Karaelmas Fen ve Mühendislik Dergisi

Journal home page: http://fbd.beun.edu.tr

Research Article

Integrability Conditions and Tachibana Operators According to ${}^{CC}F - \frac{1}{2}\gamma(NF)$ on Semi Cotangent Bundle $t^*(M_{*})$

Semi Cotangent Demette ${}^{cc}F - \frac{1}{2}\gamma(NF)$ Yapısına Göre Tachibana Operatörleri ve İntegrallenebilme Şartları

Haşim Çayır

Giresun University, Department of Mathematics, Faculty of Arts and Sciences, Giresun, Turkey

Abstract

The main aim of this paper is to find integrability conditions by calculating Nijenhuis Tensors $N({}^{\circ}X,{}^{\circ}Y), N({}^{\circ}X,{}^{\circ}\omega), N({}^{\circ}\omega,{}^{\circ}\theta)$ of almost complex structure ${}^{\circ}F - \frac{1}{2}\gamma(NF)$ and to show the results of Tachibana operators applied ${}^{\circ}X$ and ${}^{\circ}\omega$ according to structure ${}^{\circ}F - \frac{1}{2}\gamma(NF)$ in semi cotangent bundle $\ell^*(M_n)$.

2010 Mathematics Subject Classification: 15A72, 47B47, 53A45, 53C15, 53C55

Keywords: Almost complex structure, Complete lift, Integrability conditions, Semi cotangent bundle, Tachibana operators, Vertical lift

Öz

Bu çalışmanın temel amacı ${}^{cc}F - \frac{1}{2}\gamma(NF)$ almost kompleks yapısının $N({}^{c}X, {}^{c}Y), N({}^{c}X, {}^{c}\omega)$ ve $N({}^{c}\omega, {}^{e}\theta)$ ve ${}^{c}F - \frac{1}{2}\gamma(NF)$ Nijenhuis tensörlerini hesaplayarak integrallenebilme şartlarını bulmak ve $t^{*}(M_{n})$ semi cotangent demeti içerisinde ${}^{cc}F - \frac{1}{2}\gamma(NF)$ yapısına göre ${}^{cr}X$ ve ${}^{vc}\omega$ ye uygulanan Tachibana operatörlerinin sonuçlarını göstermektir.

Anahtar Kelimeler: Almost kompleks yapı, Komple lift, Integrallenebilme şartları, Semi cotangent demet, Tachibana operatörü, Vertikal lift

1. Introduction

Let M_n be an *n*-dimensional differentiable manifold of class C^{∞} and let $T(M_n)$ the tangent bundle determined by a natural projection (submersion) . $\pi_1:T(M_n) \to M_n$. We use the notation $(x^i) = (x^{\bar{\alpha}}, x^{\alpha})$, where the indices i,j,...run from 1 to 2n, the indices α , β ,... from 1 to *n* and the indices $\bar{\alpha}, \bar{\beta}, ...$ from *n*+1 to 2_n , x^{α} are coordinates in $M_n, x^{\bar{\alpha}} = y^{\alpha}$ are fibre coordinates of the tangent bundle $T(M_n)$. If $(x^i) = (x^{\bar{\alpha}'}, x^{\alpha'})$ is another system of local adapted coordinates in the tangent bundle $T(M_n)$ then we have

$$\begin{cases} x^{\vec{\alpha}'} = \frac{\partial x^{\vec{\alpha}'}}{\partial x^{\beta}} y^{\beta}, \\ x^{\vec{\alpha}'} = x^{\vec{\alpha}'} (x^{\beta}). \end{cases}$$
(1.1)

The Jacobian of (1.1) has components

*Corresponding Author: hasim.cayir@giresun.edu.tr

Received / Geliş tarihi : 04.09.2016 Accepted / Kabul tarihi : 24.09.2016

$$(A_{j}^{i'}) = \left(\frac{\partial x^{i'}}{\partial x^{j}}\right) = \begin{pmatrix} A_{\beta}^{a'} & A_{\beta\varepsilon}^{a'}y^{\varepsilon} \\ 0 & A_{\beta}^{a'} \end{pmatrix},$$

where $A_{\beta}^{a'} = \frac{\partial x^{a'}}{\partial x^{\beta}}, A_{\beta\varepsilon}^{a'} = \frac{\partial^{2}x^{a'}}{\partial x^{\beta}\partial x^{\varepsilon}}.$

Let $T_x^*(M_n) (x = \pi_1(x), x = (x^{\bar{a}}, x^{\bar{a}}) \in T(M_n))$ be the cotangent space at a point x of M_n . If p_α are components of $p \in T_x^*(M_n)$ with respect to the natural coframe $\{dx^{\alpha}\}$, i.e. $p = p_i dx^i$, then by definition the set $t^*(M_n)$ of all points $(x^l) = (x^{\bar{a}}, x^{\bar{a}}, x^{\overline{a}}), x^{\overline{a}} = p_a; I, J, ... = 1, ...3n$ with projection $\pi_2: t^*(M_n) \to T(M_n) (i.e.\pi_2: (x^{\bar{a}}, x^{\bar{a}}, x^{\overline{a}}) \to (x^{\bar{a}}, x^{\bar{a}}))$ is a semicotangent (pull-back (Yıldırım and Salimov 2014)) bundle of the cotangent bundle by submersion $\pi_1: T(M_n) \to M_n$ (For definition of the pull-back bundle, see for example (Husemöller 1994, Lawson and Michelsohn 1989, Pontryagin 1962, Steenrod 1951, Yıldırım 2015, Yıldırım and Salimov 2014)). It is remarkable fact that the semicotangent (pull-back) bundle has a degenerate symplectic structure (Yıldırım and Salimov 2014)

$$\boldsymbol{\omega} = (\boldsymbol{\omega}_{\scriptscriptstyle AB}) = dp = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -\delta^{\alpha}_{\beta} \\ 0 & \delta^{\beta}_{\alpha} & 0 \end{pmatrix}$$

It is clear that the pull-back bundle $t^*(M_n)$ of the cotangent bundle $T^*(M_n)$ also has the natural bundle structure over M_n , its bundle projection $\pi:t^*(M_n) \to M_n$ being defined by $\pi:(x^{\bar{a}}, x^a, x^{\overline{a}}) \to (x^{\alpha})$ and hence $\pi = \pi_1 \circ \pi_2$ (Yıldırım 2015). Thus $(t^*(M_n), \pi_1 \circ \pi_2)$ is the composite bundle (Pontryagin 1962, p.9) or step-like bundle (Lawson and Michelsohn 1989).

1.1. Complete Lift of Vector Fields

We denote by $\mathfrak{T}_q^p(T(M_n))$ and $\mathfrak{T}_q^p(M_n)$ the modules over $F(T(M_n))$ and $F(M_n)$ of all tensor fields of type (p,q) on $T(M_n)$ and M_n respectively, where $F(T(M_n))$ and $F(M_n)$ denote the rings of real-valued C^{∞} -functions on $T(M_n)$ and M_n , respectively.

To a transformation (1.1) of local coordinates of $T(M_n)$ there corresponds on $t^*(M_n)$ the coordinate transformation (Yıldırım 2015)

$$\begin{cases} x^{\bar{a}'} = \frac{\partial x^{\bar{a}'}}{\partial x^{\beta}} y^{\beta}, \\ x^{\bar{a}'} = x^{\bar{a}'}(x^{\beta}), \\ x^{\bar{\bar{a}}'} = \frac{\partial x^{\beta}}{\partial x^{\bar{a}'}} p_{\beta}. \end{cases}$$
(1.2)

The Jacobian of (1.2) is given by

$$\bar{A} = (A_J^{\prime}) = \begin{pmatrix} A_{\beta}^{\alpha'} & A_{\beta\epsilon}^{\alpha'} y^{\epsilon} & 0\\ 0 & A_{\beta}^{\alpha'} & 0\\ 0 & p_{\alpha} A_{\beta}^{\beta'} A_{\beta'\alpha'}^{\alpha} & A_{\alpha'}^{\beta'} \end{pmatrix},$$
(1.3)

where

$$A^{a'}_{\beta} = \frac{\partial x^{a'}}{\partial x^{\beta}}, A^{\beta}_{a'} = \frac{\partial x^{\beta}}{\partial x^{a'}}, A^{a'}_{\beta\varepsilon} = \frac{\partial^2 x^{a'}}{\partial x^{\beta} \partial x\varepsilon}, A^{a}_{\beta'a'} = \frac{\partial^2 x^{a'}}{\partial x^{\beta'} \partial x^{a'}}$$

It is easily verified that the condition Det $\overline{A} \neq 0$ is equivalent to the condition:

 $Det(A_{\beta}^{\alpha'}) \neq 0.$

Let $X \in \mathfrak{I}_0^1(T(M_n))$, *i.e.* $X = X^{\alpha} \partial_{\alpha}$. The complete lift ${}^{\circ}X$ of X to tangent bundle is defined by ${}^{\circ}X = X^{\alpha} \partial_{\alpha} + (y^{\beta} \partial_{\beta} X^{\alpha}) \partial_{\alpha}$ (Yano and Ishihara 1973, p.15). On putting

$${}^{cc}X = ({}^{cc}X^{\alpha}) = \begin{pmatrix} y^{\varepsilon}\partial_{\varepsilon}X^{\alpha} \\ X^{\alpha} \\ -p_{\varepsilon}(\partial_{\alpha}X^{\varepsilon}) \end{pmatrix},$$
(1.4)

from (1.3), we easily see that ${}^{cc}X' = \overline{A}({}^{cc}X)$. The vector field ${}^{cc}X$ is called the complete lift of ${}^{c}X \in \mathfrak{T}_{0}^{1}(T(M_{n}))$ to $t^{*}(M_{n})$ (Yıldırım 2015).

Now, consider $\omega \in \mathfrak{T}_1^0(T(M_n))$ and $F \in \mathfrak{T}_1^1(T(M_n))$ then ^{*vv*} ω (vertical lift) and $\gamma F \in \mathfrak{T}_0^1(t^*(M_n))$ have respectively, components on the semi-cotangent bundle $t^*(M_n)$ (Yıldırım and Salimov 2014)

$${}^{vv}\omega = \begin{pmatrix} 0\\0\\\omega_{\alpha} \end{pmatrix}, \gamma F = (\gamma F') = \begin{pmatrix} 0\\0\\p_{\beta}F^{\beta}_{\alpha} \end{pmatrix}$$
(1.5)

with respect to the coordinates $(x^{\bar{a}}, x^{\alpha}x^{\overline{\alpha}})$ where ω_{α} and F_{α}^{β} are local components of ω and F.

For $T \in \mathfrak{T}_2^1(M_n)$, we can define an affinor field $\gamma T \in \mathfrak{T}_1^1(t^*(M_n))$ (Yıldırım and Salimov 2014):

$$\gamma T = ((\gamma T)_{J}^{I}) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & p_{\varepsilon} T_{\beta \alpha}^{\varepsilon} & 0 \end{pmatrix},$$
(1.6)

where $T_{\beta^{\alpha}}^{\epsilon}$ are local components of T in M_{r} .

On the other hand, ^{*vv*} *f* the vertical lift of function *f* on $t^{*}(M_{n})$ is defined by (Yıldırım and Salimov 2014):

$${}^{vv}f = {}^{v}f \circ \pi_2 = f \circ \pi_1 \circ \pi_2 = f \circ \pi.$$

$$(1.7)$$

Theorem 1.1.1. For any vector fields X, Y on $T(M_n)$ and $f \in \mathfrak{T}_0^0(M_n)$, we have (Yıldırım 2015)

i)
$${}^{cc}(X+Y) = {}^{cc}X + {}^{cc}Y,$$

ii) ${}^{cc}X^{vv}f = {}^{vv}(Xf).$

Theorem 1.1.2. Let $X, Y \in \mathfrak{I}_0^1(T(M_n))$. For the Lie product, we have

i)
$$[{}^{cc}X, {}^{cc}Y] = {}^{cc}[X, Y](i.e.L_{ccX}({}^{cc}Y) = {}^{cc}(L_XY)),$$

ii) $[{}^{cc}X, {}^{vc}\omega] = {}^{vc}(L_X\omega),$
iii) $[{}^{cc}X, \gamma F] = \gamma(L_XF)$

for any $\omega \in \mathfrak{I}_1^0(M_n)$ and $F \in \mathfrak{I}_1^1(T(M_n))$, where L_X the operator of Lie derivation with respect to X (Yıldırım 2015).

1.2. Complete Lift of Tensor Fields of Type (1,1)

Suppose now that $F \in \mathfrak{I}_1^1(T(M_n))$ and F has local components F_{β}^a in a neighborhood U of $M_n, F = F_{\beta}^a \partial_a \otimes dx^{\beta}$. If we take account of (1.3), we can prove that ${}^{cc}F_{J'}^{T} = A_I^{Tcc}F_J^{T}$, where ${}^{cc}F$ is an affinor field defined by

$${}^{cc}F = ({}^{cc}F_{J}^{I}) = \begin{pmatrix} F_{\beta}^{a} & y^{\varepsilon}\partial_{\varepsilon}F_{\beta}^{a} & 0\\ 0 & F_{\beta}^{a} & 0\\ 0 & p_{\sigma}(\partial_{\beta}F_{\alpha}^{\sigma} - \partial_{\alpha}F_{\beta}^{\sigma}) & F_{\alpha}^{\beta} \end{pmatrix}$$
(1.8)

with respect to the coordinates $(x^{\bar{\alpha}}, x^{\alpha}, x^{\bar{\alpha}})$ on $t(M_n)$ We call ${}^{cc}F$ the complete lift of the tensor field F of type (1,1) to $t(M_n)$ (Yıldırım 2015).

Theorem 1.2.1. If $X \in \mathfrak{I}_0^1(T(M_n))$, $\omega \in \mathfrak{I}_1^0(M_n)$ and $F \in \mathfrak{I}_1^1(T(M_n))$, then

i)
$${}^{cc}F^{cc}X = {}^{cc}(FX) + \gamma(L_XF),$$

ii) ${}^{cc}F^{vv}\omega = {}^{vv}(\omega \circ F),$

where L_x the operator of Lie derivation with respect to X (Yıldırım 2015).

Theorem 1.2.2. For any $F \in \mathfrak{I}_1^1(T(M_n)), F^2 = -I$ (Yıldırım 2015),

 $({}^{cc}F)^2 = -I - \gamma(N_F).$

Theorem 1.2.3. Let $X \in \mathfrak{I}_0^1(T(M_n))$ and $F \in \mathfrak{I}_1^1(T(M_n))$. Then

$$L_{ccX}{}^{cc}F=0$$

if $L_x F = 0$ (Yıldırım 2015).

2. Results

2.1. Integrability Conditions of Almost Complex Structure on Semi Cotangent Bundle

Definition 2.1.1. Let F be an almost complex structure on $T(M_n)$, i.e., $F^2 = -I$. We say that F is integrable if the Nijenhuis tensor N_F of F is identically equal to zero. The Nijenhuis tensor N_F is defined by

$$N_F = [FX, FY] - F[X, FY] - F[FX, Y] + F^2[X, Y]$$

for any $X, Y \in \mathfrak{I}_0^1(T(M_n))$ (Salimov 2013, Salimov and Çayır 2013).

Theorem 2.1.1. Let $N_{\alpha F}$ the Nijenhuis tensor of almost complex structure ${}^{\alpha}F \in \mathfrak{T}_{1}^{1}(t^{*}(M_{n}))$. Then

$$N_{ccF} = N({}^{cc}X, {}^{cc}Y) = 0$$

if and only if $N_F = 0$, where $X, Y \in \mathfrak{I}_0^1(T(M_n))$, N_F the Nijenhuis tensor of $F \in \mathfrak{I}_1^1(T(M_n))$

Proof.

$$N_{ccF} = N(^{cc}X, ^{cc}Y) = [^{cc}F^{cc}X, ^{cc}F^{cc}Y] - ^{cc}F[^{cc}F^{cc}X, ^{cc}Y] -$$

$$^{cc}F[^{cc}X, ^{cc}F^{cc}Y] - [^{cc}X, ^{cc}Y]$$

$$= [^{cc}(FX) + \gamma(L_{X}F), ^{cc}(FY) + \gamma(L_{Y}F)] -$$

$$^{cc}F[^{cc}(FX) + \gamma(L_{X}F), ^{cc}Y]$$

$$- ^{cc}F[^{cc}X, ^{cc}(FY) + \gamma(L_{Y}F)] - [^{cc}X, ^{cc}Y]$$

From Theorem 1.1.1, Theorem 1.1.2, Theorem 1.2.2 and Definition 2.1.1, we have

 $= {}^{cc}[(FX),(FY)] + \gamma L_{FX}(L_YF) - \gamma L_{FY}(L_XF)$ $+ \gamma \{(L_XF)(L_YF) - (L_YF)(L_XF)\}$ $- {}^{cc}(F[(FX),Y]) - \gamma L_{[(FX),Y]}F + {}^{cc}F\gamma(L_Y(L_XF))$ $- {}^{cc}(F[X,FY]) - \gamma L_{[X,FY]}F - {}^{cc}F\gamma(L_X(L_YF)) - {}^{cc}[X,Y].$

If we put the relation of $L_x(L_yF) - L_y(L_xF) = L_{[x,y]}F$, then we have

$$N(^{cc}X,^{ccY}) = ^{cc}([(FX),(FY)] - (F[(FX),Y]) - (F[X,FY]) - [X,Y]) + \gamma(L_{FX}(L_YF)) - L_{FY}(L_XF) + (L_XF)(L_YF) - (L_YF)(L_XF) - L_{[FX,Y]}F - L_{[X,FY]}F + L_{F[X,Y]}F.$$

For $N_F = [(FX), (FY)] - F[(FX), Y] - F[X, FY] - [X, Y]$ and

$$P = \begin{pmatrix} L_{FX}(L_YF) - L_{FY}(L_XF) + (L_XF)(L_YF) - \\ (L_YF)(L_XF) - L_{[FX,Y]}F - L_{[X,FY]}F + L_{F[X,Y]}F \end{pmatrix},$$

we get

$$N_{\infty F} = {}^{\infty}N_F + \gamma P,$$

where *P* is the tensor field of type (1,1) on $T(M_{_{u}})$.

Since $N_{\alpha F}$ is zero, we get ${}^{\alpha N}N_F + \gamma P = 0$. Because of $N_F = 0$, the Theorem 2.1.1 is proved.

Theorem 2.1.2. Let *F* be an almost complex structure on $T(M_n)$. Then the comple lift "*F* of *F* on $t^*(M_n)$ is an almost complex structure in $t^*(M_n)$ if and only if *F* is integrable.

Proof. We can infer from the Theorem 2.1.1

Theorem 2.1.3. Let M_n be an n-dimensional diffrentiable manifold of class C^{∞} . We now define a tensor field J of type (1,1) on $t^*(M_n)$ by

$$J = {}^{cc}F - \frac{1}{2}\gamma(NF),$$

where ${}^{\infty}F \in \mathfrak{I}_1^1(t^*(M_n)), F \in \mathfrak{I}_1^1(T(M_n)), N \in \mathfrak{I}_2^1(T(M_n)).$ Then *J* is an almost complex structure on $t^*(M_n)$, i.e. $J^2 = -I$.

Proof.

$$J^{2} = \left({}^{\infty}F - \frac{1}{2}\gamma(NF)\right)^{2} = \left({}^{\infty}F\right)^{2} - \frac{1}{2}{}^{\infty}F\gamma(NF)$$

$$-\frac{1}{2}\gamma(NF)^{\infty}F + \frac{1}{4}\gamma(NF)\gamma(NF)$$

$$= -I - \gamma N_{F} - {}^{\infty}F\gamma(NF)$$

$$= -I - \gamma N_{F} - \gamma(NF^{2})$$

$$= -I - \gamma(N + NF^{2})$$

$$= -I$$

where *F* is an almost complex structure on $T(M_n)$, so $F^2 = -I$ and $({}^{\infty}F)^2 = -I - \gamma N_F$. **Theorem 2.1.4.** Let $N({}^{\alpha}X, {}^{\alpha}Y)$ be the Nijenhuis tensor of almost complex structure ${}^{\alpha}F - \frac{1}{2}\gamma(NF)$ on $t(M_n)$. The almost complex structure ${}^{\alpha}F - \frac{1}{2}\gamma(NF)$ is integrable if and only if the almost complex structure F on $T(M_n)$ is integrable.

Proof. Let *F* be integrable. Then $N_F = 0$ and so ${}^{cc}F - \frac{1}{2}\gamma(NF) = {}^{cc}F$. From Theorem 2.1.2, "*F* is also integrable.

Suppose conversely that ${}^{cc}F - \frac{1}{2}\gamma(NF)$ is integrable. Then the Nijenhuis tensor $N({}^{cc}X, {}^{cc}Y)$ of ${}^{cc}F - \frac{1}{2}\gamma(NF)$ is zero on $t^*(M_n)$.

$$N(^{cc}X,^{cc}Y) = \left[\left({^{cc}F - \frac{1}{2}\gamma(NF)} \right)^{cc}X, \left({^{cc}F - \frac{1}{2}\gamma(NF)} \right)^{cc}Y \right]$$
$$- \left({^{cc}F - \frac{1}{2}\gamma(NF)} \right) \left[\left({^{cc}F - \frac{1}{2}\gamma(NF)} \right)^{cc}X,^{cc}Y \right]$$
$$- \left({^{cc}F - \frac{1}{2}\gamma(NF)} \right) \left[{^{cc}X, \left({^{cc}F - \frac{1}{2}\gamma(NF)} \right)^{cc}Y} \right] - \left[{^{cc}X,^{cc}Y} \right]$$

From Theorem 1.1.1, Theorem 1.1.2, Theorem 1.2.2, Theorem 2.1.3 and Definition 2.1.1, we get

$$= {}^{cc} [(FX), (FY)] + \gamma L_{FX} \left(L_Y F - \frac{1}{2} (NF)_Y \right) - \gamma L_{FY} \left(L_X F - \frac{1}{2} (NF)_X \right) + \gamma \left(\left(L_X F - \frac{1}{2} (NF)_X \right) \left(L_Y F - \frac{1}{2} (NF)_Y \right) \right) - \gamma \left(\left(L_Y F - \frac{1}{2} (NF)_Y \right) \left(L_X F - \frac{1}{2} (NF)_X \right) \right) - {}^{cc} \left(F[(FX), Y] \right) - \gamma L_{[FX,Y]} F + \gamma \left(\left(L_Y (L_X F - \frac{1}{2} (NF)_X \right) F \right) + \frac{1}{2} \gamma (NF)_{[FX,Y]} - {}^{cc} \left(F[X, FY] \right) - \gamma L_{[X,FY]} F - \gamma \left(\left(L_X (L_Y F - \frac{1}{2} (NF)_Y \right) F \right) + \frac{1}{2} \gamma (NF)_{[X,FY]} - {}^{cc} [X,Y]$$

where $L_x(L_yF) - L_y(L_xF) = L_{[x,y]}F$, then we have

$$N(^{\alpha}X,^{\alpha}Y) = ^{\alpha}([(FX),(FY)]) - (F[(FX),Y]) - (F[X,FY]) - [X,Y]) + \gamma(L_{FX}(L_YF - \frac{1}{2}(NF)_Y) - L_{FY}(L_XF - \frac{1}{2}(NF)_X)) + ((L_XF - \frac{1}{2}(NF)_X)(L_YF - \frac{1}{2}(NF)_Y)) - ((L_YF - \frac{1}{2}(NF)_Y)(L_XF - \frac{1}{2}(NF)_X)) - ((L_YF - \frac{1}{2}(NF)_Y)(L_XF - \frac{1}{2}(NF)_X)) - L_{[FX,Y]}F + ((L_Y(L_XF - \frac{1}{2}(NF)_X)F + \frac{1}{2}(NF)_{[FX,Y]})) - L_{[X,FY]}F + ((L_X(L_YF - \frac{1}{2}(NF)_Y)F + \frac{1}{2}(NF)_{[X,FY]}))$$

For

$$N_F = [(FX), (FY)] - F[(FX), Y] - F[X, FY] - [X, Y]$$

and

$$\begin{split} P &= \left(L_{FX} \left(L_Y F - \frac{1}{2} (NF)_Y \right) - L_{FY} \left(L_X F - \frac{1}{2} (NF)_X \right) \right) \\ &+ \left(L_X F - \frac{1}{2} (NF)_X \right) \left(L_Y F - \frac{1}{2} (NF)_Y \right) \\ &- \left(L_Y F - \frac{1}{2} (NF)_Y \right) \left(L_X F - \frac{1}{2} (NF)_X \right) \\ &- L_{[FX,Y]} F + \left(\left(L_Y \left(L_X F - \frac{1}{2} (NF)_X \right) F \right) + \frac{1}{2} (NF)_{[FX,Y]} \right) \\ &- L_{[X,FY]} F + \left(\left(L_X \left(L_Y F - \frac{1}{2} (NF)_Y \right) F \right) + \frac{1}{2} (NF)_{[X,FY]} \right) \end{split}$$

we get

$$N_{x_F} = {}^{cc}N_F + \gamma P,$$

where P is the tensor field of type (1,1) on $T(M_{y})$.

Since $N_{{}^{\alpha}F}$ is zero, we get ${}^{\alpha}N_F + \gamma P = 0$. Because of, the Theorem 2.1.4 is proved.

Theorem 2.1.5. Let $N({}^{vv}\omega, {}^{vv}\theta)$ be the Nijenhuis tensor of almost complex structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$ on $t^*(M_n)$. Then the almost complex structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$ is integrable, where $\omega, \theta \in \mathfrak{I}_1^0(T(M_n)), N_F$ the Nijenhuis tensor of $F \in \mathfrak{I}_1^1(T(M_n))$.

Proof.

$$N({}^{vv}\omega,{}^{vv}\theta) = \left[\left({}^{cc}F - \frac{1}{2}\gamma(NF) \right)^{vv}\omega, \left({}^{cc}F - \frac{1}{2}\gamma(NF) \right)^{vv}\theta \right] \\ - \left({}^{cc}F - \frac{1}{2}\gamma(NF) \right) \left[\left({}^{cc}F - \frac{1}{2}\gamma(NF) \right)^{vv}\omega,{}^{vv}\theta \right] \\ - \left({}^{cc}F - \frac{1}{2}\gamma(NF) \right) \left[{}^{vv}\omega, \left({}^{cc}F - \frac{1}{2}\gamma(NF) \right)^{vv}\theta \right] - \left[{}^{vv}\omega,{}^{ve}\theta \right]$$

From Theorem 1.1.1, Theorem 1.1.2, Theorem 1.2.1, Theorem 2.1.3 and Definition 2.1.1, we get

$$-\left({}^{vv}F - \frac{1}{2}\gamma(NF)\right)\left[{}^{vv}\omega,{}^{vv}(\theta \circ F)\right] - \left[{}^{vv}\omega,{}^{vv}\theta\right]$$
$$= 0$$

where $\omega \circ F, \theta \circ F \in \mathfrak{I}_1^0(T(M_n)), [{}^{vv}\omega, {}^{vv}\theta] = 0.$

Theorem 2.1.6. Let $N({}^{cc}X, {}^{vv}\omega)$ be the Nijenhuis tensor of almost complex structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$ on $t^*(M_n)$. Then almost complex structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$ is integrable if and only if LF = 0 and $L\omega = 0$.

Proof.

$$\begin{split} N(^{cc}X,^{vv}\omega) &= \left[\left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right)^{cc}X, \left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right)^{vv}\omega \right] \\ &- \left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right) \left[\left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right)^{cc}X,^{vv}\omega \right] \\ &- \left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right) \left[{^{cc}X, \left({^{cc}F} - \frac{1}{2}\gamma \left(NF \right) \right)^{vv}\omega } \right] - \left[{^{cc}X,^{vv}\omega} \right] \end{split}$$

From Theorem 1.1.1, Theorem 1.1.2, Theorem 1.2.1, Theorem 2.1.3 and Definition 2.1.1, we get

 $= {}^{vv}(\omega \circ (L_{FX}F)) - (L_X(\omega \circ F) \circ F) - (L_X\omega)).$

For LF = 0 and $L\omega = 0$, we have $N({}^{cc}X, {}^{w}\omega) = 0$. The Theorem 2.1.6 is proved.

2.2. Tachibana operators applied to "X and "w with respect to an almost complex structure " $F - \frac{1}{2}\gamma(NF)$ on $t'(M_n)$

Definition 2.2.1. Let $\varphi \in \mathfrak{I}_{1}^{1}(M_{n})$ and $\mathfrak{I}(M_{n}) = \sum_{r,s=0}^{\infty} \mathfrak{I}_{s}^{r}(M_{n})$ be a tensor alebra over R. A map $|\varphi_{\varphi}|_{r+s>0} : \mathfrak{I}(M_{n}) \to \mathfrak{I}(M_{n})$ is called a Tachibana operator or $|\varphi_{\varphi}|$ operator on M_{n} if

a) ϕ_{φ} is linear with respect to constant coefficient,

b) $\phi_{\varphi}: \overset{*}{\mathfrak{I}}(M_n) \to \mathfrak{I}_{s+1}^r(M_n)$ for all r and s,

c)
$$\phi_{\varphi}(K \otimes^{c} L) = (\phi_{\varphi} K) \otimes L + K \otimes \phi_{\varphi} L$$
 for all $K, L \in \overset{*}{\mathfrak{I}}(M_{n})$

d) $\phi_{\varphi X} Y = -(L_Y \varphi) X$ for all $X, Y \in \mathfrak{I}_0^1(M_n)$, where L_Y is the Lie derivation with respect to *Y*.

(e)
$$(\phi_{\varphi X} \eta) Y = (d(l_Y \eta))(\phi X) - (d(l_Y (\eta \circ \phi)))X +$$

 $\eta((L_Y \phi)X)$
 $= \phi X(l_Y \eta) - X(l_{\varphi Y} \eta) + \eta((L_Y \phi)X)$

for all $\eta \in \mathfrak{T}_{0}^{1}(M_{n})$ and $X, Y \in \mathfrak{T}_{0}^{1}(M_{n})$, where $l_{Y}\eta = \eta(Y) = \eta \otimes Y, \mathfrak{T}_{s}^{r}(M_{n})$ the module of all pure tensor fields of type (r,s) on M_{n} with respect to the affinor field [6].

Theorem 2.2.1. Let ${}^{cc}F - \frac{1}{2}\gamma(NF)$ be an almost complex structure on $t^*(M_n)$ and $X, Y \in \mathfrak{T}_0^1(T(M_n))$. Then we get the following results.

i)
$$\phi_{({}^{\omega}F-\frac{1}{2}\gamma(NF))^{w_{X}}} {}^{cc}Y = {}^{cc}(\phi_{FX}Y) + \gamma P$$

where $P \in \mathfrak{I}_{1}^{1}T(M_{n})$ and
 $P = L_{Y}(L_{X}F-\frac{1}{2}(NF)_{X}) + L_{[Y,X]}F-\frac{1}{2}(NF)_{[Y,X]}.$
ii) $\phi_{({}^{\omega}F-\frac{1}{2}\gamma(NF))^{w_{X}}} {}^{vv}\omega = {}^{vv}(\phi_{FX}\omega)$
iii) $\phi_{({}^{\omega}F-\frac{1}{2}\gamma(NF))^{w_{\omega}}} {}^{cc}X = {}^{vv}(\phi_{F\omega}X)$
iv) $\phi_{({}^{\omega}F-\frac{1}{2}\gamma(NF))^{w_{\omega}}} {}^{vv}\theta = 0,$
where $\omega, \theta \in \mathfrak{I}_{1}^{0}(T(M_{n})), X, Y \in \mathfrak{I}_{0}^{1}(T(M_{n})), N_{F}$ the
Nijenhuis tensor of $F \in \mathfrak{I}_{1}^{1}(T(M_{n})).$

Proof.

$$\begin{aligned} \varphi_{(^{\alpha}F-\frac{1}{2}\gamma(NF))^{\alpha}X} &\stackrel{\text{\tiny ce}}{=} -\left(L^{_{\alpha}Y}\left(^{^{\alpha}F}-\frac{1}{2}\gamma(NF)\right)\right)^{\alpha}X \\ &= -L^{_{\alpha}Y}\left(^{^{\alpha}F}-\frac{1}{2}\gamma(NF)\right)^{\alpha}X + \left(^{^{\alpha}F}-\frac{1}{2}\gamma(NF)\right)L^{_{\alpha}Y}^{^{\alpha}X}X \end{aligned}$$

From Theorem 1.1.1, Theorem 1.1.2, Theorem 1.2.1, Theorem 2.1.3 and Definition 2.2.1, we get $=-{}^{cc}((L_YF)X) + \gamma P$ $= {}^{cc}(\phi_{FX}Y) + \gamma P$ ii) $\phi_{(^{cr}F-\frac{1}{2}\gamma(NF))^{e_X}} {}^{ve}\omega = -(L_{^{ve}\omega}({}^{cc}F-\frac{1}{2}\gamma(NF)))^{cc}X$ $= -L_{^{ve}\omega}({}^{cc}F-\frac{1}{2}\gamma(NF))^{cc}X + ({}^{cc}F-\frac{1}{2}\gamma(NF))[{}^{ve}\omega, {}^{cc}X]$ $= -[{}^{ve}\omega, {}^{cc}(FX) + \gamma(L_XF-\frac{1}{2}(NF)_X]$ $-{}^{cc}F[{}^{cc}X, {}^{ve}\omega] + \frac{1}{2}\gamma(NF))[{}^{cc}X, {}^{ve}\omega]$ $= -[{}^{ve}\omega, {}^{cc}(FX)] - {}^{ve}\omega\gamma(L_XF-\frac{1}{2}(NF)_X)$ $-{}^{cc}F^{ve}(L_X\omega) + \frac{1}{2}\gamma(NF) {}^{ve}(L_X\omega)$

$$= {}^{vv}(L_{FX}\omega) - {}^{cv}F^{vv}[X,\omega]$$

= $-{}^{vv}[\omega,FX] + {}^{vv}(([\omega,X])F)$
= $-{}^{vv}((L_XF)X) - {}^{vv}((L_\omega X)F) + {}^{vv}((L_\omega X)F)$
= $-{}^{vv}((L_XF)X)$
= ${}^{vv}(\phi_{FX}\omega)$

$$\begin{split} \text{iii}) & \phi_{(^{cr}F - \frac{1}{2}\gamma(NF))^{w}\omega} \ ^{cc}X = -\left(L^{_{cr}\chi}\left(^{cc}F - \frac{1}{2}\gamma(NF)\right)\right)^{w}\omega \\ &= -\left[{}^{cc}X, \left({}^{cc}F - \frac{1}{2}\gamma(NF)\right)^{w}\omega\right] + \left({}^{cc}F - \frac{1}{2}\gamma(NF)\right)\left[{}^{cc}X, {}^{w}\omega\right] \\ &= -\left[{}^{cc}X, {}^{vv}(\omega \circ F)\right] + {}^{cc}F\left[{}^{cc}X, {}^{w}\omega\right] - \frac{1}{2}\gamma(NF)^{vv}[X, \omega] \\ &= -{}^{vv}(L_X(\omega \circ F)) + {}^{cc}F {}^{vv}[X, \omega] \\ &= -{}^{vv}((L_X\omega)F) - {}^{vv}((L_XF)\omega) + {}^{vv}((L_X\omega)F) \\ &= -{}^{vv}((L_XF)\omega) \\ &= {}^{vv}(\phi_{F\omega}X) \\ \\ \text{IV}) \phi_{(^{cr}F - \frac{1}{2}\gamma(NF))^{w}\omega} \ {}^{vv}\theta = -\left(L_{^{w}\theta}\left({}^{cc}F - \frac{1}{2}\gamma(NF)\right)\right)^{vv}\omega \\ &= -\left[{}^{vv}\theta, \left({}^{cc}F - \frac{1}{2}\gamma(NF)\right)^{v}\omega\right] \\ &+ \left({}^{cc}F - \frac{1}{2}\gamma(NF)\right)\left[{}^{vv}\theta, {}^{vv}\omega\right] \\ &= -\left[{}^{vv}\theta, (\omega \circ F)\right] \\ &= 0 \end{split}$$

The Theorem 2.2.1 is proved.

3. Discussion

By putting the tangent bundle instead of the fiber bundle it is introduced a new class of semi-cotangent bundle, which has explicit formulas for a projectable tensor fields. Firstly, we get the integrability conditions of the Nijenhuis Tensors $N({}^{cc}X, {}^{cv}Y), N({}^{cc}X, {}^{vv}\omega), N({}^{vv}\omega, {}^{vv}\theta)$ of almost complex structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$. Later, it is demonstrated the results of Tachibana operators applied ${}^{cc}X$ and ${}^{vv}\omega$ according to structure ${}^{cc}F - \frac{1}{2}\gamma(NF)$ in semi cotangent bundle $t^*(M_n)$.

4. References

- Husemöller, D. 1994. Fibre Bundles. New York, NY, USA, Springer. 353 pp.
- Lawson, HB., Michelsohn, ML. 1989. Spin Geometry, Princeton, NJ, USA, Princeton Univ. Press, 440 pp.
- Ostianu, NM. 1974. Step-fibred spaces, Tr. Geom. Sem. 5, Moscow. (VINITI), 259-309.
- Pontryagin, LS. 1962. Characteristic classes of differentiable manifolds, *Trans. Amer. Math. Soc.*, 7: 279-331.

- Poor, WA. 1981. Differential Geometric Structures, New York, McGraw-Hill, 352 pp.
- Salimov, AA. 2013. Tensor Operators and Their applications, Nova Sci. Publ., New York, 186 pp.
- Salimov, AA., Çayır, H. 2013. Some Notes On Almost Paracontact Structures, C. R. de 1' Aced. Bulg. Des Sci., 66(3): 331-338.
- Steenrod, N. 1951. The Topology of Fibre Bundles, Princeton, NJ, USA, Princeton Univ. Press, 224 pp.
- Yano, K., Ishihara, S. 1973. Tangent and Cotangent Bundles, Marcel Dekker Inc., New York, 419 pp.
- Yıldırım, F. 2015. On a Special Class of Semi-Cotangent Bundle, Proc. of the Inst. Math. Mech., 41(1): 25-38.
- Yıldırım, F., Salimov, AA. 2014. Semi-cotangent bundle and problems of lifts, *Turk. J. Math.*, 38: 325-339.