 

200 Nm torque and 6000 rpm. The test rig has a microprocessor-

controlled thyristor driver for controlling the dynamometer and 

fully equipped with a full data acquisition system (signal condition-

ing, display equipments and computerized test accommodating) for 

measurements of engine operating parameters. The engine speed 

was measured by an inductive pickup speed sensor, and the sensor 

was also calibrated by an optical tachometer. Fuel flow measure-

ment was used via a Pelton Wheel type flow meter. Temperatures 

were measured by K type thermocouples. A servo actuator was 

used for controlling the throttle (diesel fuel pump rack) position and 

incorporates an over-travel device. Its position is adjustable as sen-

sible to facilitate differing engine or testing requirements. A Loy-

Gaco SN gas analyzer using electrochemical sensors was used to 

measure CO (ppm), SO2 (ppm) and NOx (ppm). The soot level was 

measured using a VLT 2600 smoke meter which measurement 

principle is opacimetric partial flow smoke meter. 

 

1- Engine, 2- Dynamometer, 3- Air tank, 4-Engine cooling unit, 5-Main 

fuel tank, 6-Alternative fuel tank, 7-Control unit, 8-Manual control, 9-PC, 

10-Gaco-SN gas analyzer, 11-VLT 2600 smoke meter
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Table 1. Specifications of the test engine 

Engine Model Ford-1998 - XLD 418T 

Engine Type 
4 Stroke, In-line type, SOCH, 

Diesel, IDI, Turbocharged 

Cylinder number 

Displacement 
4 cylinder - 1.753 L 

Stroke and Bore 82mm - 82.5mm 

Compression Ratio 21.5:1 

Max. Power 

Max. Torque 

4800 rpm@ 44kW 

2500 rpm@ 110 Nm 

Fuel Injection System 
Lucas DPC rotary distributor 

one point fuel injector 

Fuel Injection Advance 8 ˚CA BTDC 

Lubricating System 

Cooling System 

Full pressured 

Pressurized circulation water 

cooled 

 

Experimental engine tests were conducted under steady-state 

test conditions at different engine loads (Full-100%, 75% and 50%) 

and different engine speeds (4500-1500 rpm by 500 rpm interval). 

Before the experiments, fuel engine speed (P) was adjusted to 100, 

200 and 250 bar in addition to the original injection pressure (150 

bar). No.2 diesel fuel and ethanol-diesel fuel blends (containing 

ethanol 10%, 15% in volume) were used in the experiments. The 

ethanol used in the experiment was 200 proof and 1% isopropanol 

added to blends to satisfying homogeneity and prevent phase sep-

aration. 

The testing procedure is as follows. The experiments were 

started with No.2 diesel fuel and then ethanol–diesel fuel blends 

used. After the engine warm-up period, the engine speed was in-

creased to 4500 rpm, and then it was decreased by 500 rpm incre-

ments to 1500 rpm at constant rack positions. At each point, the 

engine was kept stable running for a few minutes until exhaust 

emissions became stabilized and maintained, then measurements 

were taken. Engine performance results such as torque, power, 

brake main effective pressure (BMEP), and break specific fuel 

consumption (SFC) were recorded to the computer from data ac-

quisition system. Exhaust emissions results CO (ppm), SO2 (ppm) 

and NOx (ppm) were recorded manually. Each data collecting was 

repeated three times and the average values of the measurement 

were given here. Fuel lines and injection pump were cleaned by 

flush out fuel blends until new fuel blends had taken over for each 

experiment. Then the engine was left to run for enough time to sta-

bilizing new conditions. Each test was carried out in the same day 

and under same test environment conditions (air inlet pressure 91 

kPa, oil temperature 70 ˚C, coolant water temperature 110 ˚C, fuel 

temperature 40 ˚C and 8 ˚CA BTDC fuel injection advance). The 

calibrations of all devices were checked regularly. Accuracies of 

the measurements and the uncertainties in the calculated results of 

test equipments are given in Table 2. 

 

 

 

 

Table 2. Accuracies of the measurements and the uncertainties in the 

calculated results 

Calculated uncertainties from engine performance measurements 

Load (N) Accuracy = ± 0.25% 

Speed (rpm) Accuracy = ± 1% 

Fuel Flow (Lh-1) Accuracy = ± 1% 

Temperature (ºC) Accuracy = ± 1 ºC 

Torque (Nm) Uncertainty =  ± 0.25% 

Power (kW) Uncertainty = ± 1% 

BMEP (bar) Uncertainty = ± 0.25% 

SFC (gkW-1h-1) Uncertainty = ± 1.7% 

VLT 2600-S smoke meter accuracies and measurement ranges 

Opacity (%) Range = 0-100 %, Accuracy = ± 1% 

LOY Gaco-SN analyzer accuracies and measurement ranges 

CO (ppm) Range = 0-10000 ppm, Accuracy = ±2.5 ppm 

SO2 (ppm) Range = 0-2000 ppm, Accuracy = ±1 ppm 

NOx (ppm) Range = 0-1000 ppm, Accuracy = ±1 ppm 

 

3. Artificial Neural Networks and The Network Model Em-

ployed 

ANNs are computational models that are used to solve complex 

functions in various applications such as control, data compression 

etc. A neural network system has three layers, namely, the input 

layer, the hidden layer and the output layer. The input layer con-

sists of all the input factors, information from the input layer is then 

processed in the course of one hidden layer, and then the output 

vector is computed in the output layer. Generally, the hidden and 

the output layers have an activation function. A sigmoid function 

as an activation function is a widely used non-linear activation 

function whose output lies between 0 and 1. 

An important stage when accommodating a neural network is 

the training step, in which an input is introduced to the network 

together with the desired outputs, the weights and bias values are 

initially chosen randomly and the weights are adjusted so that the 

network attempts to produce the desired output. The weights, after 

training, contain meaningful information, whereas before training, 

they are random and have no meaning. When a satisfactory level 

of performance is reached, the training stops, and the network uses 

these weights to make decisions. 

Many alternative training processes are available, such as back-

propagation. The goal of any training algorithm is to minimize the 

global error level, such as the mean % error, Root-Mean-Squared 

(RMS), and the absolute fraction of variance (R2) [31]. An im-

portant characteristic of this function is differentiable throughout 

its domain. The errors for hidden layers are determined by propa-

gating back the error determined for the output layer. 

In all the models developed, we follow these steps: database col-

lection; analysis and pre-processing of the data; training of the neu-

ral network; and the testing of the trained network. In order to train 

an artificial neural network, the following experimental results 

were used: Injection pressure (P), engine speed (N), throttle posi-

tion (TP), and mixture ratio (MR)-ethanol ratio- were used as input 

layer while performance and exhaust emission characteristics were 
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separately used as output layer (Figure 2). For ANNs two data sets 

are needed: one for training the network and the second for testing 

it. The usual approach is to prepare a single data set and differen-

tiate it by a random selection. The back-propagation learning algo-

rithm has been used with a single hidden layer. Variants of the al-

gorithm used in the study are Scaled Conjugate Gradient (SCG) 

and Levenberg-Marquardt (LM). Inputs and outputs are normal-

ized within the range of (0, 1). Neurons in the input layer have no 

transfer function. Logistic sigmoid (logsig) transfer function has 

been used. 

MATLAB software has been used to train and test the ANN on 

a standard PC.In the training stage to define the output accurately, 

an increased number of neurons in the hidden layer has been tried. 

After successful training of the network, the network has been 

tested with the test data. Using the results produced by the network, 

statistical methods have been used to make comparisons. Errors 

occurred at the learning and testing stages are called the RMS and 

R2, maximum and mean error percentage values, defined as fol-

lows respectively: 
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the experiments for each output, 6 or 7 patterns were spared to 

be used as the test data. The RMS, R2, and the mean error percent-

age values were used for comparison. The sample patterns are 

shown in Table 3. Where t is the target value, o is the output value, 

and p is the pattern [25]. There are about 115 patterns obtained 

from  

 

 

 
 

Fig. 2. ANN structure. 

 

Table 3. Samples for input (first three) and outputs. 

 

P 

(bar) 

N 

(rpm) 

TP 

(%) 

MR 

 

Torque 

(Nm) 

Power 

(kW) 

BMEP 

(bar) 

SFC 

(gkW-1h-1) 

SO2 

(ppm) 

CO2 

(%) 

NOx 

(ppm) 

Smoke 

N% 

150 3000 50 10 86.35 27.149 6.189 318.24 39 7.3 370 5.5 

200 4000 75 10 88 36.88 6.31 360.36 74 9.4 506 6 

250 3500 100 10 79 28.98 5.663 341.64 67 8.3 451 5.8 

150 2000 100 15 106 22.22 7.6 368 80 11 477 68.5 

200 2500 50 15 76.35 20.02 5.47 333 28 7.4 465 6.4 

250 4500 100 15 50.48 23.8 3.618 495.75 80 7.3 294 6.4 

 

4. Results and Discussions 

As stated above, inputs of the network are the injection pressure, 

the engine speed, the throttle position, and the mixture ratio for a 

Diesel engine running ethanol fuel as an additive to diesel fuel and 

the outputs are engine performance and emission values.Firstly, 5 

hidden neurons in a single hidden layer were used for all algo-

rithms. Generally, we have started the learning stage using the 

SCG algorithm and continued with using the LM algorithm. 

Therefore, the resultant hidden layer does not correspond to a sin-

gle algorithm. Then the number of neurons was increased. The 

mean % errors for the training data are very low. In other words, 

the predicted ANN values are very close to real values. 

The formulations of the outputs –the emissions and values of 

engine performance- obtained from the weights are given with the 

Equations (4-11). Using these formulates the emissions and per-

formance of the Diesel engine may be calculated within the error 

range given in the appendices. The advantage of using these for-

mulations is that they only consist of four mathematical operations, 

which require lesser computational time. 

 

( 3.36785 1 1.6449 2 14.0618 3 10.2625 4 1.2633 5 3.7475)

1

1 F F F F F
Torque

e      



   (4) 

( 7.9318 1 1.3013 2 14.8581 3 2.4995 4 5.4501 5 1.4114)

1

1 F F F F F
Power

e      



   (5) 

( 14.7402 1 1.2309 2 1.7828 3 54.2512 4 48.2295 5 54.1899)

1

1 F F F F F
BMEP

e      



   (6) 

( 1.8036 1 2.7382 2 70.5335 3 30.8054 4 1.6069 5 3.4371 6 0.3053)

1

1 F F F F F F
SFC

e       



   (7) 
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2 ( 9.6367 1 35.6295 2 22.2046 3 12.7479 4 11.7732 5 46.7214)

1

1 F F F F F
CO

e      



   (8) 

( 5.484 1 2.6177 2 3.8961 3 1.0097 4 0.4183 5 2.5046)

1

1
x F F F F F

NO
e      




   (9) 

( 38.0863 1 92.7292 2 18.918 3 36.7902 4 38.8131 5 5.5646 6 118.2385 7 81.5489)

1
%

1 F F F F F F F
N

e        



  (10) 

2 ( 139.116 1 126.1226 2 239.28371 3 0.8867 4 0.713 5 1.4289 6 136.7969)

1

1 F F F F F F
SO

e       



  (11) 

 

where Fi (i=1,2,..,6) can be calculated using Equation (12). 

 

1

1 i
i E

F
e



   

(12) 

 

Where; Ei is given with equations as seen in appendices. The 

values in the appendix are the weights between the input layer and 

the hidden layer for the outputs. The values have been given for 

other users to be used. The equations in the appendix are dependent 

on the injection pressure, the engine speed, the throttle position, 

and the mixture ratio, which are the inputs of the network. Coeffi-

cients in the Equations (4-11) are the weights, which lie between 

the hidden and output layers.When using the equations in appendix, 

N, P, TP and MR values are normalized by dividing them with 

5000, 1000, 200, and 20, respectively, to obtain the emissions and 

performance values in Equations (4-11), Torque, Power, BMEP, 

SFC, SO2, CO2, and NOx values need to be multiplied by 130, 50, 

10, 800, 110, 13, and 750, respectively. But, when training the N%, 

the Equation (13) was used [25]. 

 

min
%

max min

% %
0.8 0.1

% %
N

N N
Nor

N N

 
  

 
 

 

(13) 

 

where Nmin%, and Nmax% are minimum and maximum N% val-

ues (i.e 3.7 and 93 respectively) of all related data, N% is the value 

to be normalized. 

In Table 4, the statistical values for engine performance have 

been shown. As shown in the table, the maximum mean errors for 

the test data are obtained in the case of Torque and Power. Other 

mean errors for test data are smaller than 2%. R2 values are very 

close to 1, and RMS values are very small for all the performance 

values. 

 
Table 4. Statistical values of predictions for engine performances and emissions. 

 

 Hidden 

number 

RMS 

training 

R2 

training 

Mean % 

error training 

RMS 

test 

R2 

test 

Mean % 

error test 

Engine Performance Results 

Torque (Nm)  5  0.0253  0.9984  3.83  0.0182  0.9992  3.25 

Power (kW)  5  0.0134  0.9993  2.69  0.0131  0.999  3.22 

BMEP (bar)  5  0.0234  0.9984  3.5  0.0103  0.9996  1.84 

SFC (g/kWh)  6  0.0116  0.9995  1.69  0.0104  0.9996  1.94 

Engine Exhaust Results 

SO2 (ppm) 6 0.0148 0.9994 1.99 0.0222 0.9986 3.89 

CO2 (%) 5 0.0171 0.9993 2.15 0.0319 0.9978 3.81 

NOx (ppm) 5 0.0282 0.9976 4.75 0.0209 0.9986 4.99 

N% 7 0.0104 0.9986 5.79 0.0222 0.9786 7.77 

 
In Table 4, the statistical values for exhaust emissions have also 

been shown. The maximum mean error for test data is also ob-

tained in the case of N%. Other mean errors for test data are about 

4-5%. R2 values are generally very close to 1 for all the perfor-

mance values. 

Figure 3 also compares the results of the engine performance 

obtained from the experiments and predicted by the ANN in the 

case of test data while Figure 4 does the same for the exhaust emis-

sions values. 

The error levels are generally higher in the case of emission out-

puts when compared to the performance outputs. We believe that 

this is mainly due to lack of the in-cylinder conditions related input 

parameters that govern the complex diesel burning process. How-

ever, the accuracy of the model prediction is considered to be im-

proved when input data related to in-cylinder parameters provided. 

 

5. Conclusions 

The aim of this paper has been to use the neural networks for 

prediction of engine performance and exhaust emissions in a Die-

sel engine burning fuel with additives. Results show that the net-

works can be used as an alternative way in such systems. The RMS 

error values are smaller than 0.03 and R2 values are about 0.999. 

This study demonstrates that the ANNs can be used to determine 

the engine performance and the emissions instead of complex and 

time consuming experimental studies using Diesel engines. 
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Fig. 3. Measured and predicted results of engine performance of the test data 
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Fig. 4. Measured and predicted results of exhaust emissions of the test data  
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Appendix - The weights between input layer and hidden layer 

 

I 
Ei=C1*N+C2*P+C3*TP+C4*MR+C5 

C1 C2 C3 C4 C5 

P
o

w
er

 

(k
W

) 

1 -0.1327 -7.7526 1.0346 -0.3418 1.4666 

2 -16.0432 11.4250 -5.2921 0.0601 8.8882 

3 5.3454 -2.1067 -29.4798 -0.1361 1.8383 

4 -11.7348 15.1821 -0.1816 0.4676 0.9199 

5 -1.6978 -19.7401 0.2808 -1.0791 6.5393 

T
o

rq
u

e 

(N
m

) 

1 12.4093 -5.7701 0.4190 -0.0252 -7.9696 

2 -21.7784 20.1334 410.9124 0.2193 -96.3410 

3 -33.1628 -8.2200 -9.8329 -17.5625 -26.7508 

4 -4.2122 12.1803 0.6073 0.4748 -1.9267 

5 371.4165 -714.4903 -1.0902 -0.2332 31.2976 

B
M

E
P

 

(b
a

r)
 

1 7.9203 10.3258 0.6616 0.7874 -13.1758 

2 20.9357 7.5121 5.0042 0.5079 -18.2504 

3 -11.8608 1.5179 108.2371 0.0154 -20.8373 

4 11.0268 -27.1030 0.3529 -0.7279 3.0472 

5 -12.3037 29.0354 -0.5668 0.7220 -2.9226 

S
F

C
  

(g
k

W
-1

h
-1

) 

1 -31.9840 4.8752 109.5232 -0.6643 -2.2228 

2 1.4636 1.1596 -0.3227 12.1267 -3.7060 

3 8.9652 18.9530 -8.9634 1.2486 -15.1687 

4 -18.1432 -3.4129 6.5988 0.1106 0.3621 

5 -7.4386 6.4401 -7.5548 -0.9879 10.0767 

6 -29.8743 -5.0029 12.7858 0.2740 4.0179 

C
O

2
 

%
 

1 21.1646 -1.8085 2.4734 -1.7050 -10.1757 

2 -1.4310 -0.0245 2.7552 1.7837 1.5529 

3 11.7827 -0.9339 1.9726 -1.0035 -7.1725 

4 -23.5606 0.8296 12.5756 -4.0773 -2.9870 

5 21.7385 -0.9179 -15.5781 4.9371 5.3670 

S
O

2
  

(p
p

m
) .
 

1 -5.6892 1.2179 13.3231 27.5206 -15.0405 

2 5.6608 -1.3680 -13.4400 -68.0079 35.5101 

3 4.7472 0.5980 2.9712 -3.7931 -7.5929 

4 6.2502 8.1678 -20.9833 -5.9349 5.1584 

5 36.9266 23.2051 3.2218 -9.6506 -16.9786 

6 1.9418 -41.0557 -2.0888 63.7709 -10.6366 

N
O

x
 (

p
p

m
) 1 -2.2 -0.3 2.5 -6.9 2.3 

2 6.9 -2.5 -21.3 -0.7 7.8 

3 -2 0.4 3.5 9.3 -9.0 

4 2579.9 -97.4 -24 -1 -586.6 

5 1070 3101.4 329.9 98.4 -2331.9 

N
 %

 

1 -4.5678 0.6919 -43.8188 -0.5141 17.9975 

2 4.1705 -2.7484 -7.7771 1.6813 -3.2413 

3 3.3921 1.0412 10.2207 -3.1028 -13.7436 

4 -3.9713 0.6790 -70.5632 -0.2595 28.3065 

5 31.4776 -3.5608 88.5933 6.9344 -33.8660 

6 1.5997 1.7102 -10.6150 -20.3554 11.9992 

7 48.1931 -3.3698 11.5554 5.1265 -12.8933 

 


