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Diferansiyel Formlar ile Diferansiyel Operatorlerin Genellestirilmesi
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Abstract

In this study, we derive the mostly used difterential operators in physics, such as gradient, divergence, curl and Laplacian in different
coordinate systems; Cartesian, cylindrical and spherical coordinate systems by using the differential forms. Also, we finally derive these

differential operators for the generalized coordinates.
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Oz

Bu ¢alismada, diferansiyel formlar1 kullanarak farkli koordinat sistemlerinde; Kartezyen, silindirik ve kiiresel koordinat sistemlerinde,
gradyan, diverjans, rotasyonel ve Laplasyen gibi fizikte en ¢ok kullanilan diferansiyel operatorleri tiiretecegiz. Son olarak bu diferansiyel

operatdrleri genellestirilmis koordinatlar i¢in tiirecegiz.

Anahtar Kelimeler: Diferansiyel formlar, Diferansiyel operatérler, Vektor kalkiiliis

1. Introduction

In physics, differential operators are widely used in order
to obtain the dependency of a physical quantity with
respect to some coordinates. From classical mechanics
to electrodynamics and general relativity to quantum
mechanics, the differential operators are all in use in different
forms. For instance, the gradient of the potential energy
scalar yields as the conservative force in classical mechanics,
or the divergence of the electric vector field yields as the
scalar charge density in electrodynamics, or so on. With the
change of the symmetry of the space in which we investigate
the change of the physical quantities, we alter the symmetry
of the coordinate, which changes to obtain the differential of
the physical quantity, such as, from Cartesian coordinate to
spherical coordinates for a spherically symmetric quantity.
Therefore, we need to make the coordinate transformation
for the differential operator in use.

For this purpose, we derive a simple approach to obtain the
differential operators in different coordinates by using the
differential forms. Some general definitions and properties
are given as follows.
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Let S be a scalar field such that

S=5(q1,q5,..,q.) (1)

and F be a vector field which can be defined as

F=YFe=Fe +Fe+.Fe, @)
i=1

where ¢’s are the components of the coordinate system
and ¢s are the basis one-forms (vectors) for the considered
coordinate system. We then define the basis one-forms such
as

d
dg. |44 (3)

where 7 is any vector [1]. The Hodge Dual (star) operator *
should be defined for the basis one-forms, such that [2-4]

*e: = €e; Nex (4)

*(Ci/\ej/\ek)zl (5)

€ =

Generally, we can derive the following derivative operators
in different coordinates, on fields as follows

VS =dS (6)
V-F=xd+F (7)
V X F = «dF (8)
VS = xd * dS )
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(6) means the gradient of the scalar §, (7) is the divergence,
(8) is for the curl of a vector field F and the (9) is of course
for the Laplacian of the scalar §. Here, the symbol & is
exterior differentiation.

2. Cartesian Coordinates

The scalar field in Cartesian coordinates is written as

S=38(zy.2) (10)
and the vector field is defined to be
F=Fe,+Fe,+F.e.. (11)
The basis one-forms are also written for vector
r = xe, +ye, + ze. from (3), such that
e, =dx, e,=dy, e.=dz (12)
2.1. Gradient
From (6) for the scalar S we can see

— g 95 a8 , L 9S
VS_dS_Bxdx+8ydy+ Bzdz (13)
and by using (12) to make the gradient a vector change dgs
into ei’s

—gg_95 95 . 9S
VS =dS= or &t oy et 5, €= (14)
2.2. Divergence

From equation (7) for the given vector (11) in Cartesian
coordinates, we obtain

F=F.,+Fe,+Fe. (15)
sF=F e, +F,xe,+F, e, (16)
=F.(e,Ne.) +F,(e.Ne.)+ Fy(e.Ne,). 17)

After this step we will need d * I, so we should convert ¢s
into dgs from (12)

«F=F,(dyndz)+F,(dzNdzx)+F.(de Ady) (18)

and to calculate the exterior differentiation of (18), we

proceed by

d+F=L(do ndyndz)+ %};”(dx/\dz/\dr)

oF, oF,
+5, (de ANdo A dy) + T (dy NdyNdz)
+%§”(dy/\dz/\dx)+%Zz(dy/\dx/\dy)

oF, (19)

+9 (@ ndy nd2) + 5 (d2 ndz )

oF,
—i—a—z(dz/\dx/\dy)
384

After canceling the repeating indices in triple wedge
products dg; Adg; A dgr = €y .

Now we will convert dg’s into ¢/s, because we will take their

Hodge in the final step,

dxF= %Z’(er/\ey/\ez)+aa—];y(€y/\€z/\€r) (20)
+%(ez/\ e.Ne,)

e F =L %Zy + & =

where we have used (5) and obtained the divergence
equation in Cartesian coordinates for a vector field F°
VoF=adsp=Ley 9 OF.

dr Jdy Iz
2.3.Curl

+

We begin by writing F from (8) with dg’s instead of ¢s, so
F=Fdz+F,dy+F.dz (22)
and we take the exterior differentiation for using in
V X F = =dF as follows,

aF’dx/\dx—i-aFydx/\dy—F%dx/\dz

ar or
aF, aF?/ an
+Wdy/\dl‘+ 3y dy Ady + 3y

aFI aFy an
% dz AN dx + % dz Ndy + % dz A dz.

dF =

dy A dz (23)

+

We expect to get a vector at the end of the calculation, so
we convert the differential one-forms into basis one-forms,
but before eliminate the repeating dg; Adg; =0 terms, and
remaining is

oF,
dF = E?;Fyr(ey/\el)-k %Z’(ez/\e,)-i- Py (e.Ney)

aFy an an
+ aZ (ez/\ey)+ 81- (ew/\ez>+ ay (6y/\€z).

(24)

When we apply Hodge operator on (24) and by using (4),

we obtain
_ _OF, oF, OF, oF,  9F., | 9oF.
xdF = 3y e.+ % e,+ 3 & 9z & oz e,+ e €s.
(25)

By rearranging it, we finally obtain the curl

_ o (9F _ BF_U> oF, _oF.
VXF_*dF_<8y A <82 ax)ev 26)
< oF, aFI)
or oy )%
2.4. Laplacian

We already obtain the part such given in (14) for
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V2SS =+d +dS in (9). Now we take its star
*dS—ﬁ*e,-i-%*eﬁ—%*ez 27)
from (4), we are led to
*dS=%(ey/\ez)-i-%(ez/\e,,.)-i-%(el/\ey). (28)

We convert the basis one-forms into differential one-forms,
because we will take the differentiation

*dS:%(dyAdz)Jr%(dz/\dx)+%(dx/\dy) (29)
and take the differential of it, and get

ddS =2 33w ndy )+ 2o B3 N dw o n )
(5w ndo ndy) + (52 )y ndy A dz)
+aay< )(dy/\dz/\dx)+ (g)(dy/\dx/\dy)
+aaz( )(dz/\dy/\dz)-i- (a—S>(dz/\dz/\dw) (30
+a%(a—z)(dzAdx/\dy)

'The repeating terms in wedge product of basis-one forms or
differential one-forms vanishes, and the remaining is

dxds =22 dzndyndz)+2 (‘;)(dy/\dz/\dx)

+§(§)(dz/\dm/\dy). (31)

Before we take its star again, we convert the dgs into es,
and use (5), then get

3’S | 9’S | 9'S

*d*d5_32+32+822 (32)
and this is already the Laplacian itself;

VIS = wdx dS = %§+%§+ 08

3. Cylindrical Coordinates

'The scalar field in cylindrical coordinates is written as
S=5(s,¢,2) (33)
and the vector field is defined to be

F=Fe,+Fye,+F.e.. (34)
The basis one-forms are also written for vector
r = ze, +ye, + ze. = scos e, + ssinge, +ze. from (3),

such that
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e. = % ds =|cos gpe. + sin e, |ds

= (cos’¢p+sin’@)*ds =ds = e, = ds

es = g—;; d¢ =|—ssin ge, + scos pe, |dp (35)
=(s’cos’d+s*sin’@) "’ do = sdgp = e, = sdp
e.=dz

3.1. Gradient

From (6) for the scalar S we can see

VS =dS = ﬁdﬁ%dqﬂ—dz (36)
and by using (35) to make the gradient a vector change dg’s
into e;s
vS=ds =2 + 955 85,
o s | az°¢ (37)
BS 198 BS
VS=dS=75cet FrAL + 5=

3.2. Divergence

By equation (7) for the given vector F'in (34) in cylindrical
coordinates, we obtain

F :F565+F¢€¢+Fz€z (38)
sF=Fxe,+Fyxes+F.xe. (39)
=F.(esNe.)+Fy(e.Ne,)+F.(esNey). (40)

After this step we will need d = I, so we should convert ¢s
into dg’s from (35)

«F=sF.(dpNdz)+F,(dzNds)+sF.(ds Ad¢)) (41)

d«F= a(gf‘)(ds/\dmdzﬂ%(dmdzAds)
+M(ds/\ds/\d¢)+ a(SF)(d¢/\d¢/\dz)

3F¢(d¢/\dzAds)+ a<8F)(d¢/\ds/\d¢)
8(sF)

a(

(42)

(dz /\d¢/\dz)+%(dz/\dz/\ds)
SF)(d Nds Adp)

After canceling the repeating indices in triple wedge
products dg; Adq; A dgr = €

Now we will convert dgs into es, because we will take their

Hodge in the final step,
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A(sF,) (e;ANesNe.) N JF, (e, Ne.Ne.)

d+F =75 s 1) s

8(55)(62/\2/\695) la(sF)( Neshe) (43)
oF.
+%%(es/\e¢/\ez)+ i Saz (esNegsAe.)
1 9(sF, 1 OF,
*d =g <as )+s aqf (44)

where we have used (5) and obtained the divergence
equation in cylindrical coordinates for a vector field

1 9(sF,) , 1 9F; | 9F.

F=xd«F=-3—5; 88¢+

+

3.3.Curl
We begin by writing F'with dgs instead of ¢s, so
F=F.ds+sFsd¢+F.dz (45)

and we take the exterior differentiation for using in
V X F = =dF as follows,

dF =L s nds + 8(8F¢)d N+

g]; a(§g¢)d¢/\d¢+ %gz d A dz

s 3(SF¢)
+¥dz/\ds+ % dz /\d¢+

Sz dsN\dz

de Nds+ (46)

Zd Adz.

We expect to get a vector at the end of the calculation, so
we convert the differential one-forms into basis one-forms,
but before eliminate the repeating dg: Adg; =0 terms, and
remaining is

3(8F¢) esNey  OF, oF., es N e

dF'=""755 s T as eNe oy s (47)
oF. esNe. L 9F oF, o+ A(sFy) e.Aey
dp s oz &N 0z S

When we apply Hodge operator on (47) and by using (4),
we obtain

1 9F. , dF. 1 9(sFy)

xdF = —gwe;ﬂ‘ 2% e¢+— 35 ¢ “9)
_1 sans oF. . 10F.
s 9z ds “ s g &
By rearranging it, we finally obtain the curl
— gf = LOF. 8F¢> OF, _ oF.
VXF_*dF_(S op 0z *+< oz 83> (49)
L1(9F o)
s o¢ )%
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3.4. Laplacian

We already obtain the part such given in (37) for
V’S = «d * dS . Now we take its star

_ 95 1as as |
xdS = “+sa¢*e¢ o (50)
from (4), we are led to
*dS = S(e¢/\ez)+igg( Ae )+8 (esNey). (51)

We convert the basis one-forms into differential one-forms,
because we will take the differentiation

108
s 9¢

(52)

and take the differential of it, and get

*dS—sa (dpNdz)+— (dz/\ds)+ s(ds/\dgb)

d»dS =292 )(ds A dp A dz)+ -2 125 )(ds ndz nds)

S 8¢
+2 (92 )(ds ndsndg)+ a¢< 95 )(dep A dep A d2)
aaqs@ gg )(d¢AdzAds)+$(s—)(d¢/\ds/\d¢)

+E?z< )(dzf\d¢AdZ)+ az@gg)(d“d“ds)

+2(s %2 (dz A ds A dp)
(53)

'The repeating terms in wedge product of basis-one forms or
differential one-forms vanishes, and the remaining is
d+ds =2

+—¢<%%>(d¢/\ dz /\ds)—i—%(s

(54)

s%)(ds ANdo Adz)

95 )(ds nds ndg).

Before we take its star again, we convert the dg/s into ¢s,

and use (5), then get

d*“%%(%% (5 55) as(s53)
v dS =g ar(s9y éai(a )*a%a—f) (55)

and this is already the Laplacian itself;
~1o(25y, 19 (3S), 9 (aS
VIS = xdxdS = sas< as>+328¢< ¢>+82<82>'

4. Spherical Coordinates

'The scalar field in spherical coordinates is written as

§=5(r,0,¢) (56)
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and the vector field is defined to be
F=Fe +Fyep +F¢€¢

The basis one-forms are also written for vector

r = ze, +ye, + ze. = r sin  cos ge, + r sin O sin e, + 7 cos fe.

from (3), such that

e = % dr =|sin @ cos fe, + sin O sin fe, + cos Oe. |dr
=(sin’0+cos’0)*dr =dr = e, = dr

es = gg d =|rcosf cos e, + rcos O sin ge, + rsin e.
=( 2)‘”d¢9 =rdf = e, = rdf

ey = 8¢ d¢ =|—rsin O sin ge, + rsin b cos ge, |dd
=(r’sin*0)"’dl = e, = rsinOd¢

(58)
4.1. Gradient

From (6) for the scalar S we can see

95 ﬁ a5

d + + 9 o d¢
and by using (5 8) to make the gradient a vector change dg s
into s

VS =dS = (59)

BS aS ey IS ¢
V§=dS =5 et 8 r 9 rsind (60)
VS = 4 = BS +13S6 1095

T 0% T rsind og &
4.2. Divergence

By equation (7) for the given vector F in (57) in spherical
coordinates, we obtain

F=F.e,+Feep+ Fyey (61)
*F:F,*6,,+Fg*65+F¢*6¢ (62)
=F.(esNey)+Fi(esne)+Fy(e Neo). (63)

After this step we will need d = I, so we should convert ¢s

into dg,s from (58)

(57)

do

d+F=-2(rsin0F)(dr A A dg)

+2(rsinOF,)(dr A A dr)+-2(rF,)(dr A dr A dB)

2 (r*sin0F,)(df A df A\ dp)

+-2-(rsin0F,)(d0 A dgp A dr)+-5(rF,)(d6 A dr A dO)

%W sinOF,)(d A df A dp)

+%(rsin(9Fg)(d¢ A d /\dr)+%(rF¢)(d¢ AdrAdf)
(65)

After canceling the repeating indices in triple wedge
products dg; Adg; A dg. = €

Now we will convert dg’s into ¢ s, because we will take their

Hodge in the final step,

_ 9 e pmyleAeines)
d+F= 87"(7" sin 6F,) sind
A (esheshe) | @ (esAe Nes)
+89(TSIH6F0) r’sin 0 ¢(TF¢) r’sin 0
= s}nﬁ aT(r sin@F,)(e, Nes Aey)

o (rsinF)e. neshe) +p (P e Neoes)

(66)

1 ) 1 OF;

xd * = zar(rF)-i- eae(sm@Fg)-l- rsind 9%
(67)

where we have used (5) and obtained the divergence
equation in cylindrical coordinates for a vector field

1

V~F:*d*F——2§(rF)

1 0F,
+ rsin@ 9¢
4.3. Curl

rsi nl9 a0 (Smng)

*F = r*sinOF, (d0 A d¢) + rsin OF, (dpAdr) + rFy(dr Ad) We begin by writing F with dg’s instead of es, so

(64)
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F=F.dr+rF;df +rsin0F,d¢ (68)

and we take the exterior differentiation for using in
V X F = =dF in (8) as follows,

387
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a(ng) d(rsinOF,)

—=—=drAndf+ 3

d(rsinOF,)
— g dO A dd

a(rsézfm)dgb/\d(ﬁ.

dF =% g par+ S22

LOF, a(rFﬁ)
50 RY

L OF, A(rFy)
¢ dp Ndr+ ord

dr Nd¢p

doO A dr+ df A dO +

do AdO +
(69)

We expect to get a vector at the end of the calculation, so
we convert the differential one-forms into basis one-forms,
but before eliminate the repeating dg: Adg; = 0 terms, and
remaining is

ArFy) e.Nes A(rsinfF;) e.Aey | 9F, esNe,

dF =

or r or rsind 968 T
+8(rsmt9F¢) esNes  OF. esNe,  I(rFy) ey Aeg
a0 r’sinf = 9¢ rsind org r’sinf

(70)

When we apply Hodge operator on (70) and by using (4),

we obtain

gp—190f) 1 (rsinfF,) _ 13F,
7 or “ rsind or €90 ¢
1_a(rsinOF) . 1 9F. __ 1 3(rFy)
r’sin 6 a0 " rsin 9¢ °  r’sin@ ord T
(71)

By rearranging it, we finally obtain the curl

1 3(sinF,) oF, 1 1 oF

VXF=xdF =

rsind a0 rd " T sind o
_3(rFy) | 10(rFy) OF,
oar T r or 20 ¢
(72)

4.4. Laplacian

We already obtain the part 4S such given in (59) for
V’S = =d * dS and now we take its star as

_ 98 1095, 1 98
*dS = ar et 7 a0 " et rsin@ 9¢ * €

from (4) we are led to

(73)

1

(e¢ A eT)+
(74)

xS = (65/\€¢)+ ind a¢(er/\66)

7‘8(9

We convert the basis one-forms into differential one-forms,
because we will take the differentiation
+dS = r’sin Hﬁ(dﬂ Ad@)+ sin 9%(d¢ Adr)

1
sind 9

(75)

¢(dr/\d(9)
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and take the differential of it, and get
d*dS= (?” s1nﬁaS>(dT/\d9/\d¢)

+a—<sin<9¥>(dr/\ dé Adr)

<sme 5 )(dr/\dr/\dﬁ)

% rzsm@aS )(dﬁ/\dﬁ/\d(ﬁ)
% 51n(9 )(d@/\dgb/\dr) (76)

+
o5

+

)(dﬁ/\dr/\d@)

+% r'sinf5 - 93 )(d¢/\d9/\d¢)

% sin HaS>(d¢/\d¢/\dr)

d 1
+ 8¢<sm(9 o

(5]

(
(
30 e o6
(
(s

+

)(d¢/\dr/\d¢9)

The repeating terms in wedge product of basis-one forms or
differential one-forms vanishes, and the remaining is

d+dS=-2(rsin02 )(dr A A dp)

aﬁ<sm(9 )(d@/\dgb/\dr) (77)
9 1
tog o < sinf 9¢

Before we take its star again, we convert the dg/s into ¢s,
and use (5), then get

)(d¢/\dr/\d¢9)

dedS =02 (rsin6 )

+oaglsinf 55 )+ o5 g o e nesned)

dedS =g (P )+ g o (0055 )
g3

(78)

and this is already the Laplacian itself;
— _ as

vis=ededs =g (' 5))
1 o 1 9’S

+ r’sind 96 (smt9 a0 >+ r’sin’f 9@’

5. Generalized Coordinates

The scalar field in generalized coordinates is written as

S=8(g), i=1,2,3 (79)

and the vector field is defined to be

Karaelmas Fen Miih. Derg., 2018; 8(1):383-390
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F= i Fie,. (80)
The basis one-forms are also written for vector r = 23: q;e;
from (3), such that i=1
e:=ag; da:= hda (81)
5.1. Gradient

From (6) for the scalar § we can see

VS =dS = Z L (82)
and by using (35) to make the gradient a vector change dg/s
into s

1 aS
VS=dS = Zza—qiei.(%)
5.2. Divergence

By equation (7) for the given vector F in (80) in spherical
coordinates, we obtain

3
F=YFe, (84)
i=1
then,
3
*FZZF;*& ZF l/kej/\ek (85)
i=1

ijk

After this step we will need d = F, so we should convert ¢s
into dg,s from (80)

«F = hh,F€,.(dg; Ndg.) (86)

ij.k
d+F = Z o, (heh;F€4)(dg: Ndg; A dgy) (87)
ij.k
After canceling the repeating indices in triple wedge
products dg; A dgq; A dgr = €

Now we will convert dgs into es, because we will take their
Hodge in the final step,

(e[/\e,-/\e
A F = ;a (theuk)Thk") -
2
d+F = ;hhhka -(heh;Fgq)(eiNe; Aer)
*d«F = Z L2 (pp,F) (89)

< hih;hy g

where we have used (5) and obtained the divergence
equation in cylindrical coordinates for a vector field

V-F=xd+F= Zhhljkhk aaq

(hih,F)
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5.3. Curl
We begin by using (8) and writing F* with dg’s instead of

e’s, so
F= iEhidqi (90)
and \_NC take the exterior differentiation for using in
V X F = =dF as follows,

a(h; F)

dF =) 7,

Jii

(dg; N dg;) (91)

We expect to get a vector at the end of the calculation, so
we convert the differential one-forms into basis one-forms,
but before eliminate the repeating dg: A dg; =0 terms, and
remaining is

aF = 3 20 e ) 92)
When we apply Hodge operator on (92) and by using (4),
we obtain
<« 1 a(hF)

dF_;hjhiqu'gﬁkek (93)

By rearranging it, we finally obtain the curl
a O(hF;

VX F =«dF = Zh : (aq,- >ek (94)

5.4. Laplacian

We already obtain the part such given in (83) for
V?S = xd * dS and its star is

vdS = Zl aS>«=e(95)

from (4), we are led to

*dS = Z 1 aS ,jkej'/\ek>. (96)

ijk
We convert the basis one-forms into differential one-forms,
because we will take the differentiation

xdS = Z Ei b, h" aS (dqj Adqgy) (97)
and take the dlfferennal of it, and get

hih. 3S
d+dS = wzké‘,,k 3 £ T ~=~(dq: Ndq, A dq.) (98)

The repeating terms in wedge product of basis-one forms or
differential one-forms vanishes, and the remaining is

3 Wk 3S
" ag h 9g, N da;Adg.) (99)

Before we take its star again, we convert the dgs into ¢,

d=dS=>) €
ij.k

and use (5), then get
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Ex 9 hjh 3S
h,‘]’l/hk aq, l’l,' aq,

xd*dS =Y (100)
ijk

and this is already the Laplacian itself;

Ej 9 hjh 3S
VS =sdwds =Y ;o0 0 W03
S rax S Uzkh,h/l’lk aq, h,' aq,

6. Conclusion

In this study, we derive the various derivative operators on
functions of fields in various coordinate systems by using
the differential one-forms, Hodge star operators and the
exterior derivative operators. For a classical inner product
we use *A* B to imply A -B. Also for a classical nabla
operator, we use the exterior differentiation 4. If we use the
Hodge operator on a function, the one-forms in this function
must be in terms of ¢’s. If we use differential (or exterior
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derivative) operator on a function, the one-forms in this
function must be in terms of dgs. With the considerations
just mentioned, we ensure that, we can obtain the gradient,
divergence, curl and Laplacian relations for any functions in
any kind of generalized coordinates.
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