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(FEM) which are computationally expensive. In order to 
overcome this disadvantage of FDM and FEM, boundary 
element method (BEM) can be used which discretizes 
only the boundary of the domain which results with a less 
number of discretization points. However, in order to apply 
the method, one should know the fundamental solution of 
the corresponding equation.

Although, the differential quadrature method also needs to 
discretize the problem domain, it gives accurate results by 
using less number of discretization points comparing to the 
other discretization methods such as FDM, FEM. It may 
even use less number of discretization points than BEM 
which only discretizes the boundary (Meral and Tezer 
2011).

1. Introduction
When the real life problems are modelled, one often ends up 
with nonlinear equations or systems of nonlinear equations. 
When the initial condition is given for the model, the problem 
should be solved to predict the future behaviour. However, 
the models most often involve nonlinear systems which do 
not have exact analytical solutions or are not easy to solve. 
Thus, using accurate and efficient numerical techniques is 
very important. For this aim, there are many techniques for 
the numerical solutions offered in the literature. Among these 
techniques, there are domain discretization methods such 
as finite difference method (FDM), finite element method 
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Drinfel ’d-Sokolov system, which is one of the nonlinear 
system playing an important role in mathematical physics, 
is introduced by Drinfel’d and Sokolov as an example of a 
system of nonlinear equations possesing Lax pairs of a special 
form (Wazwaz 2006). Then, after some calculations it is 
shown in (Wilson 1982) that the equation system given by 
Hirota and Satsuma is an example of the theory introduced 
by Drinfel’d and Sokolov. Then in 1985, Drinfel ’d-Sokolov-
Wilson equations are then introduced as the generalization 
of the Korteweg-de Vries and Sine-Gordon equations both 
also having an important role in mathematical physics. 

In this study, the initial value problem (IVP) defined by 
Drinfel ’d-Sokolov-Wilson system is solved numerically 
by using a combination of DQM and FDM. Unlike the 
other domain discretization methods, DQM has the 
advantage of giving accurate solutions by using smaller 
number of discretization points. Moreover, it is able to 
solve the corresponding initial value problem without 
any need of boundary condition. For the solution of the 
ordinary differential equations obtained after the DQM 
discretization of the space derivatives, FDM (an explicit-
implicit scheme) is used. The method is tested on an IVP 
defined by Drinfel ’d-Sokolov-Wilson system. It is seen that 
the proposed method in this study gives accurate results 
with a small number of discretization points and without 
stability problems.

2. Problem Definition 
Drinfel ’d-Sokolov-Wilson equations are given by
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for x R!  where , , ,q r st  are nonzero parameters and t2
2  

and x2
2  stand for the time and space derivatives, respectively. 

System (1)-(2)  is subjected to the initial conditions

, ( )u x u x0 0=^ h   (3)

, ( )x xv v0 0=^ h    (4)
where x R! .

3. Numerical Solution of the Problem 
3.1. Differential Quadrature Method Discretization in 
Space 

The differential quadrature method is used to discretize 
the space derivatives seen in System (1)-(2). The approach 

which will be used here has been given by Shu (Shu 2000) 
and it uses the Lagrange polynomials for approximating the 
solution and its derivatives at node xi  by using the N-th 
order Lagrange polynomial: 
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In Equations (5) and (6), wij denotes the value of 
the j-th degree Lagrange polynomial at xi  and 

( ) ( , , )w w x m 1 2 3ij
m

j
m

i= =^ ^h h  are the weighting coefficients 
at grid points , , ...,x i N1 2i =^ h  with N being the number 
of grid points and m indicating the derivative order. The 
weighting coefficients are determined by a practical notation 
(Shu, 2000) with the recursive relations for , , , ,...i j N1 2= : 
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where ,x x M xi j i ij
1 dY =^ ^^h hh  and ijd  is the Kronecker 

operator.

Using the DQM approach given by (5) and (6) to Drinfel ’d-
Sokolov-Wilson equations at nodes xi  gives the discretized 
equations of the form
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In many numerical methods, the uniformly distributed 
nodes are preferred to use since they are easy to implement. 
However, for the DQM discretized problems, it is seen 
(Shu, 2000) that using nonuniformly distributed nodes gives 
better results. In this study, the Chebyshev-Gauss-Lobatto 
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(CGL) points which are given on ,1 1-6 @  by 
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are used. These points are known as clustering through the 
end points -1 and 1 chosen as the roots of ( )T x 1n =  
where ( )T xn  is the n-th order Chebyshev polynomial.

The spatially-discretized Equations (8) and (9) can be 
written in matrix-vector form as

t
u A v12
2 = 6 @" ,   (11)

t
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2 = + +6 6 6@ @ @" " ", , ,   (12)

where the vectors , ,u v t
u
2
2a k" ", ,  and t

v
2
2a k  each of 

which has size N, containing the unknowns and their time 
derivatives at the grid points, respectively. Moreover the 
entries of the matrices , ,A A A1 2 36 6 6@ @ @  and C6 @  are given by
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3.2. Time Discretization 

Equations (11)-(12) is a system of coupled ODEs at the 
grid points. In order to obtain the solution at the discretized 
space points at a desired time, a time discretization is needed. 
To this end, a combination of the forward and backward 
Euler methods are used by making use of the newly updated 
solution, i.e.,

u u vt An n n1
1T= ++ 6 @" " ", , ,   (13)

A t Av v uv
n n n1

3
1T= ++ +6 6@ @" " ", , ,   (14)

where A I t C t Av 2T T= - +^ h6 6 6@ @ @  and I is the identity 
matrix of size N. In equation (14) the superscript n describes 
the time level with t n tn T=  and tT  being the time step. 

The solution is obtained iteratively by using Equations (13) 
and (14) for the desired time level starting with the initial 
conditions (3)-(4).

4. Numerical Results
In this section, the numerical solution procedure developed 
for the Drinfel ’d-Sokolov-Wilson equations (1)-(2) is applied 
to the test problem with p q r s 1= = = = . The initial 
conditions are taken appropriate with the exact solution 
(Zhang, 2011)

, secu x t h x t2 2= -^ ^h h   (15)

, .secx t h x tv 2= -^ ^h h   (16)

In order to measure the accuracy of the solution the absolute 
maximum errors
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are made use of. In Equations (17) and (18), 
, , ,u x t v x texact i

n
exact i

n^ ^h h and , , ,u x t x tvnum i
n

i
n

num^ ^h h  denote 
the exact and numerical solutions, respectively; at time level 
tn . Numerical tests show that, the fully implicit character of 
the time integration in (14) eliminates the stability problems 
and the choice of the time increment does not effect the 
accuracy of the results. Therefore, the time increment 

.t 0 1T =  is used throughout the simulations. 

On the other hand, the expected character of the DQM 
discretization in terms of the number of grid points is also 
observed which can also be seen in Table 1. The table (Table 
1) contains the maximum absolute errors 1x  at time t = 5.0 
with different number of grid points. 

The maximum absolute errors for both solutions of the IVP 
defined by Drinfel ’d-Sokolov-Wilson system (1)-(2) are given 
in Table 2 for several time levels with N = 5 CGL points. 
From the table one can see that the solutions agree well with 
the exact solution.

In Figure 1., the behaviours of the exact and DQM solutions 
for the IVP defined by Drinfel ’d-Sokolov-Wilson system is 
analyzed. In order to see to the fact that DQM solution 

Table 1. Maximum absolute error 1x  with different number of grid points.

N = 5 N = 8 N = 10 N = 15 N = 20
1x 1.8 x 10-21 5.2 x 10-21 6.2 x 10-21 7.4 x 10-21 7.4 x 10-21

Table 2. Maximum absolute errors for different times.

t = 0.1 t = 0.5 t = 1.0 t = 5.0 Nt = 10.0
1x 4.3 x 10-24 3 x 10-22 1.8 x 10-21 7.9 x 10-18 1.7 x 10-13

2x 4.6 x 10-12 2.6 x 10-11 6.4 x 10-11 4 x 10-9 5.9 x 10-7
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methods which uses the updated solution values in the 
procedure. The numerical results agree well with the exact 
solution in terms of maximum absolute error.  Moreover 
the consistency of exact and numerical solutions is observed 
with the plots at different times. For the future work, the 
proposed method can be applied to the other nonlinear 
evolution equations which take part in mathematical 
physics. Moreoever, other domain discretization methods in 
space direction and/or different time integration schemes 
can be applied and compared with the proposed method in 
terms of accuracy and computational cost. 
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Figure 1. Solutions of the Drinfel’d-Sokolov-Wilson system at different times.
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