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solutions help to analyze the stability of considered systems 
and to validate the results of numerical analysis of FPDEs 
(Sahadevan and Bakkyaraj 2014). Recently, we observe 
several efficient methods such as exp function method (Bekir 
et al. 2013a), fractional first integral method (Bekir et al. 
2015), fractional sub-equation method (Zhang and Zhang 
2011, Wang and Xu 2014), fractional /G Gl^ h -expansion 
method (Bekir and Güner 2013b), Jacobi elliptic-function 
method (Adem and Muatjetjeja 2015), simplest equation 
method (Adem and Lü 2016), multiple exp-function 
method (Adem 2016) and fractional Lie group method 
(Gazizov  et al. 2009, Sahadevan and Bakkyaraj 2012, Wang 
et al. 2015, Rui and Zhang 2015). In addition, there exist 
important studies. 

In this article, we will suggest first the fractional Lie group 
method and utilize this method to solve the following time 
fractional modified Sawada-Kotera (FMSK) equation:

1. Introduction
Fractional partial differential equations (FPDEs) which 
are extensions of integer order partial differential equations 
(PDEs)  have been observed in many scientific disciplines 
such as physics, control theory, signal processing, systems 
identification, cosmology, and finance etc., since last two 
decades. There exist well written monographs on these type 
of equations by using the theory of derivatives and integrals 
of fractional order (Podlubny 1999, Kilbas et al. 2006, Yang 
et al. 2015).

When FPDEs are analyzed, one of the most important 
question is the construction of the exact solutions for 
the equation (Kudryashov and Loguinova 2008). Exact 
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where 0 11 1a is a parameter describing the order of the 
fractional time derivative. In addition, we intended to obtain 
the exact traveling wave solutions of the FMSK equation by 
sub-equation method. This equation (for the case of 1a = ) 
appeared first in work of Liang et al. (Liang and Guo 2012). 
Based on the modified Sawada-Kotera equation, they 
introduce a 3x 3 matrix spectral problem with two potentials 
and derive a hierarchy of new nonlinear evolution equations.
We observe some further studies on Eq.(1). For example, in 
(Konno 1992, Naz et al. 2013) and (Liang and Guo 2012)  
conseration laws and integrabilty properties (Lax pair and 
explicit solutions) are investigated.

The remainder of this paper is organized as follows. In Sect. 
2 we present Lie symmetry analysis of the fractional partial 
differential equations (FPDEs). Then, we apply Lie group 
classification on the time FMSK equation, and investigate 
the symmetry reductions of the time FMSK equation. 
Through the symmetry reductions, we transform  the 
FPDEs into the fractional ordinary differential equations 
(FODEs) with a new independent variable. In section 3, 
some exact traveling wave type solutions are obtained by the 
sub-equation method. Concluding remarks are summarized 
in Section 4.

2. Lie Symmetry Analysis of FPDEs
We first present notation to be used and recall the definitions 
and theorems that appear in (Podlubny 1999, Wang and Xu 
2014, Gazizov et al. 2009, Sahadevan and Bakkyaraj 2012, 
Wang et al. 2015, Kiryakova 1994).

The Riemann-Liouville derivative of order a is defined by 
the following expression
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Consider a scalar-time FPDE having the following form 
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Equation (3) is invariant under a one-parameter Lie group 
of point transformations
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Here, Dx  denotes the total derivative operator and is 
defined by

...D x u u u ux x xx
x2

2
2
2

2
2= + + +   (6)

with the associated vector field of the form

, , , , , , ,V x t u t x t u x x t u u2
2

2
2

2
2

x p h= + +^ ^ ^h h h   (7)

where the coefficient functions , , , , , ,x t u x t uxp^ ^h h and 
, ,x t uh^ h  of the vector field are to be determined.

If the vector field (7) generates a symmetry of (3), then V
must satisfy the Lie symmetry condition

,pr V 05
1 01
T =T =
^^ hh   (8)

where , , , , , , ,t
u F x t u u u u u ux xx xxx xxxx xxxxx1 2
2T = -
a

a ^ h . Since 
the lower limit of the integral (2) is fixed and, therefore, it 
should be invariant regard to such transformations (4). The 
invariance condition yields

, , .x t u 0t 0x ==
^ h   (9)

The a th extended infinitesimal has to do with the Riemann-
Liouville fractional time derivative with (9), which reads 
(see, Gazizov et al. 2009):

.

t
D

n

t
u
u
t

t n
D D u

n
D D u

1

u t

n

u

u

t
n

t
n

n

t
n

t
n

x

0

1

1

1

2
2

2
2

2
2

2
2

h
h

h a x

a

h
n

h a
x

a
p

= + -

+

- +

-
+

-

3

3

a a

a

a

a

a

a

a

a
a

a

=

+ -

=

-c

c

^

^
c

^

^
^ ^

m

m

h h
m

hh
h h; E/

/

  (10)



Yaşar, Yıldırım / On the Lie Symmetry Analysis and Traveling Wave Solutions of Time Fractional Fifth-Order Modified                          
Sawada-Kotera Equation

Karaelmas Fen Müh. Derg., 2018; 8(2):411-416 413

where

! .
n

n

m

k

r k n
t

u t u t u
1

1

n

m

m
k r

n m k

n m k

r

k

k

m

m

n

n

r

0

1

222
2
2

2 2
2

n
a

a
h

C
=

+ -
-

3 a-
-

-

- +

=

-

===

c c c ^m m m h6 6@ @////

(11)

Definition ,u t xi= ^ h  is an invariant solution of Eq.  
corresponding to the infinitesimal generator  if and only if

1) ,u t xi= ^ h  satisfies Eq.(3),

2) ,u t xi= ^ h  is an invariant surface of (3), namely, it fulfills 
the invariant surface condition:

, , , , , ,x t x t x tt xx i i p i i h i+ =^ ^ ^h h h

3. Application of Lie Symmetry Analysis of Time 
FMSK equation
According to the Lie theory, applying the fifth prolongation     
pr V5  to Eq. (1), we obtain the following equation:
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Substituting (5) and (10) into (12), and equating the 
coefficients of the various monomials in partial derivatives 
with respect to x  and various powers of u , one can find the 
determining equations for the symmetry group of Eq.(1). 
Solving these equations, we obtain the following forms of 
the coefficient functions:

, , ,xc c tc uc51 2 1 1p a x h a= + = = -   (13)

where c1  and c2  are arbitrary constants. Therefore, we can 
obtain the corresponding vector fields

.V tc t xc c x uc u5 1 1 2 12
2

2
2

2
2

a a= + + -^ h   (14)

Thus, the Lie algebra of infinitesimal symmetry of Eq.(1) is 
spanned by the two vector fields:

, .V x V t t x x u u51 22
2

2
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a a= = + -   (15)

Case 1. .X x1 2
2=

Integration of the invariant surface condition
dt dx du
0 1 0= =

gives the similarity variables ,t u . Thus we have the ansatz  
u f t= ^ h . Inserting it into Eq.(1) yields the reduced 
fractional ODE

.f t 0t2 =a ^ h

Solving the above equation we obtain the following group 
invariant solution

u a t1 1= a- .

Case 2.

The similarity variable and similarity transformation 
corresponding to the infinitesimal generator X2  can be 
obtained by solving the associated characteristic equation 
given by

,x
dx

t
dt

u
du

5a a= = -   (16)

and the corresponding invariants are

, .xt u t g5 5p p= =
a a- - ^ h   (17)

The transformation (17) reduces (1) to the following 
nonlinear ordinary differential equation of fractional order:
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5
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with the Erdelyi-Kober fractional differential operator P ,
b
x a  

of order (Kiryakova 2004), (see also Wang and Xu 2014, 
Sahadevan and Bakkyaraj 2012):
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is the Erdelyi-Kober fractional integral operator.

Indeed, based on the Riemann-Liouville fractional derivative 
( , , , , ....)n n n1 1 2 31 1a- = , one can have
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Letting v s
t= , one can get ds

v
t dv2= - , therefore (22) can 

be written as
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In view of the Erdelyi-Kober fractional integral operator 
(19), one can get
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, , ,u x t u x ct 0p p p= = + +^ ^h h   (32)

where c  is a nonzero constant we can rewrite Eq. (31) as the 
following nonlinear fractional ordinary differential equation 
(FODE):

, , ., , , , ...P u cu u c D u D u 0 0 11 #a=a
p
a

p
al l^ h   (33)

where the prime denotes the derivation with respect to .p

Suppose that Eq. (33) can be expressed by a polynomial in 
z  as follows:

,u a ai

i

n i

1
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where ( , ..., )a i n1i =  are constants while { p^ h  satisfies the 
following fractional Riccati equation:

,D 2{ p v { p= +p
a ^ ^h h   (35)

where v  is a constant. The positive integer n  can be 
determined by considering the homogeneous balance 
between the highest order derivatives and the nonlinear 
terms appearing in Eq.(33). By substituting Eq.(34) 
into Eq.(33) and using Eq.(35), we collect all terms with 
the same order of{ . By equating each coefficient of the 
resulting polynomial to zero, we obtain a set of algebraic 
equations for ai , v and .c  By solving the equation system 
and substituting ai , v and c and the general solutions 
of Eq. (35) into Eq. (34), we can obtain a variety of exact 
solutions of Eq.(31).

Application of the fractional sub-equation method to the 
time FMSK equation

For our purpose, we introduce the following transformations:

, , ,u x t u x ctp p= = +^ ^h h   (36)

where c  is a constant. By substituting (36) into (1), then (1) 
is reduced into an nonlinear fractional ordinary differential 
equation (NFODE):
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Suppose that the solutions of Eq. (37) can be expressed by a 
polynomial in z  as follows:
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Balancing the highest order derivative terms with nonlinear 
terms in Eq. (37), we get

.u a a0 1p {= +^ h   (39)

Substituting (39) along with (35) into (37) and then letting 
the coefficients of iz^ h  be zero, one can get some algebraic 
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Repeating the similar procedure as above for n 1-  times, 
one can obtain
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Now using (19), we get
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Substituting (28) into (24), one can get
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Thus, the time FMSK equation can be reduced into an 
FODE

.P g g g g gg g g g5 5 5
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5
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a
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4. Traveling Wave Solutions of the Time FMSK 
Equation
Fractional sub-equation method

We consider the following general nonlinear FPDEs:

, , , , , ... , ,P u u u D u D u 0 0 1t x t x 1 #a=a a^ h   (31)

where u  is an unknown function, and P  is a polynomial 
of .u

Very recently, (Zhang and Zhang 2011) proposed fractional 
sub-equation method for Eq. (31) (see also, Wang and Xu 
2014, Bekir and Güner 2014).

By using the traveling wave variable
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5. Concluding Remarks
 In this paper, we performed the fractional Lie group analysis 
to time FMSK equation based on the sense of Riemann-
-Liouville derivative. We deduced two dimensional Lie 
symmetry algebra. Using the nontrivial Lie point symmetry 

equations about , , .c a a0 1  Solving the algebraic equatios by 
Maple, we obtain two cases:

Case 1:
, ,

, ,

a a

c

0 2

16

0 1

2
1

v v v a a

= = -

= = =a^ h   (40)

Case 2:

, ,

, ,

a a

c

0 10 1

2

v v v a a

= =

= = =a^ h   (41)

By using Eq.(40), expression (38) can be written as 

u a a0 1p {= +^ h   (42)

where .x t16 2
1

p v= + a^ h  By substituting the general 
solutions of Eq. (35) into Eq. (42), we have three types of 
travelling wave solutions of the time FMSK equation as 
follows.

When 01v ,  

,tanhu 21 p v vp= - - -^ ^h h   (43)

,cothu 22 p v vp= - - -^ ^h h   (44)

where, x t16 2
1

p v= + a^ h ,  

When 02v ,  

,tanu 23 p v vp= -^ ^h h   (45)

,cotu 24 p v vp=^ ^h h   (46)

x t16 2
1

p v= + a^ h ,

When 0v = ,  

,u
2 1

5 p p ~
aC

=
+
+

a^ ^h h
   (47)

x t16 2
1

p v= + a^ h ,

In view of (41), we can get new types of explicit solutions of 
Eq. (1) as follows:

,tanhu1 p v vp= - - - -^ ^h h    (48)

,cothu2 p v vp= - - - -^ ^h h   (49)

where , x t0
2

1v p v= + a^ h ; 

,tanu3 p v vp=^ ^h h   (50)

,cotu4 p v vp= -^ ^h h   (51)

where , x t0
2

2v p v= + a^ h ;  

,u
1

5 p p ~
aC

= -
+
+

a^ ^h h
 (52)

where , x t0
2

v p v= = + a^ h .  

Figure 1. The profile of solution u1(x, t) in Case 1 where 
, , ,c1 1 0 7v a= - = = .

Figure 2. The profile of solution u4(x, t) in Case 1 where 
, , ,c1 1 0 5v a= = = .
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