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Abstract

In this paper, we obtain some new integral inequalities for different kinds of co-ordinated convex functions by using elemantery

analysis and Riemann-Liouville fractional integrals.
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Oz

Bu makalede, Riemann-Liouville kesirli integralleri ve elementer analiz islemleri kullanilarak coordinatlarda konveks fonksiyonlarin

farkli tipleri i¢in bazi yeni integral esitsizlikleri elde edilmigtir.
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1. Introduction

Let ffICR — R be a convex function defined on the
interval I of real numbers and a<4. The following inequality;

f(a_{b)f blafbf(ﬂﬁ)dmf f(a);'f(b)

is known in the literature as Hadamard’s inequality for
convex mappings.

In (Dragomir 2001), Dragomir defined convex functions on
the co-ordinates as following:

Definition 1.1 Let us consider the bidimensional interval
A=[ab]x[c,d] in R® with a<b, c<d. A function
AR will be called convex on the co-ordinates if the
partial  mappings fy:[a,b] —R, f:(u) =f(u,y) and
ff:[c,d] — R, f.(v) =f(x,v) are convex where defined for all
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Yy e lc,d] and x €la,b). Recall that the mapping f:A — R is
convex on A if the following inequality holds,

fe+ 1 =Nz y+ (1 =Nw) SN (z,y) + (1=N)f(z,w)
for all (z,7), (z,w) € A and A €[0,1].

Every convex function is co-ordinated convex but the
converse is not generally true.

In (Dragomir 2001), Dragomir established the following
inequalities of Hadamard’s type for co-ordinated convex
functions on a rectangle from the plane R

Theorem 1.1 Suppose that f:A = [a,b]x[c,d] — R is convex

on the co-ordinates on A. Then one has the inequalities;

Aegt e5e)

Smfff(w)dxdy
fla,c) +f(a,d)2—f(b,c) +f(b,d) ‘

(1.1)
<
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'The above inequalities are sharp.

Similar results can be found in [(Dragomir 2001)-(Ozdemir
et al. 2012)].

In (Ozdemir er al. 2011), Ozdemir ¢ al defined co-

ordinated m-convex functions as following:
Definition 1.2 Let us consider the bidimensional interval

A=[0,b]x[0,d] in [0,00)%. 7Tbe mapping f:A - R is

m-convex on A if
fltz+ (1=t z,ty+m(1 —t)w) < tf(z,y) +m(1—1t)f(z,w)
(1.2)

holds for all (z,y), (z,w) € A and t €[0,1], b,d > 0 and for
some fixed m €[0,1].

In (Akdemir and Ozdemir 2010), Akdemir and Ozdemir
defined Godunova-Levin functions and P-functions on
the co-ordinates as followings and proved some integral
inequalities:

Definition 1.3 Let us consider the bidimensional interval
A =[a,b]x[c,d] in R® with a<b, c<d. A function f:A —R
is said to belong to the class of Q(1) if it is nonnegative and
Sor all (Ly), (z,w) € A and \ € (0, 1) satisfies the following
inequality;

fOz+ 1 =Nz ay+ (1 -Nw) < f(;”\’y) + fl(z_’g]\) (1.3)
We denote this class of functions by QX ( f£,A). If the
inequality reversed then fis said to be concave on A and we
denote this class of functions by QV(f,A).

Definition 1.4 Ler f:Ala,b]x[c,d] - R be a P-function
with a<b, c<d. If it is nonnegative and for all (z,9),(z,w) € A
and \ € (0, 1) the following inequality holds:

fOz+1=-Nz, g+ (1 =Nw) < fla,y) +f(z,w)
We denote this class of functions by PX (f,A).

(1.4)

Theorem 1.2 Suppose that f:A[a,b] x[e,d] = R is said to
belong to the class QX ( f A) on the co-ordinates on A with
f. € Lilc,d] and f, € L[ a,b], then one has the inequalities:

1[fatb ctd

sl 5 )

S%[blafabf x’c—gd>dx+dlc[df<a—2i_b’y)dy]

< mlb[df(fv,y)dydx (15)

Theorem 1.3 Suppose that f:Ala,b]x[c,d] - R is said to
belong to the class PX ( f,A) on the co-ordinates on A with
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f- € Lilc,d] and f, € L[ a,b], then one has the inequalities:
eyt o3t s g ta [ a5+
a5 )
Smﬁfﬂx,y)dydx

< (bfa) [ fac)de+ [ fla.d)dz
gl gyt [T 1oy dy)

(1.6)

A formal definition for co-ordinated convex functions may

be stated as follow (see (Latif and Alomari 2009)):

Definition 1.5 4 function f:A — R is said to be convex on the
co-ordinates on A if the following inequality:

fltz+ (1=t y,su+(1—s)w)

<tsf(z,u) +t(1—s)f(z,w) +s(1—t)f(y,u) + (1 —1)
(1=s)f(y,w)

holds for all t,s €[0,1] and (z,u), (z,w), (y,n), (y,w) € A.

(1.7)

Similar to definition of co-ordinated convex functions Latif
and Alomari gave the notion of A-convexity of a function
/fon a rectangle from the plane R* and A-convexity on the
co-ordinates on a rectangle from the plane R? in (Latif and

Alomari 2009), as follows:

Definition 1.6 Let us consider a bidimensional interval
A =la,b]x[c,d] in R? with a<b and c<d. Let h:J SR — R
where (0,1) CJ, be a positive function. A mapping
f:A=la,b]x[c,d] - R is said to be h-convex on A, if fis
non-negative and if the following inequality:
flaz+(1—a)z,ay+ (1—a)w) <h(a)f(z,y) +h(1—a)f(zw)
holds, for all (z,),(z,w) € A and a € (0,1). Let us denote
this class of functions by SX (h,A). The function fis said to

be A-concave if the inequality reversed. We denote this class
of functions by SV (h,A).

A formal definition of A-convex functions may also be stated

as follows (see Latif and Alomari (2009)):

Definition 1.7 4 function f:A — R is said to be h-convex on
the co-ordinates on A, if the following inequality:
flz+ (1 —=t)y,su+(1—s)w) <h(t)h(s)f(z,u)+
R(t)h(1—s)f(z,w) +h(s)h(1—1t)f(y,u) +
h(1=t)h(1—s)f(y.w)

(1.8)

holds for all t,.s €[0,1] and (z,u), (z,w), (y,u), (y,w) € A.
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In (Latif and Alomari 2009), Latif and Alomari proved the
following inequalities for A-convex functions on the co-
ordinates:

Theorem 1.4 Ler f:A=[a,b]x[c,d]CR*>R be an

h-convex function on the co-ordinates on A and let f € L, (A)
and h € L,[0,1). Then one has the inequalities;

1 (a-i—b c+d)
it

= Ga@=al [ 1evd 2
<[/(a.c) +f(a.d) +(b,c) +fbd)]( [ h(o)da].

(1.9)

We give some necessary definitions and mathematical
preliminaries of fractional calculus theory which are used
throughout this paper.

Definition 1.8 Ler f€ Li[a,b]. The Riemann-Liouville

integrals Jof and Jif of order a.>0 with a>0 are defined by
a — 1 r a—1

Jiof (z) _W/a (=) 'f(t)dt, x> a

and
a — 1 b a—1

Jef(2) _Wf (t—2) ' F(t)dt, = <b

where T'(a) = fow e'u’"'du, here is

Jof (@) =T f () =f(x).

In the case of a=1 the fractional integral reduces to the
classical integral. Properties of this operator can be found

in the references [(Dahmani 2010)-(Sarkikaya ez a/. 2013)].

The aim of this paper is to establish some new integral
inequalities for different kinds of convex functions via
Riemann-Liouville fractional integrals.

2. Main Results

‘Throughout of this paper, we will use the following notation

(See e.g. Sarikaya 2014):

Teb f(z,y) = mfabfcd(z—a)m(y—c)‘g’lf(m,y)dydw
T f () =m[’fcd(z—a)‘ﬁl(d—y)ﬂ'lf(x,y)dydx
T F(ay) = mlbfcd(b—yc)wI (y—cf" f(a,y)dydz
T f(ay) = mf[l(b—z)ﬁ(d—y)ﬁ”f(xyy)dydm

Theorem 2.1 Ler f:A =[0,b]x[0,d] - R 2e

an m-convex function on the co-ordinates on A

142

with0<a <b<oo, 0=<c¢<d< oo and
f- € Li[0,d], f, € L.[0,b]. Then the following inequalities
for fractional integrals with a.>0 and m € (0,1] hold:

GBS
o1 flae)+ g fbe)+ gmfla )+
“(a+1)(B+1) O%Bmf@’%) (2.1)
and
m “fzy)

| 1,0+ g fa,d)+gmf(bog )+

m

< =
(a+1)(B+1) o%Bmf(a <)

Proof: Since fis a m-convex function on A, we know that for
any t,s €[0,1]

flta+(1—t)b,sc+(1—s)d)

<tsf(a,0) +mt(—s)f(e, L) +s(1 -0+ (22)
m(1-6)(1-s5)f(b L)

and

ftb+(1—t)a,sd+(1—s)c)

<tsf(b,d) +mt(1-9)f(b,S)+s(1-0f(a.d)+  (2.3)

m(1-0)(1—5)f(a,S)
By multiplying both sides of (2.2) by t“'s”", then by

integrating the resulting inequality with respect to # s over
[0,1]x[0,1], we obtain

fft s (ta+ (1= 1) b,sc+ (1 — ) d) dsdt
_f(ac)fft“ 3dsdt+fbc/ft“ 5(1 — ¢) dsdt
+mfa, —)f [eest (1) dsde

+mf( )f f 11 (1 — 1) (1—s) dsdt.

It is easy to see that

/01 '[ t's" f (ta+ (1—¢t)b,sc+ (1 —s)d)dsdt =

C()C(B) s
(e ey Jobf(z,y)

and by computing the above integrals, we deduce
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()@ .
T=ay @—cp = fwy)
1 f(a’c)+af(b,0)+%mf(a,%)+

m

<1
(a+1)(B+1) aiBmf<b i)

which completes the proof of the first inequality.

For the proof of the second inequality in (2.1), we multiply
both sides of (2.3) by t“"'s”™', then integrate the resulting
inequality with respect to #s over [0,1]x[0,1].

Theorem 2.2  Let f:A=[a,b]x[c,d]- R be
Godunova-Levin function on the co-ordinates on A with
f. € Lile,d], f, € Lila,bl. Then the Jfollowing inequality for
Jfractional integrals with 0.>0 and t,s € (0,1) holds:
et et
~AT(a+DI(B+1)

(b—a)(d— 0)3
x{ Ty f (@) + T

(2.4)

(fyil/) +Jgii+f($7il/) +JZ+Bc+f($7?/)}

Proof. From the definition of Godunova-Levin function
which is given in (1.3), we can write

f(tx(—l—(l)—t)z(,sy-;(l—s()w)) o)
flz,y flz,w flzy flz,w
=T Til-s)  (-f)s  A-t(1-9)

in (2.5), we have

(2.5)

Do

If we choose t =s =

AZE2 3T <l (09) + ) + £ ly) + ).

By changing of the variables x = za+(1-2)6, z = (1-Ha+tb,y =

se+(1-s)d and w = (1-s)c+sd, we get
55
<4[f(ta+ (1—1t)b,sc+ (1
(1-s)c+sd)+f((1—t)a+tbsc+ (1—
f((1=t)a+tb,(1—s)c+sd)].

—s)d)+f(ta+(1—1t)b,
s)d) +

By multiplying both sides of the resulting inequality by

t“7',s"7", then by integrating with respect to #s over [0,1]

x[0,1], we obtain

AL G [ [ st dsat
54[[]1[0 e sE f(ta+ (1= 1) bsc + (1 — s) d) dsdt

+/0 fo 115 f(ta+ (1—1)b, (1 — s) ¢ + sd) dsdt

+[ [ s

—t)a+tb,sc+ (1—s)d)dsdt
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—t)a+tb,(1—s)c+sd)dsdt|.

+folf01t”’13ﬁ’1f((1

By computing the above integrals, we deduce

Ae50.5%)

- AT (a+1)I(B+1)

- (b a) (d—C)ﬂ
{ (xy +J

(xay) + J?i*f(l'vy) + JZ’ﬁr*f(xay)}
which completes the proof.

Remark 2.1 In Theorem 2.2, if we choose 0. =1 we obtain the
inequality (1.5).

Theorem 2.3 Ler f:A = [a,b]x[c,d] - R &e P-function on
the co-ordinates on A with f. € Li[c,d], f, € Li[a,b). Then
the following inequality for fractional integrals with a.>0 and
t,s €[0,1] bolds:
A5t 5Y)
cTla+Dr@E+1)
(b a) (d—c)f
X\ f (@,y) + T f (@) + T f () + T f () ).

(2.6)

Proof: By a similar argument to the proof of Theorem 2.2,
by using the definition of P-function which is given in (1.4),
the proof is completed.

Remark 2.2 In Theorem 2.3, if we choose o. =1, we obtain the
inequality (1.6).

Theorem 2.4 Let f:A=[ablx[c,d]-R e an
h-convex function on the co-ordinates on A with
f. € Lile,d], f, € Lila,bl, h € L,[0,1] where b is a positive
Sfunctions defined on J such that (0,1) CJCR. Then the
Jfollowing inequalities for fractional integrals with o>0 and
t,s €[0,1] hold:

1 atb ct+d
i ,
thz(%)( 2 2 )
_ T(a)I'(B)
“(b—a)(d—c)f
X f(@yy) + T2 foy) + I f (y) + T2 f(z,y) ]
<(fla,0)+f(b,d) [ fotsﬁ[z((i)fs) Hhil _t)]dsdt
v [R(ER(1 =) +R(s)
st faan [ [ e " fsa

(2.7)

Proof. According to the definition which is given in (1.8)
with t=s= 5 and then if we set x = za+(1-2)4, y = (1-£)

143



Akdemir, Giirbiiz, Set / Integral Inequalities for Different Kinds of Convex Functions Involving Riemann-Liouville Fractional Integrals

5)d and w = (1-5)c+sd, we have
b d
Aoz e54)
flta+ (1—1t)b,sc+ (1
Sh%%) (1—=s)c+sd)+f(1—t)a+thsc+ (1
f(1—=t)a+tb,(1—s)c+sd)

a+th, u = sc+(1-

—s)d) +f(ta+(1—1t)b,
—s)d) +|.

By multiplying both sides of the resulting inequality by

t“'s"™', then by integrating with respect to #s over [0,1]

x[0,1], we obtain

ASg e b ) [ s dsar
Sh%%)[[ﬁt‘“sﬁ’lf ta+(1—1t)b,sc+ (1—s)d)dsdt
+[folt“”8’“f(ta+(1—t)b( — )¢+ sd) dsdt
J%Ifolt“sﬁ”f( —t)a+th,sc+ (1—s)d)dsdt

[ [ (= at th, (1) e+ sd)dsde |

By a simple computation, we get the first inequality of (2.7).
Since fis a A-convex function on A we can write

flta+(1—t)b,sc+ (1—s)d) <h(t)h(s)f(a,c)+

h(t)h(1—s)f(a,d) +h(s)h(1—1t)f(b,c) + (2.8)
h(1—t)h(1—s)f(b,d)

and

ftb+(1—t)a,sd+ (1—s)c) <h(t)h(s)f(b,d) +
h(t)h(1—s)f(bc) +h(s)h(1—1)f(a,d)+ 2.9)
h(1=t)h(1—s)f(a,c).

By adding the inequalities (2.8) and (2.9), we have

flta+ (1 —t)b,sc+(1—s)d) +f(tb+(1—t)a,sd+(1—s)c)
<[r()h(s) +h(1=)h(1—s)|(f(a,c) +f(b,d))
+HAt)h(1=s)+h(s)h(1—=1)](f(b,c) +f(a,d)).

By multiplying both sides of the resulting inequality by

t“"'s", then by integrating with respect to #s over [0,1]

x[0,1], we obtain

flflt“s*?’lf(tm(l—t)b sc+ (1—s)d) dsdt
+//talﬁlf(tb+(1—t)asd+ 1—s)c)dsdt

(
< (f(a,c) +£(b,d) _/ft‘”‘“ R(E)A(s) * (l_t)}

dsdt
h(1-s)
+(f(b,c) +f(a,d) fft‘“’“[ )

()h(1—s) +h(s)

h(1—1) ]dsdt
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which completes the proof.

Remark 2.3 In Theorem 2.4, if we choose h(t) = ¢ and . =1, we
obtain the inequality (1.1).

Remark 2.4 In Theorem 2.4, if we choose o. =1 we obtain the
inequality (1.9).
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