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Abstract

In this paper, the numerical solution of the initial value problem defined by the Drinfeld-Sokolov-Wilson system is investigated. The
equations in the system are discretized spatially by using the differential quadrature method (DQM) which is a domain discretization
method and have the property of giving accurate solutions with a small number of discretization points. The resulting time-dependent
system of ordinary differential equations is then solved by an explicit-implicit finite difference method (FDM). By using an explicit-
implicit scheme for the time integration, the possible stability problems are eliminated. The proposed method is tested numerically
and accurate solutions are obtained with a small number of discretization points with a low computational cost.
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Oz

Bu makalede, Drinfel d-Sokolov-Wilson sistemi tarafindan tanimlanan baglangic deger probleminin niimerik ¢6ziimi incelenmistir.
Sistemdeki denklemler uzayda bir bélge ayristirma metodu olan ve az sayida ayrigtirma noktas: ile dogru ¢éziimler verme 6zelligi
olan diferensiyel kuadratiir metodu kullanilarak ayristirilmistir. Sonugta olugan zaman-bagimli adi diferansiyel denklemler sistemi
daha sonra bir agik-kapali sonlu farklar metodu ile ¢ozilmistiir. A¢ik-kapali bir zaman metodu kullanilarak miimkiin olan kararlilik
problemleri bertaraf edilmistir. Onerilen metot niimerik olarak test edilmistir ve az sayida ayristirma noktast ile yani disiik bir

hesaplama maliyeti ile dogru ¢éziimler elde edilmistir.

Anahtar Kelimeler: Diferensiyel kuadratiir metodu, Drinfe/ d-Sokolov-Wilson denklemi, Sonlu farklar metodu

1. Introduction

When the real life problems are modelled, one often ends up
with nonlinear equations or systems of nonlinear equations.
When the initial condition is given for the model, the problem
should be solved to predict the future behaviour. However,
the models most often involve nonlinear systems which do
not have exact analytical solutions or are not easy to solve.
Thus, using accurate and efficient numerical techniques is
very important. For this aim, there are many techniques for
the numerical solutions offered in the literature. Among these
techniques, there are domain discretization methods such
as finite difference method (FDM), finite element method
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(FEM) which are computationally expensive. In order to
overcome this disadvantage of FDM and FEM, boundary
element method (BEM) can be used which discretizes
only the boundary of the domain which results with a less
number of discretization points. However, in order to apply
the method, one should know the fundamental solution of
the corresponding equation.

Although, the differential quadrature method also needs to
discretize the problem domain, it gives accurate results by
using less number of discretization points comparing to the
other discretization methods such as FDM, FEM. It may
even use less number of discretization points than BEM
which only discretizes the boundary (Meral and Tezer
2011).
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Drinfel'd-Sokolov system, which is one of the nonlinear
system playing an important role in mathematical physics,
is introduced by Drinfeld and Sokolov as an example of a
system of nonlinear equations possesing Lax pairs of a special
form (Wazwaz 2006). Then, after some calculations it is
shown in (Wilson 1982) that the equation system given by
Hirota and Satsuma is an example of the theory introduced
by Drinfeld and Sokolov. Then in 1985, Drinfel d-Sokolov-
Wilson equations are then introduced as the generalization
of the Korteweg-de Vries and Sine-Gordon equations both
also having an important role in mathematical physics.

In this study, the initial value problem (IVP) defined by
Drinfel'd-Sokolov-Wilson system is solved numerically
by using a combination of DQM and FDM. Unlike the
other domain discretization methods, DQM has the
advantage of giving accurate solutions by using smaller
number of discretization points. Moreover, it is able to
solve the corresponding initial value problem without
any need of boundary condition. For the solution of the
ordinary differential equations obtained after the DQM
discretization of the space derivatives, FDM (an explicit-
implicit scheme) is used. The method is tested on an IVP
defined by Drinfeld-Sokolov-Wilson system. It is seen that
the proposed method in this study gives accurate results
with a small number of discretization points and without

stability problems.

2. Problem Definition

Drinfel d-Sokolov-Wilson equations are given by

%t pp L= (1)

o 9’ 2 2
a—qt)-i-qaxg—i-rua—z—i-sva—g:O )

for x € R where 0,q,7,s are nonzero parameters and %
and 3, stand for the time and space derivatives, respectively.

System (1)-(2) is subjected to the initial conditions
w(z,0) = uo(z) (3)
v(2,0) =v,(2) 4)

where z € R.

3. Numerical Solution of the Problem

3.1. Differential Quadrature Method Discretization in
Space

'The differential quadrature method is used to discretize
the space derivatives seen in System (1)-(2). The approach
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which will be used here has been given by Shu (Shu 2000)
and it uses the Lagrange polynomials for approximating the
solution and its derivatives at node z; by using the N-th
order Lagrange polynomial:

U; ZZV:WUM(XJ>, (5>

m N
T | =Xwiulx) (6)
In Equations (5) and (6), w;denotes the value of
the j-th degree
wy =w (z:) (m=1,2,3) are the weighting coefficients
at grid points x, (i =1,2,...,N) with N being the number
of grid points and m indicating the derivative order. The

Lagrange polynomial at z; and

weighting coefficients are determined by a practical notation
(Shu, 2000) with the recursive relations for 7,7 =1,2,...,N :

a _ M(l)(xx)
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with
M(x) = (x —Xl)(x —Xz)...(x —xN)
=Y (o, x0)(x — xi) o

M (x) = (Xk _XI><XI< - Xz)

(Xk _"xk—1)<xk - Xk+1>-..(xk - xN)

= ] (x—x)

i=1,i#k
where Y(z,2,)=M"(z:)8; and &, is the Kronecker
operator.

Using the DQM approach given by (5) and (6) to Drinfeld-
Sokolov-Wilson equations at nodes z: gives the discretized
equations of the form

ou N

or| =Py (8)
X=Xi Jj=1

v _ S S S

N =—g> wPv,—ru Y wv,—sv, D wilu, 9)
X =Xi j=1 j=1 j=1

In many numerical methods, the uniformly distributed
nodes are preferred to use since they are easy to implement.
However, for the DQM discretized problems, it is seen
(Shu, 2000) that using nonuniformly distributed nodes gives
better results. In this study, the Chebyshev-Gauss-Lobatto

233



Meral / Numerical Solution of Drinfeld Sokolov Wilson System Using Differential Quadrature and Finite Difference Methods

(CGL) points which are given on [—1,1] by

("N%%” n=1,2.,N

Ty — COS

(10)

are used. These points are known as clustering through the
end points -1 and 1 chosen as the roots of [T, (x)]|=1
where T, () is the #-th order Chebyshev polynomial.

The spatially-discretized Equations (8) and (9) can be

written in matrix-vector form as

%[ 4,10}

g—gz[o]{v}+[A2]{u}+[A3]{u} (12)

where the vectors {u},{v },(aa—?) and <%) each of
which has size NV, containing the unknowns and their time

(11)

derivatives at the grid points, respectively. Moreover the
entries of the matrices [ A, ][ 4.],[A:] and [C] are given by

[Al]ij = —‘Ow(ijl)vi, [AZ]U = _mgijl)ui, [AB ]U = _Sngl)/vi,

[C];,=—qui,j =1,2,...N.

3.2. Time Discretization

Equations (11)-(12) is a system of coupled ODEs at the
grid points. In order to obtain the solution at the discretized
space points at a desired time, a time discretization is needed.
To this end, a combination of the forward and backward
Euler methods are used by making use of the newly updated
solution, i.e.,

{uy={uw}+ A A Ko} (13)
[A Koy ={v"}+ At A Hu'} (14)

where [A.]=(I—At[C]+ At[A,]) and I is the identity
matrix of size V. In equation (14) the superscript 7 describes
the time level with ¢" = nAt and At being the time step.

'The solution is obtained iteratively by using Equations (13)
and (14) for the desired time level starting with the initial
conditions (3)-(4).

4. Numerical Results

In this section, the numerical solution procedure developed
for the Drinfel d-Sokolov-Wilson equations (1)-(2) is applied
to the test problem with p=g¢=7r=s=1. The initial
conditions are taken appropriate with the exact solution

(Zhang, 2011)
w(z,t)=2sech’(z—t)
v(z,t)=2sech(z—t).

(15)
(16)

In order to measure the accuracy of the solution the absolute
maximuim €errors

= 1@%%'Uemct(ﬂ?i,t")—umm(x,tn” (17)
7 = max| v (24,8") = v (2,")| (18)
are made use of. In Equations (17) and (18),

Weraet (T1,8"), Veraot (T1,8") and Uun (24,£"), Vaum (2:,¢")  denote
the exact and numerical solutions, respectively; at time level
t". Numerical tests show that, the fully implicit character of
the time integration in (14) eliminates the stability problems
and the choice of the time increment does not effect the
accuracy of the results. Therefore, the time increment
At = 0.1 is used throughout the simulations.

On the other hand, the expected character of the DQM
discretization in terms of the number of grid points is also
observed which can also be seen in Table 1.The table (Table
1) contains the maximum absolute errors 7, at time 7= 5.0
with different number of grid points.

"The maximum absolute errors for both solutions of the IVP
defined by Drinfel d-Sokolov-Wilson system (1)-(2) are given
in Table 2 for several time levels with N = 5 CGL points.
From the table one can see that the solutions agree well with
the exact solution.

In Figure 1., the behaviours of the exact and DQM solutions
for the IVP defined by Drinfeld-Sokolov-Wilson system is
analyzed. In order to see to the fact that DQM solution

Table 1. Maximum absolute error 7, with different number of grid points.

T 18X 10_21

52x10%

6.2x 102 7.4x10% 7.4x 102

Table 2. Maximum absolute errors for different times.

T 43x10% 3x10% 1.8 x 102 79x10 1.7x101
Ts 4.6 x 1012 2.6x10™" 6.4x10™" 4x107 5.9x107
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Figure 1. Solutions of the Drinfeld-Sokolov-Wilson system at different times.

also have the behaviour of the exact solution, a bigger scale
for the y-axis is used (otherwise all the solutions overlap
and one cannot see the behaviour.) It can be easily observed
also from the plots that the DQM and exact solutions are
consistent with each other.

5. Conclusion

In this paper, a numerical procedure is developed for the
solution of the Drinfeld-Sokolov-Wilson equations. The
solution method is a combination of the differential
quadrature method in space and finite difference method
in time. As a domain discretization method, differential
quadrature method has the advantage of giving accurate
solutions with a small number of discretization points and
this is made use of in this study. For the solution of the
obtained system of ODEs after the DQM discretization, a
combination of the forward and backward Euler methods is
used. The scheme is a combination of explicit and implicit
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methods which uses the updated solution values in the
procedure. The numerical results agree well with the exact
solution in terms of maximum absolute error. Moreover
the consistency of exact and numerical solutions is observed
with the plots at different times. For the future work, the
proposed method can be applied to the other nonlinear
evolution equations which take part in mathematical
physics. Moreoever, other domain discretization methods in
space direction and/or different time integration schemes
can be applied and compared with the proposed method in
terms of accuracy and computational cost.
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