
Karaelmas Fen ve Müh. Derg. 7(1):202-205, 2017

Karaelmas Fen ve Mühendislik Dergisi
Journal home page: http://fbd.beun.edu.tr Research Article

*Corresponding author: ates.muzaffer65@gmail.com

Received / Geliş tarihi : 01.09.2016                     
Accepted / Kabul tarihi : 01.01.2017 

$^ h matrix. In addition, let the derivatives x
f

j

ik

2
2  and x

h
j

i

2
2

exist, (i,j = 1,...,n).

Such equations are closely related to n - dimensional third 
order ordinary differential  systems which arise in the analysis 
of Jerk equations , , ,J x x x x 0=l m n^^ h h of multi input- multi 
output dynamical systems, nonlinear oscillations and 
biological mathematics (Zhang and Yu 2013), the third 
order nonlinear oscillatory systems (Talukdar et. al. 2012) 
for a real application. 

The most efficient tool for the study of the stability of a 
given nonlinear dynamical system is provided by Lyapunov 
theory (Lyapunov 1992, Barbashin 1970, Iggidr and Sallet 
2003). One can find a large number of beautiful works in the 
literature, discussing the qualitative behavior  of nonlinear 
differential equations (see some examples, Korkmaz and 
Tunc 2014, Korkmaz and Tunc 2015, Korkmaz and Tunc 
2016, Tunc 2009, Ates 2013, Ezeilo 1960, Qian 2000, 
Omeike 2007, Tunc and Ates 2006, Tunc 2004, Tunc 2006). 

1. Introduction
This paper is concerned with the following vector differential 
equation: 

, , ,X G X X X F X X X H X 0+ + + =q o p o o^ ^ ^h h h   (1)

where, in the real Euclidean space Rn; F, G and H have 
the following arguments: F is continuous n x n symmetric 
matrix, G and H are n- continuous vector functions. JF(X,Y) 
and JH(X) are symmetric matrices and denote the Jacobian 
matrices corresponding to the functions F(X,Y) and H(X) 
respectively, and have the following relations
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The symbol ,X Y  stands for the usual scalar product 
x yi ii

n

1=
/ . ( )i $m  are the eigenvalues of the corresponding  
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Furthermore, we can announce the most recent studies 
which state the importance of the subject as follows:

Tunc (2009) proved global asymptotic stability of the 
equation 

( )X X X BX cX P tW+ + + =q o p o^ h .

Ates (2013), Zhang and Yu (2013) investigated the global 
asymptotic stability of the following equations:

, , , , , , ,x x x x x f x x x p t x x x}+ + =n l m m l m l m^ ^ ^h h h,

and

, , ,x x x x f x xg x h x 0+ + =+n l m l l^ ^ ^h h h ,

respectively.

In system theory, one of the most basic issues is the stability 
of dynamical systems. The most complete contribution to 
the stability analysis of nonlinear dynamical systems is due 
to Lyapunov (Zhang and Yu 2013). Lyapunov’s results with 
the LaSalle invariance principle (LaSalle 1960) provide a 
powerful framework for analyzing the stability of nonlinear 
dynamical systems.  Today, this method  is  recognized as an 
excellent tool not only in the study of differential equations 
but also in the theory of control systems, dynamical systems, 
systems with time lag, power  system analysis, time-varying 
nonlinear feedback  systems, and so on.  

Hence, the importance of the subject may need some 
extension. Thus, we paid our attention on the very recent 
study of Zhang and Yu (2013), and then we upgraded 
this work to n- dimension systems under the related 
assumptions of Zhang and Yu (2013). Moreover, this study 
improves and extends the work of Zhang and Yu (2013).  
Here, we carefully constructed a suitable Lyapunov function 
for (1). Then, by using the well-known LaSalle’s invariance 
principle (LaSalle 1960), and consequently we establish 
a new result (which not published before) on the global 
asymptotic stability of the zero solution of (1).

2. Main Result
Equation (1) is equivalent to the system

, , , , ,X Y Y Z Z H X F X Y Y G X Y Z= = =- - -o o o ^ ^ ^h h h.      (2)

The following algebraic results which will be needed in 
improving our main results.

Lemma 1 Let A be a real symmetric n x n matrix, then for 
any X ∈ Rn, we have 

,X AX X Xd d
2 2T# #d ,

where dd  and dT  are the least and the greatest eigenvalues 
of A, respectively.

Proof. See (Abou-El-Ela and Sadek 1990).

Lemma 2
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Proof. See (Abou-El-Ela and  Sadek 1990)

Theorem 

Let there exist two positive numbers a>0 and b 2
12  such that 

for all (X,Y,Z) ∈ Rn, and i = 1,...,n. Then we have the following:

(i) ( , , )
a

Z
G X Y Z

a a
21 1 +  for Z 0! , and G(X,Y,0) = 

0;

(ii) ,F X Y bi $m ^^ hh ;

(iii) , |J X Y Y X 0F #^^ h h ;

(iv) ( )J X a b 2
1

i H 1m -^ ah k;

(v) h x sgnx 0i i 2^ h  for x 0i ! , and H(0) = 0;

(vi) h x dxi i
0

3=
!3

^ h# .

Then, the zero solution of (1) is globally asymptotically stable.

Proof.

The main results will be proved by employing Lyapunov 
function V = V(X,Y,Z) which is given by:

, ,

,
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By using the assumption 
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we have 
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In view of the theorem and the above discussion, we obtain

V b
a b X4 2

12
2$ -a k .

Consequently, V is a non-negative function Observe that if 
V = 0, then we necessarily have

X = 0, Y = 0, Z = 0.

Thus, we deduce that V(X,Y,Z) is a positive definite function.

Next, we show that the derivative of V along system (2) is 
negative semi definite.

Let, (X(t), Y(t), Z(t)) be any solution of system (2). 
Differentiating the function V(X,Y,Z)

with respect to t along system (2), we obtain
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By using the results of Lemma 2, the theorem and the above 
discussion it is clear that

, , , , , .V X Y Z X Y Z R0 n6# !o ^ ^h h

Assume that

, , | ( , , ) .K X Y Z V X Y Z 02= =o^ ^h h" ,

Let K contains no complete solutions of system (2) other 
than the zero solution. In fact, if , ,X t Y t Z t^ ^ ^^ h h hh is a 
complete solution of system (2) that is contained in K. Then, 
by

, ,V X Y Z 0( )2 =o ^ h , that is, ( )Y t Z t0/ /^ h .

Then, by the first equation in (2), we see that X t /^ h  const. 
Because the zero solution (0,0,0) is the unique constant 
solution of system (2), we deduce that X t /^ h  0. This proves 
our assumption on K.

Finally, there remains to show the boundedness solutions of 
system (2). Assume that , ,X t Y t Z t^ ^ ^^ h h hh be a solution of 
system (2) with initial value

, ,X X Y Y Z Z0 0 00 0 0= = =^ ^ ^h h h ,

where , ,X Y Z R0 0 0
3!^ h . Let take a positive number b>0 

such that

, , : , , | , , .X Y Z D X Y Z V X Y Z0 0 0 ! # b=^ ^ ^h h h" ,

By (vi), there exists a positive constant M>0 such that

R(X)>b, if ,X M2

where
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Now, Assume that X M# . Then, by the third inequality 
in (3), we deduce that
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Consequently, the second inequality in (3) implies that

.Z aN21 b +

Hence, D is a bounded set. 

Therefore

( ), ( ), ( ) ,X t Y t Z t D!^ h  for all t ≥ 0.

3. Example 
If we take in (1), for n = 2,
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Hence, our example verifies all the hypotheses of the 
theorem.
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