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This method is based on idea of using rational function 
transformations. In (18), it’s shown that the transformed 
rational function method is very effective tool to obtain 
exact travelling solutions of nonlinear differential equations. 
Afterwards, the transformed rational function method 
has been improved and the improved one was called the 
extended transformed rational function method (19). In 
(19), this method was applied to bilinear forms of (3+1) 
dimensional generalized KP equation, the Boiti-Leon-
Manna-Pempinelli equation, the (3+1) dimensional BKP 
equation, the (3+1) dimensional Jimbo-Miwa equation to 
obtain complexiton solutions. In literature, Wen-Xiu Ma 
named and used complexiton solutions for the first time 
(20). In (20,21), a novel class of explicit exact solutions to 
the Korteweg-de Vries equation is given through its bilinear 
form.

1. Introduction
In last decades, searching exact solutions and integrability 
of nonlinear differential equations has become very popular 
in applied sciences such as mathematical physics, applied 
mathematics (1). So far, different methods have been used 
to search analytical solutions of nonlinear differential 
equations, such as the homogeneous balance method (2), 
the F-expansion method (3), the tanh function method (4), 
the sech-function method (5), the extended tanh function 
method (6-9), tanh-coth method (10) and some others (11-
17).

In (18), the transformed rational function method which 
unifies the above exact solution methods is introduced. 
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Öz

Dönüştürülmüş rasyonel fonksiyon metodu; tanh tipi metodlar, homojen denge metodu, resmetme metodu, üstel fonksiyon metodu 
ve F-açılım tipi metodların birleşimi olarak düşünülebilir. Biz bu çalışmada, lineer olmayan oluşum denklemlerinin kompleksiton 
çözümlerinin elde edilmesinde kullanışlı ve etkili bir yol olan genişletilmiş dönüştürülmüş rasyonel fonksiyon metodunu kullanarak 
(3+1) boyutlu KdV ve yeni (3+1) boyutlu genelleştirilmiş Kadomtsev-Petviashvili denklemlerinin kompleksiton çözümlerini elde 
edeceğiz.

Anahtar Kelimeler: Kompleksiton çözümler, (3+1) boyutlu KdV denklemi, Genişletilmiş dönüştürülmüş rasyonel fonksiyon metodu, 
Yeni (3+1) boyutlu genelleştirilmiş Kadomtsev-Petviashvili denklemi
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In this paper, we present complexiton solutions to two (3+1) 
dimensional nonlinear evolution equations. The rest of this 
paper is presented in following arrangement. In Section 2, we 
simply give the mathematical framework of the transformed 
rational function method and the extended transformed 
rational function method. In Section 3, in order to illustrate 
the method, complexiton solutions of nonlinear evolution 
equations are obtained through their bilinear form. Finally, 
some conclusions are provided.

2. Extended Transformed Rational Function 
Method
The transformed rational function method which underlies 
the method we use in this paper, is used to find travelling 
wave solutions of nonlinear equations and introduced in 
(18), as follows.

Let’s start with the partial differential equation

, , , , ... .P u u u u 0x t xx =^ h   (2.1)

Step 1: We seek travelling wave solutions of Eq. (2.1) in the 
form of

, ,u u k x ctp p= = -^ ^h h   (2.2)

where k and c are real constants to be determined. By using 
the transformation (2.2), Eq. (2.1) can be transformed into 
an ordinary differential equation

, , , , ... ,P u ku kcu k u 02- =l l m^ h   (2.3)

where  /u du dp=l .

Step 2: We search for travelling wave solutions determined 
by
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where p h^ h  and q h^ h  are polynomials, r 02  represents 
the minimal differential number in (2.3). Introducing a 
new variable h h p= ^ h  by a solvable ordinary differential 
equation is very important part of the solution process. For 
instance, a first-order differential equation:

, ,T Th p h= =l ^ h   (2.5)

where T is a function of p  and h . The prime is used to 
imply the derivative with respect to p . Thus we obtain,
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From now on, we just need to equate the numerator of the 
resulting rational function in the transformed equation to 
zero. This gives a system of algebraic equations.

Step 3: One can easily obtain travelling wave solutions to Eq. 
(2.1) by solving the above mentioned algebraic equations in 
Step 2.

In [18], it is showed that the transformed rational function 
method will be the exp-function method if we choose 
h h=l  and eh = p  and that the transformed rational 
function method will be the extended tanh-function method 
if we choose 2h a h= +l , where a  is a constant. It is clear 
that the transformed rational function method unifies the 
existing methods using tanh-function type functions, tan-
function type functions and the exponential functions.

However, it is not appropriate to construct complexiton 
solutions to nonlinear equations, since complexiton solutions 
have different travelling wave speeds of new type. In (19), so 
as to find complexiton solutions, the transformed rational 
function method is improved as follows.

For a partial differential equation (2.1);

Step 1: Suppose Eq. (2.1) has a Hirota bilinear form:

, , ... ,H D D f f 0x t $ =^ h   (2.7)

where , , ...,D Dx t  are Hirota’s differential operators defined 
by 
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Step 2: Suppose
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where ,p 1 2h h^ h  and ,q 1 2h h^ h  are polynomials and 1h  and   
2h  admit, for example,
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where k x w t c1 1 1 1p = + +  and 
, , ,.k x w t c k k w w2 2 2 2 1 2 1 2p = + +  can be determined later 

and c1 and c2 are arbitrary constants.

Step 3: Choose appropriate ,p 1 2h h^ h  and , ,q 1 2h h^ h
we can convert (2.7) into algebra equation involving ki 
and wi .Solving this algebra equation, we will obtain exact 
complexiton solutions to Eq. (2.1).

In next section, we apply extended transformed rational 
function method to investigate the complexiton solutions of 
nonlinear evolution equations referred in abstract.
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3. Applications
Example 1. Let us consider new (3+1) dimensional 
generalized Kadomtsev-Petviashvili equation

u u u u u u u3 0xxxy x y x tx ty tz zz+ + + + - =^ h   (3.1)

which is introduced and employed to obtain multiple-
soliton solutions in (22). One can easily reduce Eq. (3.1) to

,D D D D D D D D D f f 0x y t x t y t z z
3 2 $+ + + - =^ h   (3.2)

by making the transformation nlu f2 x= ^ h . A simple 
direct computation shows that the corresponding bilinear 
equation reads

, , ,P D D D D f f f f f f f f f f

f f f f f f f f f f f f f f f3 3 0
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where ( , , , )f f x y z t= . Suppose that

.f A B1 2h h= +   (3.4)

Since Eq.(3.3) is a (3+1) dimensional equation, then we 
choose

k x bk y ck z w t c1 1 1 1 1 1p = + + + +   (3.5)

k x bk y ck z w t c2 2 2 2 2 2p = + + + +

where , ,A B ki  and wi are determined later. Substituting 
(3.4) into (3.3) with the relations (2.10), (2.11) and
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we can write the resulting equation in a polynomial form 
in terms of , , , .1
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By solving the system of algebraic equations (3.7), we get 
following solution
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Taking (3.4) into account we can express the solutions of 
(3.3) as follows:
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where A,b,c,c1,c2,k1,k2 are arbitrary.

Example 2. Now we consider (3+1) dimensional KdV 
equation which occurs in various areas of physics and is 
given in the form of

u u u u u u u u u u u6 60 10 20 0t x y xy xz x z x z x xz2 4
2

3 2+ + + + + + =

(3.11)

in the literature (23). With the aid of transformation

( ) ,nlu f x=   (3.12)

Eq. (3.11) is transformed into bilinear equation 

D D D D D D f f 0x y x z x t
3 5 $+ + =^ h   (3.13)

Eq. (3.13) can be expressed as
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Substituting (3.4) into (3.14) with the relations (2.10), 
(2.11) and (3.6), we get the following system of algebraic 
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Solution of system of algebraic equations (3.15) gives us:
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With the aid of (3.16), we get the solution of equation 
(3.14) in the form of 
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or   
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where , , , , , ,A B c c c k k1 2 1 2  are arbitrary.

4. Conclusion
In this paper, we present complexiton solutions to some 
(3+1) dimensional nonlinear equations. Hirota derivatives 
allows us to express given nonlinear equations in bilinear 
form. Upon this, with appropriate choice of solution form, 
we obtain complexiton solutions with rich parametric 
values which is thought useful for further works. Since the 
existence of hyperbolic and trigonometric type functions 
in solutions, the phrase “complexiton” arises. Employed 
method can be generalized to obtain solutions of other 
nonlinear partial differential equations by taking different 
differential equations that 1h and 2h  are supposed to satisfy.
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