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1
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1 0 1

1 0= +
+ =c m  Hence the 

identity element of C  fixes all z H! .

Theorem 1. ( , )SL 2 Z  is generated by two elements 
1
0
1
1

x = c m  and 0
1
1
0

~ =
-c m .

Proof. Let /  be the subgroup of ,SL 2 Z^ h  generated by 

x and ~ . Suppose ,SL 2 Z/! ^ h . Since 1
1
0
1

1 1~x ~ =- - c m  

and I2~ = -  all elements of the form a
c d
0c m  of 

,SL 2 Z^ h  are contained in / . Therefore if we put 
: ,minb b

a
c

b
d

SL 2 Z0 = /!= c ^m h' 1 , then b 00 ! . Take 

an element a
c

b
d

0
0

0

0

0

c = c m  of ,SL 2 Z = /^ h , and an integer n 

so that a nb b0 0 01- . Since ,
b
d

a nb
c nd

n
0

1 0

0

0 0

0 0

c ~ x =
-
-

-
-

- c m  

w get n
0

1 /!c ~ x-  by the assumption on b0 . Hence 
,0 /!c  this is a contradiction.

1. Introduction
Let : :z Imz 1H C 2!= " ,  be the complex upper half 
plane. , : : , , ,SL

a
c

b
d

a b c d and ad bc2 1Z Z!= - =^ ch m' 1
is sometimes denoted by 1C^ h . And also we recall that in 
many papers authors use the projective special linear group 

, , /PSL SL I2 2Z Z !,^ ^h h " ,  instead of ,SL 2 Z^ h . The 
group

( , ):
( ) : , , ,

PSL
T z cz d

az b a b c d and

ad bc
2

1
Z

Z!
C= =

= +
+

- =
* 4

is known the modular group. We say ,SL 2 Z^ h  and its 
subgroups of finite index modular groups. 

Lemma 1. C  has an action on H  defined by z cz d
az b

c = +
+  

for a
c

b
d
!c C= c m  and z H! .

Proof. If z H!  and !c C , then 
( )

.Im Im
det

z cz d
az b

cz d
Imz

cz d
Imz 02 2 2c

c
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+ =
+

=
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It is known that a discontinuous group is discrete. C  acts 
properly discontinuously on H , that is, for any two distinct 
points ,x y H! , there exist open neighbourhoods ,U V
containing ,x y  respectively such that the number of group 
elements g ! C  with gU V+ ! z  is finite. For such an 
action there is a notion of fundamental domain: a subset 
Fof H  such that (i) H F,c= , for all !c C . (ii) There is 
an open set U  so that UF = . (iii) U  and Uc  are either 
identical or disjoint. We recall that a fundamental domain 
for the action of C  on H  is given by the definition;

Definition 1. The set :z z and Rez1 2
1

F H! $ #= % /  
shown in Figure 1. is a fundamental domain of C .

Figure 1. Fundamental domain for Γ.

Theorem 2. Any elliptic point of C  is equivaent to i 
or g . The point i  is an elliptic point of order 2 and 

,
1
0
0
1

0
1
1
0

i ! !C =
-c cm m' 1 . The point g  is an elliptic point 

of order 3 and , , .
1
0
0
1

1
1
1
0

0
1
1
1

! !C = +
- -

-
g c c cm m m' 1  

Proof. It is obvious that interior points of a fundamental 
domain are ordinary points. Thus any elliptic point must be 
equivalent to a boundary point of the fundamental domain 
F . Since C  contains 1

0
1
1

x = c m  and 0
1
1
0

~ =
-c m , the 

boundary points of F , other that the three points ,i g  and   
g-  are also ordinary points. Observing that the interior 

angle of F  at i  is r , we see the order of i  is at most 
2. Since i i~ = , and 12~ = - , the point i  is indeed an 
elliptic point of order 2. Since x g g- =^ h  and the interior 
angles of F  at g  and g-  are both 3

r , the order of g  is at 
most 3. Now we note 1

1
1
0

x~ =
-c m , 0

1
1
1

2x~ =
-
-

^ ch m  and 
I3x~ = -^ h . As x~  fixes g , g is an elliptic point of order 

3, and g-  is equivalent to g .

Remark 1. The set of the cusps of C  is :P Q1 , 3= " ,  and 
all cusps of C  are equivalent.

Proof. It is clear that the point 3  is a cusp of C . Let x  be 
a cusp of C , and x 3! . Because x  is a double root of a 
quadratic equation with rational coefficients, x  is a rational 
number. Coversely, let x  be a rational number, and x c

a=
its reduced fractional expression. Then we can take integers 
b, d so that ad bc 1- = . Put a

c
b
d

c = c m , then !c C  and 
x3c = . Therefore x  is C  equivalent to 3 .

Now we explain congruence modular groups. Because they 
are very important number theory, algebraic graph theory 
and combinatorial group theory.

For a positive integer N , we define subgroups , ( )N N0 1C C^ h  
and NC^ h  of ,SL 2 Z^ h  by

, : ( ) ,

( )
, : ( ),

( )
,

( )
, : ( ),

( )
.

mod

mod

mod

mod

mod

N
a
c

b
d

SL c N

N
a
c

b
d

SL c N

a d N

N
a
c

b
d

SL b c N

a d N

2 0

2 0

1

2 0

1

Z

Z

Z

0

1

! /

! /

/ /

! / /

/ /

C

C

C

=

=

=

^

c

c

c

^

^

^h

m

m

m

h

h

h

*

*

' 1

4

4

We note that , ( ) ( )SL 2 1 1 1Z 0 1C C C= = =^ ^h h , and 
( ) , .N N N SL 2 Z1 01 1 1C C C^ ^ ^h h h  Further if |M N , 

then ( ) ( ), ( )N M M0 0 11C C C , and ( )N M1C C^ h . These 
subgroups are modular groups since : N1 31C C^ ^h h . We 
call ( )NC  a principal congruence modular group, and also 
( ), ( )N N0 1C C  modular groups of Hecke type. We call N the 

level of ( )N0C , ( )N1C  and ( )NC .  A modular group contain-
ing a principal congruence modular group is called a congru-
ence modular group. For an element ,

a
c

b
d

M Z2!c = c ^m h

we define an element ( )
a
c

b
d

Nm c = r
r

r

r
d n , where 

( ), ( ), ( ), ( ) .mod mod mod moda a N b b N c c N d d N/ / / /r r r r

Then Nm  induces a homomorphism of ,SL 2 Z^ h  into 
, /SL N2 Z^ h . It is easily seen that Nm  is surjective and 

Ker NNm C=^ ^h h , in particular NC^ h  is a normal sub-
group of .1C^ h
Corollary 1. The mapping ( )mod

a
c

b
d

d N"c m  induces an 
isomorphism ( )/ ( ) /N N NZ Z

*
0 1 ,C C ^ h .  

Now let N pe

p
=%  be the expression as a product 

of prime numbers. Then /NZ Z  is isomorphic to 
/pZ Ze

p
^ h%  by the correspondence ( ),moda a pe

p
"%

so that / /M N M pZ Z Z Ze
p2 2,^ ^h h%  through the 
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correspondence: .mod
a
c

b
d

a
c

b
d

pe

p
"c ccm m m%

It is clear that if ,
a
c

b
d

SL 2 Z!c ^m h , then 
, /mod

a
c

b
d

p SL p2 Z Ze e!c ^m h  is obtained. Conversely, 
suppose , /mod

a
c

b
d

p SL p2 Z Ze e!c ^m h  for all 
prime factors p  of N . Then ( ),modad bc p1 e/-
so that ( )modad bc N1/- . Therefore 

, / ( , / )SL N SL p2 2Z Z Z Ze
p

,^ h % . 

Since the following lemma is well known, we only give the 
statement; 

Lemma 2. For a positive integer N , we have

i. ,/ | , / |GL N N SL N2 2Z Z Zz=^ ^ ^h h h

ii. , /SL N N
p

2 1 1
Z Z

|p N

3
2= -^ ch m% . Here ( )Nz  is the 

Euler function.

2. Main Calculation and Results
The group ( ): ( ) ( )N N N

1
0
0
1

0 0 0,C C C=
-! c m  will 

likewise be called the congruence group. That is 

( ) :N
a

cN
b
d

a
cN

b
d

ad bcN 10 , !C =
-
-

- =! c cm m' 1 . 

For all element of the set of p1  can be represented as a 
reduced fraction y

x  with ,x y Z!  and ,x y 1=^ h . Since 
y
x

y
x= -
- , this representation is not unique. We represent  

3  as 0
1

0
1= -  . The action of the matrix N0!

a

c

b

d
C!d ^n h  

on y
x  is : y

x
x y
x y

"
a

c

b

d c d
a b
+
+d n  . The action of a matrix on  

y
x  and on y

x
-
-  is identical. 

We now explain imprimitivity of the action on N0C! ^ h  
on p1 . ,N P0

1C!^ ^ h h  is transitive permutation group, 
comprising of a group N0C! ^ h  acting on a set P1  transitively. 
, P1 2

1!jj  satisfy 1 2.j j  then 1 2.c j c j^ ^h h  for all 
N0!c C! ^ h . In this case equivalence relation .  on P1  

is invariant and equivalence classes form blocks. We say 
,N P0
1C!^ ^ h h  imprimitive, if P1  admits some invariant 

equivalence relation different from the identity relation and 
the universal relation. Otherwise ,N P0

1C!^ ^ h h  is primitive. 
These two relations are supposed to be trivial relations. Also 
.  relation of equivalence classes are called orbits of action.  

Lemma 3. Let ,G X^ h  be a transitive permutation group. 
,G X^ h  is primitive if and only if Gv   is a maximal subgroup 

of G  for each !v X .

Proof. It is clear that from book of  Biggs and White 1979.

Consequently we understand that if G H G1 1v  then X  
is imprimitive. So we use the transitivity, for all element of   
X  has the form g v^ h  for some g G! . Therefore one of 
the non trivial G  invariant equivalence relation on X  is 
given as follows: 

g g1 2.v v^ ^h h  if and only if g g H1
1

2 !- .

The number of the blocks is the index :G HW = . We can 
apply these ideas to the case where G  is the N0C! ^ h  and X  
is P1 . We have the following lemmas:  

Lemma 4. N0C! ^ h  acts transitively on P1 .

Proof. We can show that the orbit containing 3  is .P1

If  b
a P1!  then as ,a b 1=^ h  there exist ,x y Z!  with 

ay bx 1- = . We can state the element a
b

x
y

c m  of N0C! ^ h  
sends 3  to b

a .  

Lemma 5. The stabilizer of 3  in P1  is the set of 

, : ,
1
0 1

1
0 1

Z
1 2

1 2

!

!

!

"
!

m m
m mc cm m' 1  denoted by NC!3 ^ h .

Proof. Because of the action is transitive, stabilizer of any two 
points conjugate. Therefore we can only look at the stabilizer 
of 3  in N0C! ^ h . Let : ,T

a
cN

b
d

ad bcN 11 = - =c m . Thus

T
a

cN
b
d
1
0

1
0

1 3 = =^ c c ch m m m
then , ,a c d1 0 1= = =  and b Z1 !m= . 
Therefore a

cN
b
d

1
0 1

1m
=c cm m  is obtained. Again let 

: ,T
a

cN
b
d

ad bcN 12 =
-
-

- = -c m . So

T
a

cN
b
d

1
0

1
0

2 3 =
-
-

-
=^ c c ch m m m

then , ,a c d1 0 1= = = -  and .b Z2 !m=
a

cN
b
d

1
0 1

2m-
-

=
-

c cm m  is achieved. 

Similarly we can prove other cases. That is, 

, : ,N
1
0 1

1
0 1

Z
1 2

1 2

!

!

!

"
!

m m
m mC =!

3 ^ c ch m m' 1 . Moreover it 

is easily seen that ( )N N N0 01 1C C C! !
3 ^ ^h h is satisfied. 

Let .  denote the N0C! ^ h  invariant equivalence relation on  
P1  by N0C ^ h , let v s

r=  and w y
x=  be elements of P1  . 

Then there are the elements :g
r
s

1
1

2

w

w
= c m  and 

ϱ1
ϱ2

:g
x
y

2 = c m    
in N0C! ^ h  such that v g1 3= ^ h  and w g2 3= ^ h . So we 
have

g g g g N1 2 1
1
2 0,3 3. ! C-^ ^ ^h h h
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where g G!  and , V!a b . The orbits of this action 
are called suborbitals of G . The orbit containing ,a b^ h  
is denoted by ,0 a b^ h . From ,0 a b^ h  we can form a 
suborbital graph / . Its vertices are the elements of V , and 
if , ,0!c d a b^ ^h h  there is a directed edge from c  to d . 
As N0C! ^ h  acts transitively on P1 , it permutes the blocks 
transitively. Also there is a disjoint union of isomorphic 
copies of suborbital graphs. We say that edges of these graphs 
can be drawn as hyperbolic geodesic in the upper half-plane 
H  and Poincare disk model : :z z 1D C 1!= " , . Here 
we will draw these graphs on the Poincare disk model that 
points and lines are in Figure 2. Note that points on the 
circle are not in the hyperbolic plane. However they play an 
important role to determine our model. Euclidean points 
on the circle are called ideal points, omega points, vanishing 
points, or points at infinity. We recall that the area inside the 
unit circle must represent the infinite hyperbolic plane. This 
means that our standard distance formula will not work. We 
introduce a distance metric by

d
r

dr
1
2

2t =
-

where t  represents the hyperbolic distance and r  is the 
Euclidean distance from the center of the circle. Note that  
d " 3t  as r 1" . This means that lines are going to have 
infinite extend. The relationship between the Euclidean 
distance of a point from the center of the circle and the 
hyperbolic distance is arctan

u
du h r
1
2 2

r

2
0

t =
-

=# . The 
hyperbolic distance from any point in the interior of D  to 
the circle itself is infinite. 

Let : ,F F N
u

0
1

,u N = a k  and : ,Z Z N
u

1
0

,u N = a k  denote the 
subgraphs in /  whose vertices are in the blocks 36 @  and 
06 @  respectively. Similarly, we may write subgraphs for 

other blocks.    

Theorem 3. Let 
1

1

c
a  and 

2

2

c
a be in the block .36 @

Then there is an edge 
1

1

2

2
"c

a
c
a  in F ,u N  if and only 

if modu N2 1!/a a ^ h , modu N2 1!/c c ^ h  and 
N1 2 1 2 !a c c a- = .

Proof. Let F ,u N
1

1

2

2
" !c

a
c
a , then  there exists some 

:T N0!
a

c

b

d
C= !d ^n h  such that T 0

1
1

1

c
a

c
a= =a k  and 

T N
u

u N
u N

2

2

c d
a b

c
a=

+
+

=` j . Hence ,1 1a a c c= = . Then 
these equations ( )modu N2 1/a a  and ( )modu N2 1/c c  
are satisfied. So we have the matrix equation

u
N

1
0

1

1

2

2

a

c

b

d

a

c

a

c
=d c cn m m .

and so from the above we can calculate that 
* *

*
( )g g

ry sx
N1

1
2 0! C=

-
- d n . Hence ( )modry sx N0/-  

is obtained. And also the number of block is 
:N N 20 0C C =! ^ ^h h . These blocks are 

: : , ( )

: : , ( )

mod

mod

y
x P x y and Nx

y
x P x y and y N

1 00 1
0
0
1 1 0

1

13

! /

! /

= = =

= = =^

^

h

h

6
6

9
9

@
@

C
C
%
%

/
/

Definition 2. Let V  be a nonempty set, the elements 
of which are called vertices. A directed graph /  is a pair 
,V E^ h  where E  is a subset of V V# . The elements of E  

are called edges. The directed graph /  is said to be finite if 
the vertex set V  is finite. If , E!a b^ h , this is indicated as 
"a b . 

Definition 3. Let a sequence , , ...,v v vk1 2  of different vertices. 
Then the form

,v v v vk1 2 1" " " "g

where k N!  and k 3$ , is called a directed circuit in ./ If 
k 2= , then we will say the configuration v v v1 2 1" "  a self 
paired edge. If k 3=  or k 4= , then the circuit, directed or 
not, is called a triangle or quadrilateral. In a graph is a finite 
or infinite sequence of edges which connect a sequence of 
vertices which are all distinct from one another are called a 
path.

Let ,G V^ h  be transitive permutation group. Then G  acts 
on V V#  by

: , , , ,G V V V V g g g"# # #i i a b a b=^ ^ ^ ^ ^ ^h hh h hh

Figure 2. Poincare lines and points.
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hyperbolic directed triangles in F ,2 7  and F ,2 7-  on the 
Poincare disk model are given in Figure 3. 

Triangle circuits: ,0
1

7
2

7
1

0
1
0
1

7
2

7
3

0
1

) ) ) ) ) )  and

,0
1

7
2

7
1

0
1
0
1

7
2

7
3

0
1

) ) ) ) ) )
- - - -

Corollary 2. Actually F ,u N  contains hyperbolic triangle 
if and only if the group N0C ^ h  contains elliptic element  

u

N
N

u u

u

1

1
1

2

{ = -

-

+ +

+
f p  of order 3 in N0C ^ h . It is obvious 

that ,N
u

N
u

N
u 1

1 13{ {= = +^ `h j  and .N
u 1

1 3{
+ =a k

If we take determinant, it is easily seen that 

.N1 2 1 2a c c a- =  Again let :S N0!
a

c

b

d
C=

-
-

!d ^n h . 
Then S 0

1
1

1

c
a

c
a= -

- =a k and .S N
u

u N
u N

2

2

c d
a b

c
a=

- +
- +

=` j  
Hence , .1 1a a c c= - = -  So modu N2 1/a a- ^ h  and   
are obtained. Also

u
N

1
0

1

1

2

2

a

c

b

d

a

c

a

c

-
-

=d c cn m m

and then N1 2 1 2a c c a- = - .

Conversely, we suppose that ,modu N2 1/a a ^ h ,
modu N2 1/c c ^ h  and N1 2 1 2a c c a- = . Then there 

exist integers 1i  and 2i  such that u N2 1 1a a i= +  and 
u N2 1 2c c i= + . In this case

u
N

u N
u N

1
0

1

1

1

2

1

1

1 1

1 2

1

1

2

2

a

c

i

i

a

c

a i

c i

a

c

a

c
=

+
+

=d c d cn m n m

is held. Since N1 2 1 2a c c a- =  from determinants we get 
11 2 1 1a i c i- = . Consequently, N

1

1

1

2
0!

a

c

i

i
C!d ^n h  and 

F ,u N
1

1

2

2
" !c

a
c
a . Similarly we may show other cases.

Theorem 4. The graph F ,u N  contains directed triangles if 
and only if ( )modu u N1 02 ! /+ .

Proof. Firstly suppose that F ,u N  has a triangle 

l
k

n
m

y
x

l
k

0

0

0

0

0

0

0

0
" " " . It can be easily shown that N0C ^ h  

permutes the vertices and edges of F ,u N  transitively. So we 
assume that the above triangle is transformed under N0C ^ h  
to the N

u
y
x

0
1

0
1

0

0
" " " . Without loss of generality, from 

the edge of N
u

y N
x
0

0
"
1  the equation of ( )modx u N0

2/ -  
and from the uy N Nx N0 0- = -  equation, x uy 10 0= +  
is achieved. For y 10 =  case, N

u
N
x0

"  and x u 10 = +  
and eventually N

u
N

u 1
"
+  is found. And also 

( )modu u N1 2/+ -  then ( )modu u N1 02 /+ + . Again   
y 20 =  can not be true because for N

x
2 0

10
"  there is not 

an edge condition. Similarly if we take N
u

y N
x
0

0
"
2  holds 

then we conclude that ( )modu u N1 02 /- +  is satisfied.  
Consequently we have ( )modu u N1 02 ! /+ . On the 
other hand suppose that ( )modu u N1 02 ! /+ . Then, 
using Theorem 3, we see that N

u
N

u
0
1 1

0
1

" " "
!  is a 

triangle in F ,u N .

Now we will give examples for to understand the theorem. 
Hence, there are the hyperbolic triangles  the following 
shape. 

Example 1. For , ,u N 2 7=^ ^h h  and , ,u N 2 7= -^ ^h h  

Figure 3. Hyperbolic directed triangles in F ,2 7  and F ,2 7- .

Figure 4. Hyperbolic directed triangles in Z ,2 7 .
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Therefore by the mapping the 1{  transform vertices to each 
other. 

Example 2. Similarly hyperbolic triangles in subgraph Z ,2 7

whose vertices form the block [0] is given in Figure 4. 
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Corollary 3. Again we may easily seen that Z ,u N  contains 
hyperbolic triangle if and only if the group ( )N0C  

contains elliptic element 
u

N
u u

N
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f p  of 

order 3 in N0C ^ h . That is I2
3{ = - . It is obvious that 
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N

u
N

u
N0 12 2{ {= = +^ ah k  and u

N
1 02{ + =a k . Hence 

by the mapping the 2{  transform vertices to each other. 
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