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where the parameters , , , ,A B C p p1 2  are non-negative 
numbers and the initial values , ,x x x2 1 0- -  are positive 
numbers such that the denominator is always positive.

In [5] El-Owaidy et al. investigated the global character of 
the following rational recursive sequence
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with non-negative parameters and non-negative initial 
values.

By generalizing the results due to El-Owaidy et al. [5], 
in [3], Chen et al. studied the dynamical behavior of the 
following rational difference equation
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where ,r s Z! , the parameters are positive real numbers 
and the initial values , .B Cx n0 0n s 62 $+ -

1. Introduction
The theory of difference equations is an interesting and 
fruitful topic as it supports the analysis and modelling of 
various daily life phenomena. Hence, especially in the last 
twenty years, there has been a great interest in the study 
of qualitative analysis of difference equations and systems 
of difference equations (see [1-16] the references cited 
therein). The applications of difference equations have 
been the keystone of various applied sciences. For example, 
physics, computer sciences, population biology, economics, 
probability theory, genetics and so on.

The aim of this paper is to study the local asymptotic stability 
of equilibria, the periodic nature and the global behavior of 
solutions of the following rational recursive sequence
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Also, in [2] Chen and Li studied the dynamical behavior of 
the following higher order difference equation
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where ,k s Z! , the parameters are non-negative real 
numbers and A 02 , the initial values are nonnegative 
numbers such that the denaminator is always positive.

In [1] Ahmed investigated the global asymptotic behavior 
and the periodic character of the difference equation
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where the parameters are non-negative real numbers and 
the initial values are non-negative real numbers.

In [7], Erdogan et al. investigated the dynamical behavior of 
positive solutions of the following higher order difference 
equation
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where the parameters are non-negative real numbers and 
the initial values are non-negative real numbers.

As far as we examine, there is exactly no paper dealing with 
Eq.(1.1).

Therefore, in this paper, we focus on Eq.(1.1) in order to fill 
in the gap.

2. Notations and Terminology
For the sake of completeness and the readers convenience, 
we are including some basic results (one can see [11-13]).

Let I be an interval of real numbers and let f be a continuously 
differentiable function. Then for any condition 

, ,x x x I2 1 0 !- - ,

the difference equation

, , , , ...x f x x x n 0 1n n n n1 1 2= =+ - -^ h   (2.1)

has a unique positive solution .xn n 2
\

=-" ,
Definition 2.1. An equilibrium point of Eq.(2.1) is a point xr
that satisfies
, ,f x x x x=r r r r^ h

The point xr  is also said to a fixed point of the function f.

Definition 2.2. Let xr  be a positive equilibrium of (2.1).

(a) xr  is stable if for every, 02f  there is 02d  such 
that for every positive solution xn n 2

\

=-" ,  of (2.1) with, 
,x x x xi

i
n

2

0
1 1d f- -

=-
r r/  holds for n N! .

(b) xr  is locally asymptotically stable if xr  is stable and there is 
02c  such that limx xn = r  holds for every positive solution 

xn n 2
\

=-" ,  of (2.1) with

x xi

i 2

0

1 c-
=-

r/ .

(c) xr  is a global attractor if

limx xn = r

holds for every positive solution xn n 2
\

=-" ,  of (2.1).

(d) xr  is globally asymptotically stable if xr  is both stable and 
global attractor.

Definition 2.3. The linearized equation of (2.1) about the 
equilibrium point xr  is

, , , , ...y t y t y t y n 0 1 2n n n n1 0 1 1 2 2= + + =+ - -   (2.2)

where
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The characteristic equation of (2.2) is

.t t t 03
0

2
1 2n n n- - - =   (2.3)

The following result, known as the Linearized Stability Theorem, 
is very useful in determining the local stability character of the 
equilibrium point xr  of equation (2.1).

Theorem 2.1. (The Linearized Stability Theorem)

Assume that the function F is a continuously differentiable 
function defined on some open neighborhood of an equilibrium 
point xr . Then, the following statements are true:

(i) If all roots of (2.3) have absolute value less than one, then 
the equilibrium point xr  of (2.1) is locally asymptotically stable.

(ii) If at least one of the roots of (2.3) has absolute value greater 
than one, then the equilibrium point xr  of (2.1) is unstable. Also, 
the equilibrium point xr  of (2.1) is called a saddle point if (2.3) 
has roots both inside and outside the unit disk.

Theorem 2.2. Assume that , ,2 1 0a a a  are real numbers. Then a 
necessary and sufficient condition for all roots of the equation to 
lie inside the unit disk is

,1 3 32 0 1 2 0 11 1a a a a a a+ + - -  and 
.10

2
1 0 2 1a a a a+ -           (2.4)

3. Special Cases for Eq.(1.1)
In this part of the paper, we examine that the structure 
of positive solutions of Eq.(1.1) when one or more of the 
parameters of Eq.(1.1) are zero. The following special 
equations emerge;

If A 0= , then
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, , , ...x n0 0 1n 1 = =+   (3.1)

if B 0= , then

, , , ...x Cx x
Ax

n 0 1n
n
p

n
p

n
1

1

2
1 2= =+

-

-   (3.2)

if C 0= , then
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if p 01 = , then
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if p 02 = , then
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In each of the above five equations, we suppose that all 
parameters in the equations are positive. Eq.(3.1) is trivial 
case. Eq.(3.3) is linear. Also, Eq.(3.2) can be reduced to 
a linear difference equation by the change of variables 
x en

yn= . Eq.(3.4) was investigated in [2,3] and Eq.(3.5) 
was investigated in [2.3].

4. Dynamics of Eq. (4.1)
In this section, we will prove our main results, namely, we 
investigate some dynamics of Eq.(4.1)

Note that Eq.(1.1) can be reduced to the following non-
linear difference equation
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ry
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by the change of variables x C
B xn

p p

n

1
1 2

=
+a k  with r B

A= . 
So, we shall investigate Eq.(4.1). 

Before giving the main results of this paper, we will give 
the non-hyperbolic point definition. If the characteristic 
equation of the linearized equation associated with Eq.(4.1) 
about the equilibrium point has a root which is equal to 
one, then the equilibrium point is a called a non-hyperbolic 
point.

Lemma 4.1. We have the following cases for the equilibrium 
points of Eq (4.1);

(i) y0  is always the equilibrium point of Eq (4.1).

(ii) If r 1> , then Eq.(4.1) has the positive equilibrium 
y r 1 p p
1

1
1 2= - +^ h .

(iii) If r 11  and p p
1

1 2+  is an even positive integer, then 
Eq.(4.1) has the positive equilibrium y r 1 p p

2

1
1 2= - +^ h .

which is always in the interval (0.1).

Proof. The proof is easily obtained from the definition of 
equilibrium point.

In the following Theorems, we investigate the local 
asymptotic behavior of the equilibria and the global behavior 
of solutions of Eq.(4.1) with , ,r p p 01 2 2  and non-negative 
initial conditions.

Theorem 4.2. For Eq (4.1), we have the following results.

(i) Assume that r 11 , then the zero equilibrium point is locally 
asymptotically stable.

(ii) Assume that r 12 , then the zero equilibrium point is 
unstable.

(iii) Assume that r 1= , then the zero equilibrium point is non-
hyperbolic point.

(iv) The positive equilibrium point y r 1 p p
1

1
1 2= - +^ h . is 

unstable.

(v) Assume that ,r 0 1! ^ h  and p p
1

1 2+  is an even positive 
integer, then the positive equilibrium point is unstable.

Proof. The linearized equation associated with Eq.(4.1) 
about zero equilibrium has the form

, , , ...z rz n0 0 1 2n n1 2- = =+ -   (4.2)

The characteristic equation of Eq.(4.1) about zero 
equilibrium, is

r 03n - =   (4.3)

then the proof of (i),(ii),(iii) follows immediately from 
Theorem 2.1.

Now, we shall prove the case (iv). The linearized equation 
associated with Eq.(4.1) about

y r 1 p p
1

1
1 2= - +^ h  is

, , , ...z p r z p r z z n1 1 1 1 0 0 1 2n n n n1 1 2 1 2+ - + - - = =+ - -a ak k
(4.4)

The characteristic equation of Eq.(4.1) about is 
y r 1 p p
1

1
1 2= - +^ h  

p r p r1 1 1 1 1 03
1

2
2n n n+ - + - - =a ak k   (4.5)

If we consider Theorem 2.2, then a necessary and sufficient 
condition for all roots of the equation (4.5) to lie inside the 
unit disk is

p p
r

r 1
0

1 2
1

+ -^ ^h h
  (4.6)

which is impossible since ,p p 01 2 2  and r 12 . Thus, the 
proof of this case is complete.

It remains the proof of (v). The linearized equation 
associated with Eq.(4.1) about y r 1 p p

2

1
1 2= - +^ h  is as (4.4) 

and the characteristic equation of it about y r 1 p p
2

1
1 2= - +^ h  

is as (4.5).
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So, we obtain that the subsequences 

, ,y y y0 0 0n n n3 1 3 2 3 3" " "+ + +" " ", , ,
for r 11 . Thus,

limy 0
n n =
"3

This completes the proof.

Theorem 4.5. Assume that at least one of the initial conditions 
is different from zero. Then, Eq.(4.1) has three prime periodic 
solution if

r W1= +

where .W x x x x x xp p p p p p
1 2 0 1 2 0
1 2 1 2 1 1= = =- - - -

Proof. Assume that there exists a distinct prime period 3 
solutions of Eq.(4.1). Thus, we have the following algebraic 
system of 3 equations

, , .x x x x x x1 2 2 1 3 0= = =- -   (4.8)

Solving the algebraic system (4.8), we get

,x x x
rx x1 p p1
0 1

2
21 2= + =

-

-
-
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.W
rx x1

2
2+ =-
-

So
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Similarly, by the solving the further algebraic equations we 
get

.

,r W

r W x

x1

1 0

01

0

- +

- + =

=-^
^
^
^
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h
h
h

Hence, from assumption we get r = 1 + W. Thus, the proof 
is completed.

Theorem 4.6. Assume that p p22 1$+ , then Eq.(4.1) 
has no two prime period solutions. If p p22 11+  and 
r p p p p21 2 1 22- - -^ h , then Eq.(4.1) has two prime period 
solutions.

Proof. Assume that a prime two periodic solution exists in 
the following form

..., , , , , ...x x x x1 2 1 2" ,
of Eq.(4.1). From Eq.(4.1), we get the following equalities:

x x x
rx

1 p p1
2 1

2
1 2= +  and x x x

rx
1 p p2

1 2

1
1 2= +

That is,

rx x x xp p
2 1 1

1
2

2 1- = +  and .rx x x xp p
1 2 1 2

11 2- = +

This implies that

Set

,f p r p r1 1 1 1 13
1

2
2n n n n= + - + - -^ a ah k k   (4.7)

Then 

f r
p p r

1
1

0
1 2

1=
+ -^ ^ ^h h h

and

,lim f 3n ="3n ^ h
so f has at least a root in ,1 3^ h . Hence, the proof of v^ h  
follows immediately from Theorem 2.1. Consequently, the 
proof is completed.

Theorem 4.3. If r 11 , then the solutions of Eq.(4.1) are 
bounded.

Proof. Assume that yn n 2

3

=-
" ,  be a solution of Eq.(4.1). Then, 

we have

.

y y y
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Thus, we obtain 

.y yn n1 2#+ -

We can divided the sequence yn n 2

3

=-
" ,  to three subsequence 

bounded above by the initial conditions as follows:
...

...

...

y y y y

y y y y

y y y y

2 1 4 7

1 2 5 8

0 3 6 9

$ $ $ $

$ $ $ $

$ $ $ $

-
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Hence we chose 

, ,maxM y y y2 1 0= - -" ,
which leads to

, .y M n0 2n 6# # $ -

The proof is completed.

Theorem 4.4. Assume that r 11 , then the zero equilibrium 
point of Eq.(4.1) is globally asymptotically stable.

Proof. We know by Theorem 4.2 that the zero equilibrium 
point of Eq.(4.1) is locally asymptotically stable, and so it 
suffices to show that it is a global attractor.

From Eq.(4.1), we have

y y y
ry
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n
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Now if we set x
x
2

1i = , then we get

r r 1p p12 1i i i- = -+ - ^ h   (4.9)

As 0p p11 2 2i + -  always, we obtain the relation r r1 1 1i  
We consider the following cases:

Case 1. .p p12 1$+  We shall show that Eq.(4.9) has no 
positive real roots except for 1i = .

If p p2 02 1+ - = , then from Eq.(4.9) we get 1i = . Now 
suppose that p p2 02 1 2+ -  Clearly 1i =  is a root of 
Eq.(4.9). Consider the function

.h rp p p p2 12 1 2 1i i i i= - + -+ - + -^ h
The derivative of the function h is

.h p p r p p2 1 1p p p p
2 1

1
2 1

2 1 2 1i i i= + - - - - +- - -l^ ^ ^h h h
For all values of 0$i , we have

.h p p r r1 1 1 0p p p p
2 1

12 1 2 1 2i i i i= + - - + +- + -l^ ^ ^h h h
That is, h  is an increasing function. Therefore, 1i =  is the 
unique zero of the function h .

Case 2. .p p2 02 1 1+ -  From Eq.(4.9) we get

.r r 1 0p p p p 11 2 1 2i i i- + - =- - -

Let

g r r 1p p p p 11 2 1 2i i i i= - + -- - -^ h
Using simple analysis, if r p p

p p
21 2

1 2
2 - -

- , then the function  
g  has a zero 0i  other than 1i = .

Now, by a simple calculation, and satisfy the relation

.x y x y y xp p p p2 2 2 21 2 1 2- = -+ +

If we set x x x2 0= =-  and x y1 =- . Then

x y x
ry

y
x x y

ry

x x y
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y

1
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2
2 2

2

1 2
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=
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c
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x x y
rx

x
y

y x
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y y x
rx x

1
1 1

1

p p

p p

p p

2

2

2
2 2

2

1 2
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= + =
+ - +

=
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=

+ -

^

c

h

m

This completes the proof.


