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On The Fundamental Units of Certain Real Quadratic Number Fields

Baz1 Reel Kuadratik Sayz Cisimlerinin Temel Birimleri Uzerine

Ozen Ozer

Kirklareli University, Faculty of Science and Arts, Department of Mathematics, Kirklareli, Turkey

Abstract

In this paper, we consider the real quadratic fields Q(/d) where disa square free positive integer congruent to 1(mod4). We construct
the parametrization of & which correspond to some types of real quadratic fields including a specific kind of continued fraction
expansion. Then, we determine the explicit representation of fundamental unit and obtain some results on Yokoi’s invariants. Besides,
we give several tables for which satisfy the obtained results. In this paper, the recent results of the paper (Ozer 2016a) have also been
extended and completed in the case of d=1(mod4).
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Oz

Bu makalede, 4, (mod4)e gore 1e denk olan kare carpansiz bir pozitif tamsayr olmak Uzere Q(\/a ) reel kuadratik cisimleri goz
ontine almaktayiz. Strekli kesir agiliminin 6zel bir ¢esidini igeren reel kuadratik say1 cisimlerinin baz: tiplerine kargilik gelen 4 nin
parametrik ifade ediligini belirlemekteyiz. Daha sonra, temel birimin kesin gosterimini belirlemekte ve Yokoi'nin degismezleri tizerine
bazi sonuglar elde etmekteyiz. Buna ek olarak, elde edilen sonuglar: saglayan bazi tablolar vermekteyiz. Bu makalede ayrica d=1(mod4)

olmasi durumunda (Ozer 2016a) makalesinde elde edilen sonuglar tamamlanmakta ve genisletilmektedir.

Anahtar Kelimeler: Strekli kesir genislemesi, Temel birim, Kuadratik cisimler, Yokoi'nin invaryantlar:
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1. Introduction

In 2016, Benamar et all worked on lower bounds of the
number of some specific types of monic and non-square free
polynomials related with fixed period continued fraction
expansion of square root of rational integers. In 2015,
Jeongho gave significant results on the solvability of the
negative Pell equation and prime ideals by considering real
quadratic integers with fixed norm as well as lower bound
of regulator of real quadratic fields. In 2016, Badziahin and
Shallit considered some real numbers with special continued
fraction expansion besides transcendental numbers. In 2008,
Tomita and Kawamoto constructed an infinite family of real
quadratic fields with large even period of minimal type and
class number with Yokoi’s invariants. Zhang and Yue (2014)
interested in real quadratic fields with odd class number and
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fundamental unit with positive norm. Also, they gave several
congruences relation about the coeflicient of fundamental
unit in their paper.

In 2002, new lower bound for fundamental unit €, was
obtained by Tomita and Yamamuro and several examples of
dwere given in the terms of Fibonacci sequence for the some
types of real quadratic fields. Tomita, in 1995, also described
representation of fundamental unit of real quadratic
fields for period length equals 3 in the continued fraction
expansion of w, where 4 is square free integer congruent
to 1(mod4). William and Buck, in 1994, compared with
the lengths of the continued fractions of rational integers.
Also, many authors obtained significant results for some
types of continued fractions, fundamental unit and the real
quadratic fields like in the valuable papers (Clemens et all
1995, Elezovic 1997, Friesen 1988, Halter Koch 1991).
Sasaki (Sasaki 1986) and Mollin (Mollin 1996) also studied
on lower bound of fundamental unit for real quadratic
number fields, and they got certain important results. Yokoi
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(Yokoi 1990,1991,1993a,1993b) defined several invariants
important for class number problem and solutions of Pell
equation by using coeflicients of fundamental unit. Besides,
the author (Ozer 2016a, 2016b, 2017) obtained some types
of real quadratic fields and determined their fundamental
unit in the case of d = 2,3(mod4) square free integer.
Moreover, we can refer to the readers references (Old 1963,
Perron 1950, Sierpinski 1964) for getting more information
about the quadratic fields.

Let k= Q(JH ) be a real quadratic number field where
d>0 is a positive square-free integer. w, is integral basis
element of Z[w.] and Ad) is the period length in simple
continued fraction expansion of integral basis element. The
fundamental unit €, of real quadratic number fields is also

denoted by €, = M > 1 where N(e,) =(—1)"". For
the set I(d) of all quadratic irrational numbers in k£ = Q(yd)
we say that o in I(d) is reduced if a > 1,—1 < a’ <0 (
a’ is the conjugate of o) and R(d) denotes the set of all
reduced quadratic irrational numbers in I(d). Then, it is
well known that any number o in R(d) is purely periodic
in the continued fraction expansion and the denominator
of its modular automorphism is equal to fundamental unit

€, of Q(y/d). Yokoi’s invariants are defined as m, = H%;H

4 .
and n, = “u—‘éﬂ where [z] represents the greatest integer not
d
greater than x.

Present paper deals with the investigating some types of
real quadratic fields including specific continued fraction
expansions consist of partial quotients elements equal to
each others and written as 3s (except the last digit of the
period) where dis a square free integer congruent to 1(mod4).

Also, we determine the general representation form of
fundamental unit €, and obtain some results on the Yokoi’s
invariants 7, 72, determined in the terms of the coefficient
of fundamental units for such real quadratic fields. Further,
we give several tables satisfy the obtained results.

2. Preliminaries

We need following definition and lemma in the sequel.

Definition 2.1. Let {S} be a sequence defined by recurrence
relation

§=38 _,+8.,
for i > 2 with seed values §, =0 and §, = 1.

Lemma 2.2. Let 4 be a square-free positive integer

+/d

congruent to 1 modulo 4. If we put w,= 5 00 = lw.]
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into the wp=a;—1+w, then o,% R(d), but
®r € R(d) holds. Moreover, for the period / = (d)

of wz, we get z=[2a,—1ay.... @] and
0. =aa, ... ,@r-1,2a0 — 1. Furthermore, let

_ Powg+P, _
= Bwnt Qs =[2a0—1,a,,....... ,@1,Wz] be a modu-

lar automorphism of g, then the fundamental unit €, of

Q(Vd) is given by the following formula:
_ titudd
Q="

te=(2a0—1).Qua + 2Qua-1, s = Qua-

where Q. is determined by Q =0, Q,=1and Q, =4 Q, +
Q.,@E=1).

Proof. Proof is in the paper of Tomita (Tomita 1995).

3. Results

The followings are our main theorem and results with the
notations of the preliminaries section.

Theorem 3.1. Let d be a square free positive integer and £ >
1 be a positive integer.

D If
d = (ZmSa + 3)2 + SWLS@—l +4
tor m > 0 positive integer, then d = 1 (mod4) and

W, = [mSH- 2:3,3,..3,2mS.+ 3
—_—

-1

and ¢ = 0(d). Moreover, in this case it holds
ti= 2WLSLZ + 3Sa + 25571 and Uqg = Sa

+
for e, = w

(2) If ¢ is divided by 3 and
d=(mS+3f+4mS., +4
for m > 0 positive odd integer, then d = 1 (mod 4) and
—_|m 949 a0 .LAa
Wq = 75’9 + 2, 3,3,...,3,mS0 +3
()

-1

and ¢ = 0(d). Moreover, in this case it holds
te= me + 35@ + 25#1 and Uqg = Sﬂ

+
for e, = W

Remark 3.2. it is clear that S is odd number if ¢ is not

divided by 3. If we substitute 7z odd positive Si,nteger into the
mo.

parametrization of & then we obtain that is not integer

where { is not divided by 3. So, we have to accept that { is
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divided by 3. Also, if we choose 72 is even integer in the case
of (2), then the parametrization of & coincides with the case
of (1). That’s why we assume [ = 0(mod 3) and 7 is positive
odd integer in the case of (2).

Proof. (1) Let the parametrization of d be
d = (2mS.+3)*+8mS.. + 4. Since (2mS.+ 3)" is positive
odd integer, we have d = 1(mod4). From Lemma 2.2, we

1+/d

know that [OF 9 ,Clo:[[(l)d]],wgzdo_1+wd. By
using these equations, we have

wp = (mS.+ 1)+[mSQ+ 2:3,3,...,3,2mS, + 3]
N —_—

so we get
3+ 1
3+ 1
3+
3+—Lo

By a straight forward induction argument, we obtain

03— (2mS+3)w,—(1+2mS..)=0
(2mS.+3)+/d .
2

This requires that @z = ince wy > 0. If

we consider Lemma 2.2, we get

W= [mSa +2:3,3,...,3,2mS, + 3]

-1

and 0= 0(d).

Now, we have to determine €, using Lemma 2.2.In the paper
(Ozer 2016a), it was obtained that Q; =.S; using induction
for Vi = 0. If we substitute these values of sequence into

_ td+u11\/g .
- 2

the €. in Lemma 2.2 and rearrange, we get

t,and u;

td = 2me+ SSQ—"_ 25571 U//Ld Uqg = Sa

td+ud\/g
2

for e, = . So, we complete the proof of (1).

(2) If we assume that 0 = 0 (mod 3) and the parametrization
of dis

d = (mSQ+3)Z+4mSu—1+4

for m > 0 positive odd integer, then we have d =1 (mod4)
since S. is even integer. By substituting % instead of 7 into

the case (1), we get

wa ="y Si+23,3,..3,mS+3
N ——

-1

and 0 = 0(d). Furthermore,

162

td = mScZ"f' 3Se+ 2So—1CLnd Ug — Sq

hold for €, = W which completes the proof.

Remark 3.3. Infinitely many values of & which correspond
to new real quadratic fields Q(y/d) can be obtained by using

our main theorem.

Corollary 3.4. Let 4 be a square free positive integer
congruent to 1 modulo 4. If 4 satisfies the conditions in the
Theorem 3.1, then it always hold 7, = 0 (i.e. 72, # 0.)

Proof. In the case of (1) in the Theorem 3.1, we have

_ ﬂ _ 2MS§+3S0+2S071 3S@+2S071
i St St

ﬂ=2m+[|

Since m > 0 is positive integer and (S:) is increasing
sequence, we get 72, # 0 for > 1. In a similar way, for the
case of (2) in the Theorem 3.1, we get

= figl=m 2]

We obtain 7, # 0 since 72 > 0 is positive odd integer and
2
ts > wi. This shows that m, = H%{iﬂ =0.

Corollary 3.5. Let 4 be the square free positive integer
corresponding to Q(yd) holding (1) in the Theorem 3.1.
Table 1 is valid where fundamental unit is €4, integral
basis element is @, and Yokois invariant is 7 for 7 = 1 or 2
and 2 < 0(d) < 11. (In this table, we rule out ¢(d) = 10,11
for m =1 and 0(d) = 2,9,10,11 in the case of 7 = 2 since 4

is not a square free positive integer.)

Proof. This Table is obtained if we substitute 7 = 1 or 2
into (1) in the Theorem 3.1. Now, we have to determine the
values of Yokoi invariant 7, as follows:

_ {3, if 0=2
"0, if 0> 2
for m = 1. We know that n, = H ZIZ H from Yokoi’s references

d

(Yokoi 1990, 1991, 1993a, 1993b). If we substitute #,and ¢,

into the » » then we get

ﬁll — l’ 2’”LSQZ + 3Sa+ 2S@71ﬂ

n=|
L St

By using the above equality, we have 7, = 3 in the case of
0 =2 while m = 1. Since S, is increasing sequence, we get

3 280
2,36 > (2+5+ 28

for ¢ > 2, while 72 = 1. In a similar way, we obtain 7, = 4

)>2

in the case of ¢ > 2 and 7 = 2 since following inequality
satisfies
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4,362 (4+3+ 2

S s )>4

Corollary 3.6. Let 4 be a square free positive integer
concerning the case of (2) in the Theorem 3.1. Table 2 is
valid where fundamental unit is €, integral basis element
is ws, Yokoi’s d-invariants 7, and , for m = 1,3 with
3 <0(d) < 12. (In this table, we rule out ¢(d) = 9,12 for m

= 3 since 4 is not a square free positive integer.)

Table 1. Square-free positive integers d with 2 < 0d)<9

Proof. This Table is got if we substitute 7 = 1 or 3 into
the (2) in the Theorem 3.1. Now, we have to show that 7,
= 1 in the case of 7 = 1. If we put #, and «, into the 7, and
rearrange, then we obtain

] mS%+3Sﬂ+2Sﬂ71H
T = H ws H B St

From the assumption (also since S is increasing sequence),
we have

d m (d) n, m, ) €,
93 112 3]0 [5:3,9] (29 +3y93)/2
557 1131210 [12:3,3,23] (236 +104/557)/2
4845 1141210 [35;3,3,3,69] (2297 + 33,/4845) /2
49109 1151210 [111:3,3,3,3,221] (24115 +109449109) /2
523605 116 | 2]0 [362;3,3,...,3,723] (260498 + 3604523605 ) /2
5672045 11711210 [1191:3,3,...,3,2381] (2831729 + 11895672045 ) /2
61741965 1] 81|20 [3929:3.3,...,3,7857] (30856817 +3927/61741965) /2
673070669 1191|210 [12972:3.3,...,3,25943] (336488564 + 129704/673070669) /2
1901 213|410 [22:3,3,43] (436 +104/1901)/2
18389 20 4 | 410 [68:3,3,3,135] (4475 + 33,/18389) /2
193253 2|5 |40 [220:3,3,3,3,439] (47917 +109193253) /2
2083997 201 6 | 4]0 [722;3,3,...,3,1443] (519698 + 3604/2083997 ) /2
22653845 20 71410 [2380;3,3,...,3,4759 ] (5659171 + 1189422653845 ) /2
246854549 21 8 4]0 [7856:3,3,...,3,15711] (61699475 + 3927 /246854549 ) /2

Table 2. Square-free positive integers d with 3 < 0(d) < 12.

d m (d) n, m, ) €,
185 113|110 [7:3.3,13] 136+120@
132209 116|110 [182;3,.,3,363] 130898 + 3260m
168314441 1191|110 [6487:3,3,...,3,12973] 168267664 + 122970/m
218353968017 | 1 | 12 | 1 | 0 [233642:3.3,...3,467283] | 218352283202 + 46;280Jm
1129 3131310 [17:3,3,33] 336+1§)J@
1174201 316 3]0 [542:3,3,...,3,1083] 390098 + 330Jm
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28
St

1,362(1+%+ )>1

in the case of 0 = 3 which completes the first part of the

proof. In a similar way, we obtain 7, =3 for { > 2 since

i QSE*]
3,36 z(3+ 3+ 2%

)>3
in the case of m = 3.

4. Conclusion

It is well known that the fundamental unit, continued
fraction expansion and Yokoi’s invariants play an important
role in the studying on real quadratic fields.

The focal point in this paper was to investigate some types
of real quadratic fields and determine their infrastructure
such as fundamental unit, Yokoi’s invariants, continued
fraction expansions, etc. Also, the present paper extended
and completed the paper of the author (Ozer 2016a) in the
case of d congruent to 1(mod4).

The results provide us a practical method so as to rapidly
determine continued fraction expansion of w , fundamental
unit € , Yokoi’s invariants 7, and , for such real quadratic
number fields.
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