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with the nature of their expected duty. Piezoelectric 
materials that belong to the smart materials class are able to 
deform under an electric field or produce an electric signal 
as a result of any mechanical effect. Electromechanically 
polarized piezoelectric materials are frequently used as a 
transducer, sensor and actuator due to their unique features 
including simple structure, nonflammable, electromagnetic 
noise free, low energy usage and high operation frequency. 

1. Introduction
Smart materials are defined as materials whose geometrical 
and structural characteristics can be changed in accordance 
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Öz

Sahip oldukları hızlı tepki verme ve düşük enerji gereksinimi gibi özellikleri sayesinde piezoelektrik özelliğe sahip malzemeler algılayıcı 
ve uyarıcı olarak sıklıkla kullanılmaktadır. Çalışma prensiplerinde titreşim özellikleri etkin rol oynadığından, piezoelektrik malzemelerin 
titreşim karakteristiklerini bilmek önemlidir. Bu çalışmada kesiti keyfi olarak değişen piezoelektrik bir çubuğun zorlanmış titreşim 
analizi yapılmıştır. Problemi ifade eden diferansiyel denklem, mekanik ve elektrostatik özelliklerin fonksiyonu olan değişken katsayılara 
sahiptir. Bu tür bir lineer diferansiyel denklemin analitik çözümü bazı özel kesit alanları ile sınırlı olduğundan sayısal çözümleme 
kaçılmazdır. Keyfi kesit alanına sahip konsol piezoelektrik çubuğun (PZT-4) zorlanmış titreşimi için matematiksel model Laplace 
uzayında elde edilmiş ve Tamamlayıcı Fonksiyonlar Yöntemi ile sayısal olarak çözülmüştür. Çözümlerin zaman uzayına dönüşümü 
modifiye Durbin yöntemi uygulanarak gerçekleştirilmiştir. Çözüm yöntemi, analitik olarak da çözülebilen üniform piezoelektrik çubuk 
için de geçerlidir. Keyfi kesit değişiminin çubuğun dinamik davranışına etkisini göstermek için sayısal örnekler verilmiştir.

Anahtar Kelimeler: Tamamlayıcı fonksiyonlar yöntemi, Durbin yöntemi, Zorlanmış titreşim, Laplace dönüşümü, Piezoelektrik çubuk

Abstract

Piezoelectric materials, which have fast response and low energy usage features, are widely used in sensors and actuators. Due to the 
active role of their working principle, it is important to know the vibration characteristic of each piezoelectric material. In this paper, 
forced vibration analysis of arbitrary non-uniform piezoelectric rod has been performed. The governing differential equations have 
variable coefficients which are functions of mechanical and electrostatic properties. Analytical solution of these linear differential 
equations is limited to specific cross-section area models, so numerical method is inevitable. Numerical model of the forced vibration 
of cantilever piezoelectric (PZT-4) rod with an arbitrary non-uniform cross-section area is obtained in the Laplace space and then 
solved numerically by the Complementary Functions Method (CFM). Solutions were transformed from the Laplace domain to the 
time domain by applying modified Durbin’s procedure. The technique is validated for a uniform piezoelectric rod that can also be 
solved analytically. In order to demonstrate the effect of arbitrary geometry on the dynamic feature of the rod, numerical examples are 
employed.

Keywords: Complementary functions method, Durbin method, Forced vibration, Laplace transform, Piezoelectric rod
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Piezoelectric transducers can be considered as a rod in terms 
of mathematical modeling. Thus, it is important to know 
the vibration behavior of piezoelectric rods with different 
cross-section area models. Some structural elements, such 
as rods and beams are designed with variable cross-section 
due to technical advantages in some applications. Vibration 
behavior of nonuniform rods with variable cross-section 
was investigated extensively in the literature (Eisenberg 
1991-Yardımoğlu, Aydın 2011 and Celebi et al. 2011). 
Studies on the piezoelectricity are usually related to finite 
and infinite dimensional structures in different geometries 
such as thin rods, solid or hollow cylinders, plates, discs, 
cylindrical shells. When geometry and material properties 
get more complicated, applying numerical methods would 
become inevitable. Chen and Zhang (2009) obtained an exact 
solution of a nonuniform cross-section rod. One dimensional 
equation of piezoelectromagnetic rectangular beam for the 
flexure and extension with shear deformation are derived by 
Zhang et al. (2009). They investigated the magnetoelectric 
effects in fiber for both piezoelectric and piezomagnetic 
composites and compared magnetoelectric effects in fibers 
and in thin films. It is concluded that magnetoelectric 
effects in fibers are considerably stronger than those in thin 
films. Free vibration analysis of the piezoelectric transformer 
is performed by an accurate electromechanical model with 
Hamilton’s principle by Nadal and Pigache (2009). Yang 
and Zhifie (2009) used elasticity theory with state-space 
based differential quadrature method to analyze the free 
vibrations of a functionally graded piezoelectric beam for 
different boundary conditions. The natural frequency and 
static behaviour of a flextensional actuator are developed 
with the help of Hamilton’s principle and solved with use 
of the perturbation method by Przybylski (2015). Exact 
closed-form solution of a piezoelectric gyroscope for free 
and forced vibrations are obtained by Yand and Fang (2003). 
Airy stress function method is employed to get the analytical 
solution of a functionally graded piezoelectric cantilever 
beam by Shi and Chen (2004). Free longitudinal vibration 
of non-uniform piezoelectric rod is solved numerically with 
the CFM and pseudospectral Chebyshev method by Eker et 
al. (2015) and Yarımpabuç et al. (2016).

In this study, forced vibration of cantilever piezoelectric 
(PZT-4) rod with arbitrary non-uniform cross-section area 
is solved in the Laplace domain numerically by the CFM 
under four different dynamic load functions. The CFM, 
theoretically explained in the literature by Aktaş (1972), 
Agarwal (1982), Roberts and Shipman (1979), Calim (2016) 

and Tutuncu and Temel (2009, 2013) is infused into analysis 
to transform the boundary value problem to a system of an 
initial-value problem, which can be easily solved by a fifth 
order Runge-Kutta method (RK5) with great accuracy 
(Chapra 1998). Durbin’s Laplace inversion procedure that 
has been evinced to be an efficient and accurate inversion 
method is used to get the results in the time domain (Temel 
et al. 2014). The numerical and analytical results for a 
uniform piezoelectric rod are compared in order to show 
the accuracy of the method. After then, numerical examples 
are employed to demonstrate the influence of arbitrary 
geometry on the dynamic feature of the rod.

2. Material and Methods
Rosen type transducers provide the most efficient usage in 
applications. They consist of two parts, a driving portion and 
receiving portion, and operate by making use of extensional 
vibrations of these parts. Each of the driving portion and 
the receiving portion with different coordinates and under 
different polarization conditions can be considered as a 
piezoelectric rod. Consider a non-uniform piezoelectric rod 
polarized along the longitudinal axis shown in Figure 1.

Constitutive equations of piezoelectric materials that exhibit 
linear behavior define electromechanical properties and can 
be derived in various ways to highlight desired properties 
(Chen 2009). Under the assumption of material properties 
do not change along the x-axis, and with the consideration 
of mechanical and electrostatic equations together, the 
governing equation of the system can be written in the 
following form (Chen 2009, Eker 2015).

Figure 1. Piezoelectric rod with non-uniform cross-section.
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dielectric constants for longitudinal motion, respectively. 
Clamped-free supported rod which is electrically open on 
two ends is considered, therefore the boundary conditions 
become,

, , ,
( )
( )

u t x
u l t

c A l
P t

0 0
112

2= =
r

^ ^h h

where P t^ h  represents the load functions (Figure 2) applied 
to the end of the rod (Temel et al., 2014). Taking Laplace 
transform of Equation (1) with zero initial conditions 
|u t

u 0t
t

0
02

2= ==
=

c m  gives

, ,U N x s U Q x s U 0+ + =m lr r r^ ^h h   (3)

with

,
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 and ,Q x s c

s
11

2t
= - r
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where ( )’ represents the derivative with regard to x , 
,U U x s=r ^ h  is the Laplace transformation of u  and s  is 

the Laplace parameter.

Under the effect of four different load functions on the free 
end x l=^ h , the boundary conditions become

,U s0 0=^ h  and ,
( )x

U l s
c A l
p s
112

2 =
r

^ ^h h
  (5)

where ( )p s  is the Laplace transform of the load ( )P t .

2.1. Complementary Functions Method

The CFM which is used to solve forced vibration analysis 
of piezoelectric rod is based on the transformation of the 
solutions of two-point boundary values problems (BVP) to 
an initial-value problem (IVP). A simple solution schedule 
can be obtained by the method even if the rod has various 
cross sections and applied force conditions. General closed-
form solution of the linear governing differential equation 
that given above cannot be obtained except for simple cross 
sections. The complete solution of Equation (3) is

, ,U b U j 1 2j j= =r r   (6)

where U jr  is the linearly independent homogeneous solution 
in the Laplace domain. The coefficients b j  are determined 
via the boundary conditions. The CFM is started by 
assuming U Y( )i

i
1=r  and U Y' ( )

i
i
2=r  (Tutuncu and Temel 2009, 

2013), which means

Y Y( ) ( )i i
1 2=l^ h   (7)

, ,Y N x s Y Q x s Y( ) ( ) ( )i i i
2 2 1= - -l^ ^ ^h h h   (8)

To get each homogeneous solution, the system of equation 
(Equation (7-8)) can be solved numerically. In order to 
ensure linear independency, the Kronecker delta is used as 
initial conditions (Roberts 1979),

, , .Y j 1 2( )
j
i

jid= =   (9)

Equations (7) and (8) constitute a system of equations for 
the homogeneous solution along with the initial conditions. 
The RK5 will be used for all cases considered. With this 
solution procedure, ,U x s^ h  and its first derivative are 
calculated together simultaneously. Imposing the boundary 
conditions to the present problem leads to a system of 
algebraic equations for the coefficients b1  and b2  as follows:

A
A

A
A

b
b

RHS
RHS
1
2

11

21

12

22

1

2

=; ;E E' 1   (10)

Here, Aij  includes the values of the homogeneous solutions 
at the boundary points. RHS1  and RHS2  contain values of 
the boundary conditions that include external load subjected 
to the rod. These points will be illustrated in the following 
sections.

2.2. Formulation

Three different cross-section forms (Figure(3)) are 
considered in the present study. The first two cross-section 
variations for some simple form can be solved analytically, 
however, the third one can not.

Figure 2. Applied load functions: A) Step load function, B) Sinusoidal impulsive load function, C) Arbitrary load function t1= 0.0014, 
t2= 0.0024, t3= 0.004, t4= 0.005, t5= 0.006, t6= 0.007, D) Ramped Load function (b= 0.011). 

A B C D
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2.2.3 Cosinusoidal-Form Variation

Consider that the cross-sectional area varying with the 
following cosinusoidal-form,

A x A Cos a l
nx b0

2= +^ h 8 B   (23)

where n  represents inhomogeneity parameters. Substituting 
Equation (17) into Equation (3) yields,
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Letting U Y( )i
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1=r  and U Y' ( )

i
i
2=r  yields
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This equation system is also solved by a similar procedure 
that was mentioned in Section 2.1 by using Equation (10) 
where,
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3. Results
In this research, a general objective computer program is 
coded in Matlab to analyze the forced vibration of arbitrary 
non-uniform piezoelectric rods. Material constants for 
PZT-4 was taken from (Ding and Chen, 2001). In the 
solution procedure of the initial value problem based 
on the CFM, RK5 algorithm is used. Inverse Laplace 
transformation into the time domain is taken by modified 
Durbin’s method. In modified Durbin’s procedure step size 
and Laplace parameters were choosen as 8.5937x10-5 and 
128 respectively. Four types of dynamic axial end force 
are used in the analyses which are given in Figure 2; step 
load, sinusoidal impulsive load, arbitrary load and periodic 
load. The geometrical models for different cases are given 
in Section 2. The dimensionless parameters “a, b” are taken 
as 0.8, -0.2 and the inhomogeneity parameter “n” is taken 
as 1, 1.5 and 1.8 for all cases considered. The results are 
correspond to non-uniform cross-section with constant 
material properties.

2.2.1. Power-Form Variation

Consider that the cross-sectional area varying with the 
following power-form,

A x A a b l
x n

0= +^ `h j   (11)

where a  and b  are dimensionless parameters and n  
represents inhomogeneity parameters. Substituting 
Equation (11) into Equation (3) turns into linear ordinary 
differential equations,
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Following the steps outlined in Section 2.1, the constants 
b j  can now be found from the system given by Equation 
(10) where,
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Then, the displacement and first derivative can be obtained 
at the collocation points.

2.2.2 Exponential-Form Variation

Consider that the cross-sectional area varying with the 
following exponential-form,

( )A x A e l
nx

0=
-

   (17)

where n  represents the inhomogeneity parameters. 
Substituting Equation (17) into Equation (3) turns into 
linear ordinary differantial equations,
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This equation system is solved by a similar procedure that 
was mentioned previously in Section 2.1 by using Equation 
(10) where,
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geometrical models subjected to dynamic loads. As shown 
in Figure 5 (a-k), the inhomogeneity parameter is a useful 
parameter for controlling the displacement amplitude.

4. Conclusion
In this work, forced vibration analysis of the arbitrary non-
uniform piezoelectric rod is presented. The cross-sectional 
area of the rods is varying continuously in the axial direction. 
Under the Laplace transformation, the partial differential 

In order to ensure the efficiency and the adequacy of the 
present method, analytical and the CFM results for a 
uniform rod are presented in Figure 4. It can be noted from 
the figure that the CFM results match quite well with the 
analytical results. Observing these results disclosed the great 
accuracy and efficiency accomplished by the CFM, and the 
calculations executed at only 11 points through the length 
yielded six-digit accuracy. Figure 5 (a-k) show that results of 
the displacement at the end of the rod x l=^ h  for different 

Figure 3. Considered geometry of the rod: A) Power form cross-section, B) Exponential form cross-section, C) Cosinusoidal form cross-
section.

Figure 4. Comparison of displacement u^ h  at the end of the rod x l=^ h  for constant cross-section u 10 9# -^ h

A B C
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Figure 5. Forced vibration analysis of rod at different cross-sectional areas under different types of load (a=0.8, b=-0.2, A0=1). A) Power 
form cross section under step load. B) Exponential form cross section under step load. C) Cosinusoidal cross section under step load. 
D) Power form cross section under sinusoidal load. E) Exponential form cross section under sinusoidal load. F) Cosinusodal form cross 
section under sinusoidal load. G) Power form cross section under arbitrary load. H) Exponential form cross section under arbitrary load. 
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high accuracy. It is also noted that the solution requires 
little to no computational costs and is straightforward. 

•	 The approach further introduces the elimination of 
separate computations for mode shapes and natural 
frequencies. Obtaining the forced vibration response 
values are achieved directly.  

•	 In terms of design perspective, the inhomogeneity 
parameter constitutes an adjustment variable for 
particular applications. This further enables control on 
the displacement amplitude. 

equation is transformed into a time-independent boundary-
value problem in spatial domain which is computed by the 
CFM. The CFM method converts the problem to a system of 
initial-value problem that can be solved by any conventional 
method in the literature. The system of the initial value 
problem is solved by the RK5. Inverse transformation of the 
results into the time-space is taken by modified Durbin’s 
method. From the results presented above the following 
conclusions are reached:

•	 The solution strategy provided here presents a viable 
method to solve cross-sectional area problems with 

Figure 5. I) Cosinusoidal form cross section under arbitrary load. İ) Power form cross section under ramped load. J) Exponential form 
cross section under ramped load. K) Cosinusoidal form cross section under ramped load.

I İ

J

K



Yarımpabuç, Eker, Çelebi / Forced Vibration Analysis of Non-Uniform Piezoelectric Rod by the Complementary Functions Method

Karaelmas Fen Müh. Derg., 2018; 8(2):496-504 503

Arbitrary Load: ( )

.

.
.

.
.

P t

t t t

t
t t t

t t t t
t t t

t t t t
t

t

t t t
t

t

7
4000 0

3 04 1600

4 1600

600
1200

1125 3 5
7

6 6
4 2

0

1

2 3

3 4

4 5

5 6

1 2

6

gggg

gggg

gggg

gggg

gggg

gggg

gggg 2

# #

# #

# #

# #

# #

# #

=

-
-

-
-
-

Z

[

\

]
]
]
]]

]
]
]
]

( ) .

. .

.

.

.

P t
s

e s

s s
t

e s s s
t

e s s s
t

e s s s
t

e s s s
t

e s s s
t

7
4000 3 04

2171 4286 2171 4286

6 54 2725 2725

10 9 2725 2725

14 2800 2800

10 8 1800 1800

3 300 300

L t s

t s

t s

t s

t s

t s

2

2
1

2
2

2
3

2
2

2
5

2
6

1

2

3

4

5

6

= +

- -

+ - + +

+ - -

+ - + +

+ - -

+ - + +

-

-

-

-

-

-

6

:

:

:

:

:

9@

D

C

D

D

D

D

Ramped load: ( )
. .

.P t
s s e

e e s
0 011 0 011

0 011
L .

. .

s

s s

2 2 0 022

0 011 0 022

=
-
- +- -6 @

5. References
Abrate, S. 1995. Vibration of non-uniform rods and beams. J. 

Sound V., 185(4):703-716.
Agarwal, RP. 1982. On the method of complementary functions 

for nonlinear boundary-value problems. J. Optimiz. Theory 
App., 36(1):139-144.

Aktaş, Z. 1972. Numerical Solutions of Two-Point Boundary 
Value Problems. Metu, Ankara.

Calim, FF. 2016. Free and forced vibration analysis of axially 
functionally graded Timoshenko beams on two-parameter 
viscoelastic foundation. Composites Part B, 103:98-112.

Calim, FF. 2016. Transient analysis of axially functionally graded 
Timoshenko beams with variable cross-section. Composites 
Part B, 98:472-483.

Celebi, K., Keles, I. 2011. Analysis of one-dimensional response 
of an elastic body under dynamic loads, 6th International 
Advanced Technologies Symposium, 16-18 May, Elazığ, Turkey.

Celebi, K., Keles, I., Tutuncu, N. 2011. Exact solution for forced 
vibration of non-uniform rods by Laplace transformation. GU 
J. Sci., 24(2):347-353.

Chapra, SC., Canale, RP. 1998. Numerical Methods for 
Engineers, 2nd ed., New York, USA:McGraw-Hill, 760-766.

Chen, WQ., Zhang, CL. 2009. Exact analysis of longitudinal 
vibration of a nonuniform piezoelectric rod. Proc. Spie. Int. Soc. 
Optics Photo., 749307.

Appendix A: The Modified Durbin’s Inverse Laplace 
Transform

Using a numerical inverse Laplace transform technique is 
inevitable to get the values in the time domain (Celebi et al. 
2011). For this, the fast Fourier transform based modified 
Durbin’s inverse Laplace transform technique is used 
(Durbin 1974s). Modified Durbin’s formulation for inverse 
Laplace transform is outlined below:
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Here, i is the complex number, s a i T
m2

m
r= +  is the 

mth Laplace parameter. There are M  units of equal time 
intervals and T  is the solution interval. ( )f t  is calculated 
for all , , , ... ... ... .,t j t j N

T j M0 1 2 1j T= = = -^ h . The most 
suitable way for this transform is using the aT5 10# #  
interval. For numerical examples in this study, the value of 
aT is choosen as 7.5. Eventually, results can be modified 
multiplying each term by Lanczos Lm^ h  factors due to 
amend results in the Laplace domain (Celebi et al. 2011).
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Appendix B: Laplace Transformations of Considered Loads
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