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In 2009, Jung investigated the Hyers-Ulam stability of 
linear partial differential of first order equations
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and
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in the cases of ,a b0 0>#  and . , ( , )a b a b0 0> RG ! , 
respectively.

In 2011, Gordji proved the Hyers-Ulam- Rassias stability of 
the following nonlinear partial differential equations
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respectively, by using Banach’s Contraction Principle.

1. Introduction
In 1940, the problem with stability of functional differential 
equation posed by Ulam, was partially resolved by Hyers 
Later, the result of Hyers (1941) has been generalized by 
Rassias (1978). After then, mathematicians have investigated 
Hyers-Ulam stability for several differential equations. Ger 
(1998) were the first authors who investigated the Hyers-
Ulam stability of the first order linear differential equation  
( ) ( )y t y t=l . They proved that if a differentiable function  
:y I R"  satisfies ( ) ( )y t y t # f-l  for all t I! , then 

there exist a differentiable function :g I R"  satisfying 
( ) ( )g t g t=l  for any t I!  such that ( ) ( )y t g t 3# f-  for 

every t I! .

We should mention the earliest results on the topic or some 
results obtained for the linear partial differential equation of 
first or second order by and the references therein.
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biçiminde bir boyutlu dalga denklemini düşündük. Düşünülen denklemin Hyers-Ulam kararlılığını çalıştık. Kullandığımız teknik 
Laplace dönüşüm metodudur. 
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Abstract

In this paper we consider one dimensional wave equation of the form 
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We study the stability of the considered equation in Hyers- Ulam sense. Our technique depends on Laplace transform method. 
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After that, in 2012, Lungu and Popa discussed the Hyers-
Ulam stability of first order partial differential equation of 
the form

( , ) ( , ) ( , ) ( ) ( , ) .p x y x
u q x y y

u p x y r x u f x y2
2

2
2+ = +

In 2013, Quarawani proved Hyers-Ulam Rassias Stability 
for one dimensional heat equation applying Fourier 
transform.

Motivated by the papers Quarawani and the references 
therein, in this paper we consider the Hyers-Ulam stability 
of the wave equation
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where C is positive real constant and 
( , ) , ( , ] ( , ) .x t D D x x 00 # 3! =  

2. Preliminaries 
In this study, we use Laplace and inverse Laplace 
transformation for show that the equation (1.1) has Hyers-
Ulam stability. 

Definition 2.1. Equation (1.1) is said to be stable in Hyers-
Ulam sense if there exists K > 0 such that for every function  
:U D R"  satisfying 
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# f-

for all , )x t D!^ h  there exists a solution :U D R0 " of (1.1) 
with the property

( , ) ( , ) .U x t U x t K0 # f-

3. Main Results
Theorem 3.1. Let ε be positive constant. If the function U 
satisfies the differential inequality

U c Utt xx
2 # f-   (3.1)

for all ( , )x t D! , then there exists a solution :U D R0 " of 
equation (1.1) such that

( , ) ( , ) , ,U x t U x t c c c0 R0 2# !f- .

Proof. Let ( , )Z x t U cUt x= -  for any ( , )x t D! . Then it 
follows that

.Z cZ U c Ut x tt xx
2+ = -

Then from inequality (3.1), we get

.Z cZt x # f+   (3.2)

Making use of (3.2), we can write

Z cZt x# #f f- + .

If we apply the Laplace operator of above inequality, we get
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Then, we have

( , ) ( , ) ,c dx
dz sz x s Z xs s0# #

f f- + -

where ( , ) ( , )z z x s L Z x t= = " , . Since c > 0, by dividing the 
above inequality by c,

( , ) ( , ) .cs dx
dz

c
s z x s c Z x cs

1 0# #
f f- + -

Multiplying the above estimate by the function e ( )c
s x x0- , we 

obtain
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or, equivalently
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For any x₀, integrating above inequality from x₀ to x, we get
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As a consequence, we arrive at
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Since s > 0 we can write above equation
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Now, if we apply inverse Laplace transform, we get
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and from this
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Multiplying both sides above equality by s
1 , we get
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Applying inverse Laplace transform both sides above 
equation, we obtain
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Now, from properties of derivatives of inverse Laplace 
transformations, we can write

( ( , )) ( , )L dx
dg

x s x G x t1

2
2=-

and from property of dividing by s of inverse Laplace 
transformation, we get
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Then from (3.5) and (3.6), we obtain

G(x,t) = M,

where M > 0 is real constant. Similarly, for 
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Then we get from inequality (3.3),
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Since ( , )Z x t U cUt x= - , we have 
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Using similar technique to the one above, we get
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transformation, we get
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We know that from (3.6)
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As a consequently , we obtain
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Example 3.2. Consider the equation
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and let ( )t x x4
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01 - . If we set ( , )Z x t U U4t x= - , then 
we obtain
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Applying Laplace tranform in the above equation, we get
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and applying inverse Laplace transform, we obtain

( , ) ( , ) ,Z x t Z x t0 # f-   (3.7)

where
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since ( ) .t x x4
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01 -

Writing in (3.7), ( , )Z x t U U4t x= - , we get
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and using similar technique in the Theorem 3.1.  we obtain
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4. Conclusion
We consider type of second order and hyperbolic partial 
differential equation. We study Hyers-Ulam stability of this 
equation. We give an example to verify the obtained result. 
Our results have contributions to the topic and the related 
literature.
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