Integral Inequalities for Different Kinds of Convex Functions Involving Riemann-Liouville Fractional Integrals

Konveks Fonksiyonların Farklı Tipleri İçin Riemann-Liouville Kesirli İntegrallerini İçeren İntegral Eşitsizlikleri

Ahmet Ocak Akdemir ${ }^{1}$, Mustafa Gürbüz ${ }^{2}$, Erhan Set ${ }^{3 *}$
${ }^{1}$ Ağrı İbrahim Çeçen University, Faculty of Science and Arts, Department of Mathematics, Ağrr, Turkey
${ }^{2}$ Ağrı İbrahim Çeçen University, Faculty of Education, Department of Elementary Education, Ağrr, Turkey
${ }^{3}$ Ordu University, Faculty of Science and Arts, Department of Mathematics, Ordu, Turkey

Abstract

In this paper, we obtain some new integral inequalities for different kinds of co-ordinated convex functions by using elemantery analysis and Riemann-Liouville fractional integrals.

2010 Mathematics Subject Classification: 26D10, 26D15, 26A33
Keywords: Convex functions, Co-ordinates, Riemann-Liouville fractional integrals

$\ddot{O ̈ z}_{z}$

Bu makalede, Riemann-Liouville kesirli integralleri ve elementer analiz işlemleri kullanılarak coordinatlarda konveks fonksiyonların farklı tipleri için bazı yeni integral eşitsizikleri elde edilmiştir.
Anahtar Kelimeler: Konveks fonksiyonlar, Ko-ordinatlar, Riemann-Liouville kesirli integralleri

1. Introduction

Let $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ be a convex function defined on the interval I of real numbers and $a<b$. The following inequality;
$f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}$
is known in the literature as Hadamard's inequality for convex mappings.
In (Dragomir 2001), Dragomir defined convex functions on the co-ordinates as following:

Definition 1.1 Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in R^{2} with $a<b, \quad c<d$. A function $f: \Delta \rightarrow \mathrm{R}$ will be called convex on the co-ordinates if the partial mappings $f_{y}:[a, b] \rightarrow \mathrm{R}, f_{y}:(u)=f(u, y) \quad$ and $f_{x}:[c, d] \rightarrow \mathrm{R}, f_{x}(v)=f(x, v)$ are convex where defined for all
*Corresponding Author: erhanset@yahoo.com
Received / Geliş tarihi : 17.10.2016
Accepted / Kabul tarihi : 14.11.2016
$y \in[c, d]$ and $x \in[a, b]$. Recall that the mapping $f: \Delta \rightarrow \mathrm{R}$ is convex on Δ if the following inequality holds, $f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \lambda f(x, y)+(1-\lambda) f(z, w)$ for all $(x, y),(z, w) \in \Delta$ and $\lambda \in[0,1]$.

Every convex function is co-ordinated convex but the converse is not generally true.
In (Dragomir 2001), Dragomir established the following inequalities of Hadamard's type for co-ordinated convex functions on a rectangle from the plane R^{2}.
Theorem 1.1 Suppose that $f: \Delta=[a, b] \times[c, d] \rightarrow \mathrm{R}$ is convex on the co-ordinates on Δ. Then one has the inequalities;
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$
$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d x d y$
$\leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4}$.

The above inequalities are sharp.
Similar results can be found in [(Dragomir 2001)-(Özdemir et al. 2012)].
In (Özdemir et al. 2011), Özdemir et al. defined coordinated m-convex functions as following:

Definition 1.2 Let us consider the bidimensional interval $\Delta=[0, b] \times[0, d]$ in $[0, \infty)^{2}$. The mapping $f: \Delta \rightarrow \mathrm{R}$ is m-convex on Δ if

$$
\begin{equation*}
f(t x+(1-t) z, t y+m(1-t) w) \leq t f(x, y)+m(1-t) f(z, w) \tag{1.2}
\end{equation*}
$$

holds for all $(x, y),(z, w) \in \Delta$ and $t \in[0,1], b, d>0$ and for some fixed $m \in[0,1]$.
In (Akdemir and Özdemir 2010), Akdemir and Özdemir defined Godunova-Levin functions and P-functions on the co-ordinates as followings and proved some integral inequalities:

Definition 1.3 Let us consider the bidimensional interval $\Delta=[a, b] \times[c, d]$ in R^{2} with $a<b, c<d$. A function $f: \Delta \rightarrow \mathrm{R}$ is said to belong to the class of $Q(I)$ if it is nonnegative and for all $(x, y),(z, w) \in \Delta$ and $\lambda \in(0,1)$ satisfies the following inequality;
$f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq \frac{f(x, y)}{\lambda}+\frac{f(z, w)}{1-\lambda}$.
We denote this class of functions by $Q X(f, \Delta)$. If the inequality reversed then f is said to be concave on Δ and we denote this class of functions by $Q V(f, \Delta)$.
Definition 1.4 Let $f: \Delta[a, b] \times[c, d] \rightarrow \mathrm{R}$ be a P-function with $a<b, c<d$. If it is nonnegative and for all $(x, y),(z, w) \in \Delta$ and $\lambda \in(0,1)$ the following inequality holds:

$$
\begin{equation*}
f(\lambda x+(1-\lambda) z, \lambda y+(1-\lambda) w) \leq f(x, y)+f(z, w) \tag{1.4}
\end{equation*}
$$

We denote this class of functions by $P X(f, \Delta)$.
Theorem 1.2 Suppose that $f: \Delta[a, b] \times[c, d] \rightarrow \mathrm{R}$ is said to belong to the class $Q X(f, \Delta)$ on the co-ordinates on Δ with $f_{x} \in L_{1}[c, d]$ and $f_{y} \in L_{1}[a, b]$, then one bas the inequalities:

$$
\begin{align*}
& \frac{1}{16}\left[f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)\right] \\
& \leq \frac{1}{8}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.5}
\end{align*}
$$

Theorem 1.3 Suppose that $f: \Delta[a, b] \times[c, d] \rightarrow \mathrm{R}$ is said to belong to the class $P X(f, \Delta)$ on the co-ordinates on Δ with
$f_{x} \in L_{1}[c, d]$ and $f_{y} \in L_{1}[a, b]$, then one has the inequalities:
$F\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+$
$\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y$
$\leq \frac{4}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$
$\leq \frac{2}{(b-a)}\left[\int_{a}^{b} f(x, c) d x+\int_{a}^{b} f(x, d) d x\right]$
$+\frac{2}{(d-c)}\left[\int_{c}^{d} f(a, y) d y+\int_{c}^{d} f(b, y) d y\right]$.
A formal definition for co-ordinated convex functions may be stated as follow (see (Latif and Alomari 2009)):
Definition 1.5 A function $f: \Delta \rightarrow \mathrm{R}$ is said to be convex on the co-ordinates on Δ if the following inequality:

$$
\begin{aligned}
& f(t x+(1-t) y, s u+(1-s) w) \\
& \leq t s f(x, u)+t(1-s) f(x, w)+s(1-t) f(y, u)+(1-t) \\
& (1-s) f(y, w)
\end{aligned}
$$

holds for all $t, s \in[0,1]$ and $(x, u),(x, w),(y, u),(y, w) \in \Delta$.
Similar to definition of co-ordinated convex functions Latif and Alomari gave the notion of b-convexity of a function f on a rectangle from the plane R^{2} and b-convexity on the co-ordinates on a rectangle from the plane R^{2} in (Latif and Alomari 2009), as follows:

Definition 1.6 Let us consider a bidimensional interval $\Delta=:[a, b] \times[c, d]$ in R^{2} with $a<b$ and $c<d$. Let $h: J \subseteq \mathrm{R} \rightarrow \mathrm{R}$ where $(0,1) \subseteq J$, be a positive function. A mapping $f: \Delta=:[a, b] \times[c, d] \rightarrow \mathrm{R}$ is said to be h-convex on Δ, iff is non-negative and if the following inequality:
$f(\alpha x+(1-\alpha) z, \alpha y+(1-\alpha) w) \leq h(\alpha) f(x, y)+h(1-\alpha) f(z, w)$
holds, for all $(x, y),(z, w) \in \Delta$ and $\alpha \in(0,1)$. Let us denote this class of functions by $S X(h, \Delta)$. The function f is said to be h-concave if the inequality reversed. We denote this class of functions by $S V(h, \Delta)$.
A formal definition of h-convex functions may also be stated as follows (see Latif and Alomari (2009)):

Definition 1.7 A function $f: \Delta \rightarrow \mathrm{R}$ is said to be h-convex on the co-ordinates on Δ, if the following inequality:

$$
\begin{align*}
& f(t x+(1-t) y, s u+(1-s) w) \leq h(t) h(s) f(x, u)+ \\
& h(t) h(1-s) f(x, w)+h(s) h(1-t) f(y, u)+ \tag{1.8}\\
& \underline{h(1-t) h(1-s) f(y, w)}
\end{align*}
$$

holds for all $t, s \in[0,1]$ and $(x, u),(x, w),(y, u),(y, w) \in \Delta$.

In (Latif and Alomari 2009), Latif and Alomari proved the following inequalities for b-convex functions on the coordinates:

Theorem 1.4 Let $f: \Delta=[a, b] \times[c, d] \subset \mathrm{R}^{2} \rightarrow \mathrm{R}$ be an b-convex function on the co-ordinates on Δ and let $f \in L_{2}(\Delta)$ and $h \in L_{1}[0,1]$. Then one has the inequalities;
$\frac{1}{4 h^{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$
$\leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x$
$\leq[f(a, c)+f(a, d)+f(b, c)+f(b, d)]\left(\int_{0}^{1} h(\alpha) d \alpha\right)^{2}$.
We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.
Definition 1.8 Let $f \in L_{1}[a, b]$. The Riemann-Liouville integrals $J_{a}^{\alpha} f$ and $J_{b}^{\alpha} f$ of order $\alpha>0$ with $a \geq 0$ are defined by

$$
J_{a^{\alpha}}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{a}^{x}(x-t)^{\alpha-1} f(t) d t, \quad x>a
$$

and
$J_{b}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{x}^{b}(t-x)^{\alpha-1} f(t) d t, x<b$
where $\Gamma(\alpha)=\int_{0}^{\infty} e^{-t} u^{\alpha-1} d u$, here is
$J_{a^{+}}^{0} f(x)=J_{b^{-}}^{0} f(x)=f(x)$.
In the case of $\alpha=1$ the fractional integral reduces to the classical integral. Properties of this operator can be found in the references [(Dahmani 2010)-(Sarkıkaya et al. 2013)].
The aim of this paper is to establish some new integral inequalities for different kinds of convex functions via Riemann-Liouville fractional integrals.

2. Main Results

Throughout of this paper, we will use the following notation (See e.g. Sarıkaya 2014):
$J_{b^{\prime}, d}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(y-c)^{\beta-1} f(x, y) d y d x$
$J_{a, d, d}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(x-a)^{\alpha-1}(d-y)^{\beta-1} f(x, y) d y d x$
$J_{b^{\prime}, c}^{\alpha, \beta} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(b-x)^{\alpha-1}(y-c)^{\beta-1} f(x, y) d y d x$
$J_{a}^{\alpha, \beta, c} f(x, y)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} \int_{a}^{b} \int_{c}^{d}(b-x)^{\alpha-1}(d-y)^{\beta-1} f(x, y) d y d x$.
Theorem 2.1 Let $f: \Delta=[0, b] \times[0, d] \rightarrow \mathrm{R}$ be an m-convex function on the co-ordinates on Δ
with $0 \leq a<b<\infty, 0 \leq c<d<\infty$ and
$f_{x} \in L_{1}[0, d], f_{y} \in L_{1}[0, b]$. Then the following inequalities
for fractional integrals with $\alpha>0$ and $m \in(0,1]$ hold:
$\frac{\Gamma(\alpha) \Gamma(\beta)}{(b-a)^{\alpha}(d-c)^{\beta}} J_{a^{\prime}, c^{+}}^{\alpha, \beta} f(x, y)$
$\leq \frac{1}{(\alpha+1)(\beta+1)}\left[\begin{array}{l}f(a, c)+\frac{1}{\alpha} f(b, c)+\frac{1}{\beta} m f\left(a, \frac{d}{m}\right)+ \\ \frac{1}{\alpha \beta} m f\left(b, \frac{d}{m}\right)\end{array}\right],($
and

$$
\begin{aligned}
& \frac{\Gamma(\alpha) \Gamma(\beta)}{(b-a)^{\alpha}(d-c)^{\beta}} J_{b, d}^{\alpha, \beta} f(x, y) \\
& \leq \frac{1}{(\alpha+1)(\beta+1)}\left[\begin{array}{l}
f(b, d)+\frac{1}{\alpha} f(a, d)+\frac{1}{\beta} m f\left(b, \frac{c}{m}\right)+ \\
\frac{1}{\alpha \beta} m f\left(a, \frac{c}{m}\right)
\end{array}\right]
\end{aligned}
$$

Proof. Since f is a m-convex function on Δ, we know that for any $t, s \in[0,1]$
$f(t a+(1-t) b, s c+(1-s) d)$
$\leq t s f(a, c)+m t(1-s) f\left(a, \frac{d}{m}\right)+s(1-t) f(b, c)+$
$m(1-t)(1-s) f\left(b, \frac{d}{m}\right)$
and
$f(t b+(1-t) a, s d+(1-s) c)$
$\leq t s f(b, d)+m t(1-s) f\left(b, \frac{c}{m}\right)+s(1-t) f(a, d)+$
$m(1-t)(1-s) f\left(a, \frac{c}{m}\right)$
By multiplying both sides of (2.2) by $t^{\alpha-1} s^{\beta-1}$, then by integrating the resulting inequality with respect to t, s over [0,1]x[0,1], we obtain
$\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t$
$\leq f(a, c) \int_{0}^{1} \int_{0}^{1} t^{\alpha} s^{\beta} d s d t+f(b, c) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta}(1-t) d s d t$
$+m f\left(a, \frac{d}{m}\right) \int_{0}^{1} \int_{0}^{1} t^{\alpha} s^{\beta-1}(1-s) d s d t$
$+m f\left(b, \frac{d}{m}\right) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1}(1-t)(1-s) d s d t$.
It is easy to see that
$\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t=$
$\frac{\Gamma(\alpha) \Gamma(\beta)}{(b-a)^{\alpha}(d-c)^{\beta}} J_{a^{\alpha}+c^{c}}^{\alpha, \beta} f(x, y)$
and by computing the above integrals, we deduce

$$
\frac{\Gamma(\alpha) \Gamma(\beta)}{(b-a)^{\alpha}(d-c)^{\beta}} J_{a, c, c}^{\alpha, \beta} f(x, y)
$$

$\leq \frac{1}{(\alpha+1)(\beta+1)}\left[\begin{array}{l}f(a, c)+\frac{1}{\alpha} f(b, c)+\frac{1}{\beta} m f\left(a, \frac{d}{m}\right)+ \\ \frac{1}{\alpha \beta} m f\left(b, \frac{d}{m}\right)\end{array}\right]$
which completes the proof of the first inequality.
For the proof of the second inequality in (2.1), we multiply both sides of (2.3) by $t^{\alpha-1} s^{\beta-1}$, then integrate the resulting inequality with respect to t, s over $[0,1] \mathrm{x}[0,1]$.
Theorem 2.2 Let $f: \Delta=[a, b] \times[c, d] \rightarrow \mathrm{R} \quad b e$ Godunova-Levin function on the co-ordinates on Δ with $f_{x} \in L_{1}[c, d], f_{y} \in L_{1}[a, b]$. Then the following inequality for fractional integrals with $\alpha>0$ and $t, s \in(0,1)$ holds:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \leq \frac{4 \Gamma(\alpha+1) \Gamma(\beta+1)}{(b-a)^{\alpha}(d-c)^{\beta}} \tag{2.4}\\
& \times\left\{J_{b, d}^{\alpha, \beta} f(x, y)+J_{a, d, d}^{\alpha, \beta} f(x, y)+J_{b, c, c}^{\alpha, \beta} f(x, y)+J_{a, c}^{\alpha, \beta} f(x, y)\right\}
\end{align*}
$$

Proof. From the definition of Godunova-Levin function which is given in (1.3), we can write
$f(t x+(1-t) z, s y+(1-s) w)$
$\leq \frac{f(x, y)}{t s}+\frac{f(x, w)}{t(1-s)}+\frac{f(z, y)}{(1-t) s}+\frac{f(z, w)}{(1-t)(1-s)}$.
If we choose $t=s=\frac{1}{2}$ in (2.5), we have
$f\left(\frac{x+z}{2}, \frac{y+w}{2}\right) \leq 4[f(x, y)+f(x, w)+f(z, y)+f(z, w)]$.
By changing of the variables $x=t a+(1-t) b, z=(1-t) a+t b, y=$ $s c+(1-s) d$ and $w=(1-s) c+s d$, we get
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$
$\leq 4[f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b$,
$(1-s) c+s d)+f((1-t) a+t b, s c+(1-s) d)+$
$f((1-t) a+t b,(1-s) c+s d)]$.
By multiplying both sides of the resulting inequality by $t^{\alpha-1}, s^{\beta-1}$, then by integrating with respect to t, s over $[0,1]$ $\mathrm{x}[0,1]$, we obtain
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} d s d t$
$\leq 4\left[\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t\right.$
$+\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b,(1-s) c+s d) d s d t$
$+\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f((1-t) a+t b, s c+(1-s) d) d s d t$

$$
\left.+\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f((1-t) a+t b,(1-s) c+s d) d s d t\right] .
$$

By computing the above integrals, we deduce
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$
$\leq \frac{4 \Gamma(\alpha+1) \Gamma(\beta+1)}{(b-a)^{\alpha}(d-c)^{\beta}}$
$\times\left\{J_{b, d}^{\alpha, \beta} f(x, y)+J_{a, d}^{\alpha, \beta} f(x, y)+J_{b, c}^{\alpha, \beta} f(x, y)+J_{a, c}^{\alpha, \beta} f(x, y)\right\}$
which completes the proof.
Remark 2.1 In Theorem 2.2, if we choose $\alpha=1$ we obtain the inequality (1.5).
Theorem 2.3 Let $f: \Delta=[a, b] \times[c, d] \rightarrow \mathrm{R}$ be P-function on the co-ordinates on Δ with $f_{x} \in L_{1}[c, d], f_{y} \in L_{1}[a, b]$. Then the following inequality for fractional integrals with $\alpha>0$ and $t, s \in[0,1]$ holds:

$$
\left.\begin{array}{l}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{(b-a)^{\alpha}(d-c)^{\beta}} \tag{2.6}\\
\times\left\lfloor J_{b, d, d}^{\alpha, \beta} f(x, y)+J_{a}^{\alpha, \beta}, d\right.
\end{array}\right)
$$

Proof. By a similar argument to the proof of Theorem 2.2, by using the definition of P-function which is given in (1.4), the proof is completed.
Remark 2.2 In Theorem 2.3, if we choose $\alpha=1$, we obtain the inequality (1.6).
Theorem 2.4 Let $f: \Delta=[a, b] \times[c, d] \rightarrow \mathrm{R}$ be an b-convex function on the co-ordinates on Δ with $f_{x} \in L_{1}[c, d], f_{y} \in L_{1}[a, b], h \in L_{1}[0,1]$ where b is a positive functions defined on J such that $(0,1) \subseteq J \subseteq \mathrm{R}$. Then the following inequalities for fractional integrals with $\alpha>0$ and $t, s \in[0,1]$ hold:

$$
\begin{align*}
& \frac{1}{\alpha \beta h^{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \leq \frac{\Gamma(\alpha) \Gamma(\beta)}{(b-a)^{\alpha}(d-c)^{\beta}} \\
& \times\left\lfloor J_{b, d, d}^{\alpha, \beta} f(x, y)+J_{a, f, d}^{\alpha, \beta} f(x, y)+J_{b, \cdot, c}^{\alpha, \beta} f(x, y)+J_{a, c}^{\alpha, \beta} f(x, y)\right] \\
& \leq(f(a, c)+f(b, d)) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1}\left[\begin{array}{l}
h(t) h(s)+h(1-t) \\
h(1-s)
\end{array}\right] d s d t \\
& +(f(b, c)+f(a, d)) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1}\left[\begin{array}{l}
h(t) h(1-s)+h(s) \\
h(1-t)
\end{array}\right] d s d t . \tag{2.7}
\end{align*}
$$

Proof. According to the definition which is given in (1.8) with $t=s=\frac{1}{2}$ and then if we set $x=t a+(1-t) b, y=(1-t)$
$a+t b, u=s c+(1-s) d$ and $w=(1-s) c+s d$, we have
$f\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$
$\leq h^{2}\left(\frac{1}{2}\right)\left[\begin{array}{l}f(t a+(1-t) b, s c+(1-s) d)+f(t a+(1-t) b, \\ (1-s) c+s d)+f(1-t) a+t b, s c+(1-s) d)+ \\ f((1-t) a+t b,(1-s) c+s d)\end{array}\right]$.
By multiplying both sides of the resulting inequality by $t^{\alpha-1} s^{\beta-1}$, then by integrating with respect to t,s over $[0,1]$ $x[0,1]$, we obtain

$$
\begin{aligned}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} d s d t \\
& \leq h^{2}\left(\frac{1}{2}\right)\left[\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t\right. \\
& +\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b,(1-s) c+s d) d s d t \\
& +\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f((1-t) a+t b, s c+(1-s) d) d s d t \\
& \left.+\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f((1-t) a+t b,(1-s) c+s d) d s d t\right]
\end{aligned}
$$

By a simple computation, we get the first inequality of (2.7). Since f is a b-convex function on Δ we can write
$f(t a+(1-t) b, s c+(1-s) d) \leq h(t) h(s) f(a, c)+$
$h(t) h(1-s) f(a, d)+h(s) h(1-t) f(b, c)+$
$h(1-t) h(1-s) f(b, d)$
and
$f(t b+(1-t) a, s d+(1-s) c) \leq h(t) h(s) f(b, d)+$
$h(t) h(1-s) f(b, c)+h(s) h(1-t) f(a, d)+$
$h(1-t) h(1-s) f(a, c)$.
By adding the inequalities (2.8) and (2.9), we have
$f(t a+(1-t) b, s c+(1-s) d)+f(t b+(1-t) a, s d+(1-s) c)$
$\leq[h(t) h(s)+h(1-t) h(1-s)](f(a, c)+f(b, d))$
$+[h(t) h(1-s)+h(s) h(1-t)](f(b, c)+f(a, d))$.
By multiplying both sides of the resulting inequality by $t^{\alpha-1} s^{\beta-1}$, then by integrating with respect to t,s over $[0,1]$ $x[0,1]$, we obtain
$\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t a+(1-t) b, s c+(1-s) d) d s d t$
$+\int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1} f(t b+(1-t) a, s d+(1-s) c) d s d t$
$\leq(f(a, c)+f(b, d)) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1}\left[\begin{array}{l}h(t) h(s)+h(1-t) \\ h(1-s)\end{array}\right] d s d t$
$+(f(b, c)+f(a, d)) \int_{0}^{1} \int_{0}^{1} t^{\alpha-1} s^{\beta-1}\left[\begin{array}{l}h(t) h(1-s)+h(s) \\ h(1-t)\end{array}\right] d s d t$
which completes the proof.
Remark 2.3 In Theorem 2.4, if we choose $h(t)=t$ and $\alpha=1$, we obtain the inequality (1.1).
Remark 2.4 In Theorem 2.4, if we choose $\alpha=1$ we obtain the inequality (1.9).

3. References

Akdemir, AO., Özdemir, ME. 2010. Some Hadamardtype inequalities for co-ordinated P-convex functions and Godunova-Levin functions. AIP Conf. Proc., 1309:7-15.
Bakula, MK., Pecaric, J. 2006. On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math., 5:1271-1292.
Dahmani, Z. 2010. New inequalities in fractional integrals. Int. J. Nonlinear Sci., 9: 493-497.
Dahmani, Z. 2010. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal., 1: 51-58.
Dahmani, Z., Tabharit, L. 2010. S. Taf, Some fractional integral inequalities. Nonlinear. Sci. Lett. A, 1:155-160.
Dragomir, SS. 2001. On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J. Math., 5:775-788.
Latif, MA., Alomari, M. 2009. On Hadamard-type inequalities for b-convex functions on the co-ordinates. Int. J. Math. Anal., 33:1645-1656.
Özdemir, ME., Set, E., Sarıkaya, MZ. 2011. Some new Hadamard's type inequalities for co-ordinated m-convex and (α, m)-convex functions. Hacettepe J. Math. and Statis., 40:219229.

Özdemir, ME., Kavurmacı, H., Akdemir, AO., Avcı, M. 2012. Inequalities for s-convex and convex functions on $\Delta=[a, b] x[c, d] . J$. Ineq. Appl., 20:1-19.
Özdemir, ME., Latif, MA., Akdemir, AO. 2012. On some Hadamard-type inequalities for product of two s-convex functions on the co-ordinates, J. Ineq. Appl., 21:1-13.
Sarıkaya, MZ., Set, E., Özdemir ME., Dragomir, SS. 2012. New Some Hadamard's Type Inequalities for Co-Ordinated Convex Functions. Tamsui Oxford J. Inform. Math. Sci., 28:137152.

Sarıkaya, MZ., Set, E., Yaldız, H., Başak, N. 2013. HermiteHadamard's inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model., 57:2403-2407.
Sarıkaya, MZ. 2014. On the Hermite-Hadamard-type inequalities for co-ordinated convex function via fractional integrals, Integral Trans. Special Func., 25:134-147.
Set, E. 2012. New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals. Comput. Math. Appl., 63:1147-1154.

